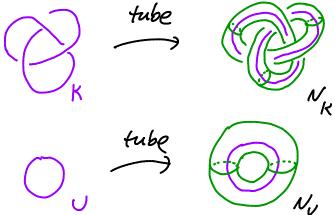
VII Knot Groups and Colorings

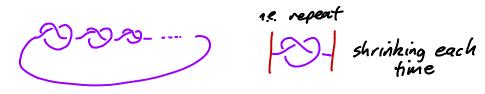
A <u>Knot Groups</u> recall a <u>knot</u> K is the image of an embedding $f: S' \rightarrow \mathbb{R}^3$ (or $S^3 = \mathbb{R}^3 \cup \{\infty\}$, recall stereographic coordinates show $S^2 \cdot \{pt\} \cong \mathbb{R}^3$) given a knot K we can consider a tube "about K



re. think of a knot as a piece of string then the tube is a thickening "of the string

note: $N_{K} \cong 5' \times D^{2} (= K \times D^{2})$

<u>Remark</u>: such tubes don't always exist ! but if f is differentiable they do If tube doesn't exist the knot is called wild



we will not study wild knots so for us "knot" means non-vild knot" (tame)

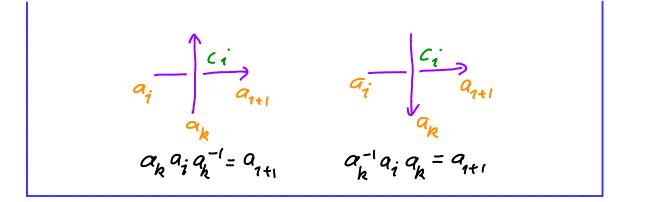
let
$$X_{k} = \overline{S^{3} - N_{k}}$$
 (use S^{3} because we like compact things
but not important for most of
what is below)

exercise:
i) X_{k} is a compact 3-manifold with boundary
2) $\partial X_{k} = T^{2}$
recall we are interested in knots up to isotopy
Fact: For tame knots: K_{i} isotopic to K_{2}
 $\overset{\bigcirc}{\longrightarrow}$
 $called$ (\exists an isotopy $\phi: S^{3} \times [o, i] \rightarrow S^{3}$
 $ambient$ (\exists an isotopy $\phi: S^{3} \times [o, i] \rightarrow S^{3}$
 $isotopy$ ($such$ that $\phi_{0} = id_{S^{3}}$ and $\phi_{i}(K_{i}) = K_{2}$
note that given on ambient isotopy ϕ , and a parameterizate
 $Y: S^{i} \rightarrow S^{3}$ of K_{i} , then $\phi_{t} \circ Y$ is on isotopy from K_{i} to K_{2}
 $so(=)$ is easy
 (\exists) is much more difficult, but twe
note: $\phi_{i}:(S^{3}-K_{i}) \rightarrow (S^{3}-K_{2})$ is a homeomorphism

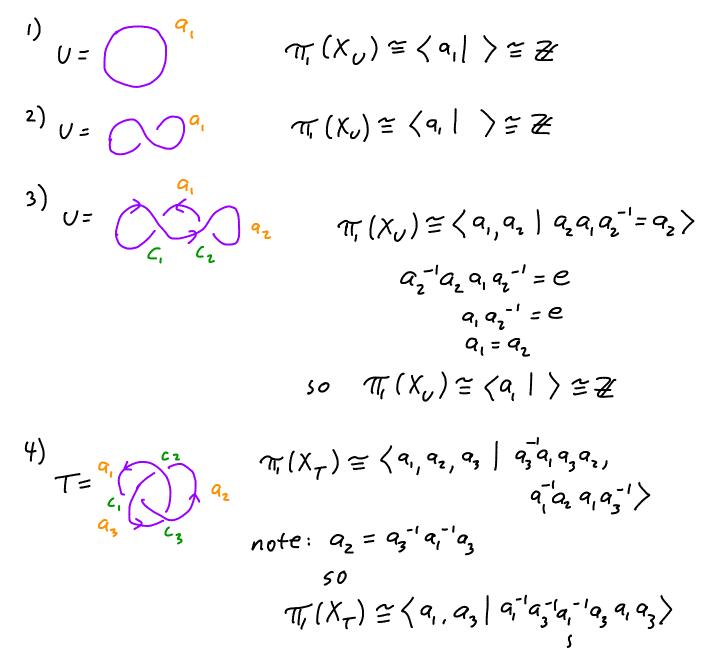
<u>lemma 1:</u>____ X_K ~ 5³-K homotopy equivalent

<u>Remark</u>: by above discussion if K, is isotopic to K_2 then $X_{K_1} \cong X_{K_2}$ so if we can show $X_{K_1} \not\cong X_{K_2}$ then K, and K_2 are different ! <u>Proof</u>: $D^2 - \{pt\} \cong s^1$

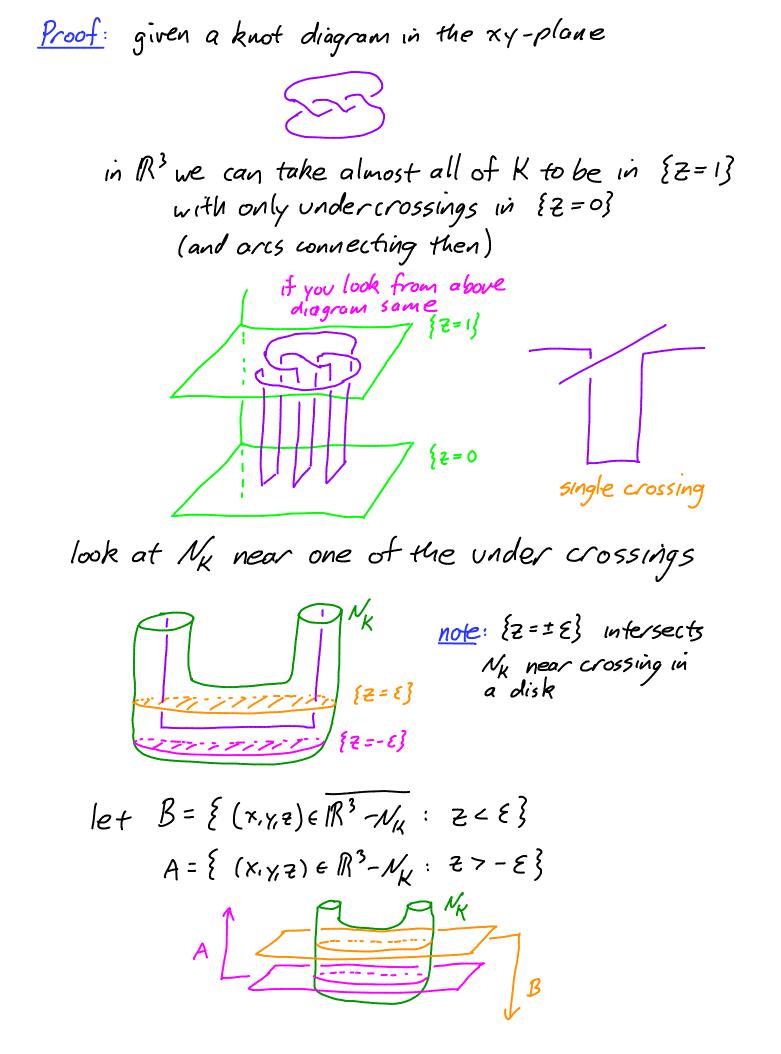
 $(f) \xrightarrow{f} (f)$ $\bigcirc \xrightarrow{9} \bigcirc$ $(r, \phi) \longmapsto \phi$ $\phi \longmapsto (\iota, \phi)$ exercise: fog=ids: and gof = id D2-Ept3 now $N_K - K \cong (D^2 - \{pt\}) \times 5' \cong 5' \times 5' = T^2$ $50 \quad 5^{3}-K = X_{K} \cup_{T^{2}} (N_{K} - K) \simeq X_{K} \cup_{T^{2}} (T^{2}) = X_{K}$ X_K is called the knot complement of K we want to compute the fundamental group of XK for this we consider knot diagrams recall, we discussed these at start of the course. they are projections to xy-plane in IR's (and remember over and under crossing info.) note: if the diagram for K has n (noo) crossings, then it also has n arcs a, ... an (lable crossings c, ... cn) Thm2 (Wirtinger Presentation): If Dk is a diagram of K with arcs a1,..., an and crossings c.,..., cn, then $\pi_i(X_{K_1}, x_o) \cong \langle a_1, \dots, a_n \mid r_1, \dots, r_{n-1} \rangle$ where for each crossing c; we get a relation r; as follows



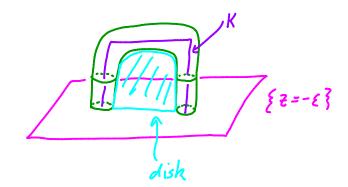
examples:

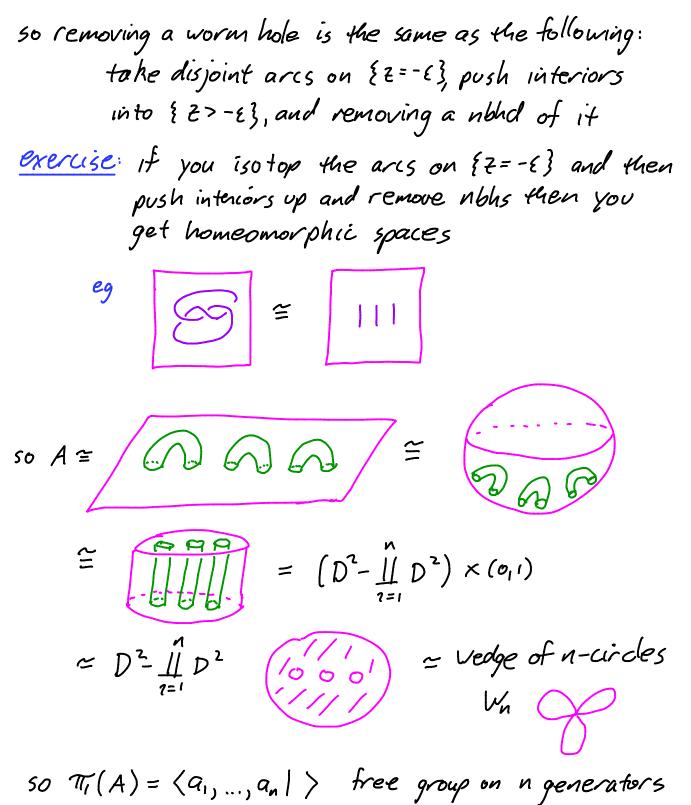


a, a, a, = a, a, a,



$$\frac{|dentify B|}{|dentify A||} B = f ve did not remove M_k from B we would havean open ball $B^3 = \{2 < c\}$
for each crossing we remove
 $2 - c$
 $2 -$$$

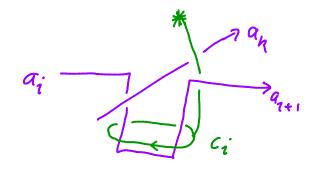


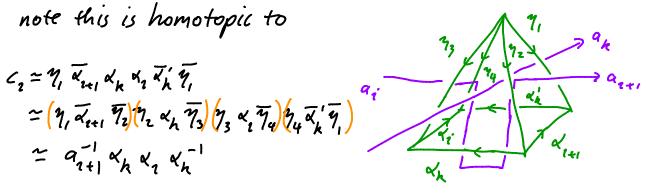


to use Seifert - Van Kampen need to see

$$\pi_{i}(A \cap B) \longrightarrow \pi_{i}(B) = \{e\}$$
 trivial map
 $\pi_{i}(A \cap B) \longrightarrow \pi_{i}(A)$

let C_1 be one of the generators of $T_1(A \cap B)$ C_i in $T_1(A)$ is



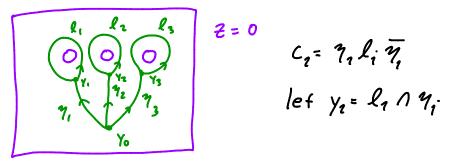


50
$$\pi_1(\mathbb{R}^3 - N_k) \cong \langle a_1, ..., a_n | r_1, ..., r_n \rangle$$

where relations are as above

<u>exercise</u>: Show rn is a consequence of the other riso it is not needed (you can also do this by taking a different decomposition of R³)

We applied Serfert - Van Kampen wrong! we were not careful with base point need to take base point yo t A nB not $x_0 = (0.0, 2)$ like we did (just did this because easier to visualize, and we can fix (t!)) let M be a path from x_0 to y_0 , then we get isomorphism $\overline{\Psi}_{y_0}: \mathcal{T}_1(A, y_0) \to \overline{T}_1(A, x_0)$ now for generators C; of Ti (ANB, Yo) we take



let & be path to to yi note Sala Sa are the loops we used above for Ci in TI, (A, Xo) (coll them (; now) 50 $\bar{P}_{m}(c_{1}) = \bar{P}_{n}(\gamma_{1}l_{1},\overline{\gamma_{1}}) = \gamma_{1}\gamma_{1}l_{2}\overline{\gamma_{1}}\overline{\gamma}$ 7 11 · 0 0 0 i z=0 let $\beta_i = \delta_1 \overline{\gamma}_1 \overline{\gamma}_1 \in \pi_1(A, \kappa_0)$ <u>note</u>: $\overline{\Phi}_{\eta}(c_n) = (\eta \eta_{\eta} \overline{\nabla_{\eta}})(\delta_{\eta} l_{\eta} \overline{\nabla_{\eta}})(\delta_{\eta} \overline{l_{\eta}} \overline{\eta}) = \overline{\beta_{\eta}} c'_{\eta} \beta_{\eta}$ correct use of Seifert-Van Kampen is $\pi_{I}(X_{K_{i}}, Y_{o}) \cong \overline{\mathfrak{E}_{q}}^{-1}(\pi_{I}(A, x_{o})) \neq \{e\} / \langle c_{I_{i}}, \dots, c_{m} \rangle$ $\simeq \pi_{i}(A, x_{o}) \langle \overline{\Phi}_{y}(c_{i}), \dots, \overline{\Phi}_{y}(c_{n}) \rangle$ = Tr(A, xo) < B, C'B, ..., Bn (n Bn) $\underline{exercise}: \langle g_1, \dots, g_k \rangle = \langle h_1 g_1, \dots, h_k g_k h_k^{-1} \rangle$

normal subgroups gen by elements

50
$$\mathcal{T}_{I}(X_{K_{i}}, Y_{o}) \cong \mathcal{T}_{I}(A, x_{o})/\langle c_{i}', ..., c_{n}' \rangle$$

 $\cong \langle q_{i}, ..., q_{n} | r_{i}, ..., r_{n} \rangle$
 $\widehat{}$ relations given by c_{i}'

recall U = 0 has $\pi_i(X_v) \cong \mathbb{Z}$ $T = \bigotimes has \pi_i(X_T) \cong \langle a_{i}, a_{i} | a_{i}a_{i}a_{i}a_{i}^{-1}a_{i}^{-1} \rangle$ $| S \pi_i(X_{\omega}) \cong \pi_i(X_{k}) ?$ as earlier, could try to abelianize (r.e. look at H,), but <u> Corollary 3:</u>_____ H,(XK) = 2 for any knot K Proof: each crossing $a_{i} \xrightarrow{q_{i}} q_{i+1}$ gives a relation $a_i a_h a_{n+i} a_h^{-1} = e$ after we abelianize this is a:= anti so H, (X,) has one generator and no relations $50 \hspace{0.1cm} H_{I}(K_{K}) \cong \mathcal{H}$

non-abelian and try to find a homomorphism

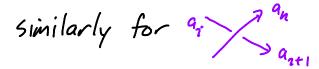
$$\phi: \pi_i(X_k) \rightarrow G$$
 onto G.
(since $\exists g_{i}, g_k \in G$ st. $g_i g_k = g_2 g_i$
and $h_i, h_k \in \pi_i(X_T)$ s.t. $\phi(h_i) = g_i$
we know $h_i h_k = h_k h_i$ and $\pi_i(X_T)$ non-abelian)
recall $S_3 = group$ of permutations of $\{1, 2, 3\}$
 $1S_3|=6$ and S_3 non-abelian
define $\phi: \pi_i(X_T) \rightarrow S_3$ by recall, this means
 $a_i \longmapsto [2 : 3]$ $i \mapsto 2$
 $a_3 \longmapsto [3 : 1]$ $s \mapsto 3$
this gives a homomorphism since
 $a_3 q_i a_3 a_i^{-1} a_3^{-1} a_i^{-1} = 1$
becomes
 $[3 : 1][2 : 1][3 : 1][2 : 3]^{-1}[3 : 1]^{-1}[2 : 3]^{-1}$
 $= [2 : 3 : 1][2 : 3][2 : 3]^{-1}[3 : 1]^{-1}[2 : 3]^{-1}$
 $= [2 : 3 : 1][2 : 3 : 1][2 : 3] = id$
image ϕ contains $a_i \longmapsto [2 : 3]$
 $a_i q_3 a_i \longmapsto [2 : 3]$

so 4 is out
$$D$$
 :. $\pi_i(X_T)$ non-abelian
:. $\pi_i(X_T) \notin \pi_i(X_U)$
so K and U not isotopic !
How good is $\pi_i(X_K)$ at determining X_K ?
Facts:
i) if $\pi_i(X_K) \cong \mathbb{Z}$, then K is the unknot.
2) if $K_i = O$
 $K_2 = O$
 $K_1 = O$
 $K_2 = O$
 $K_1 = O$
 K_2
but K_i is not isotopic to K_2
3) so $\pi_i(X_K)$ is a good invariant of K
but not perfect
but $\pi_i(X_K) + tiny$ bit extra determines K
down side is it can be hard to determine
when two group presentations are the same
group !

So try to "extract" more " computable " information from $\pi_{i}(X_{K})$

B. Coloring Knots Sprime Recall a p-labeling (or coloring) of a knot diagram is an assignment of an element of Zp to each edge of the diagram so that i) at least 2 lables are used and 2) at each crossing $x = 2 \qquad 2x \equiv z + y \mod p$ We saw you can distinguish the unknot, figure 8 knot, and trefoil using 3 and 5 colorings eg. \bigcirc not 3-colorable 3-colorable What does this have to do with T. (XK) ? <u> Thm 4: -</u> 1) Every p-labeling of a diagram of K gives a surjective homomorphism $\pi_{i}(X_{\kappa}) \longrightarrow D_{\rho}$ 2) Every surjective homomorphism Ti(XK) → Dp gives a p-labeling of a diagram of K Recall Dp = dihedral group = symmetries of regular n-gon = {x, y 1 xⁿ, y², xyxy} Proof: If a diagram Dy for K has a crossings c1,..., cy

and n arcs
$$a_{1},...,a_{n}$$
 (labeled as above)
then $7L^{m}2$ says
 $T_{i}(X_{k}) \cong \langle a_{1},...,a_{n} | r_{1},...,r_{n-1} \rangle$
where r_{i} is $a_{k}a_{i}a_{k}a_{i+1}^{-i}$ if c_{i} is $a_{i} + a_{i+1}$
and $a_{k}^{-i}a_{i}a_{k}a_{i+1}^{-i}$ if c_{i} is $a_{i} + a_{i+1}$
a p-coloring is a map
 $\{a_{i},...,a_{n}\} \xrightarrow{c} Z_{p}$
satisfying $a_{i} + a_{i} \xrightarrow{a_{i+1}} Z_{i}(a_{k}) \equiv c(a_{i}) + c(a_{i+1}) \mod p$
given c define
 $\phi_{c}: T_{i}(X_{k}) \rightarrow D_{p}$
 $a_{i} \mapsto \gamma x^{c(a_{i})}$ write $c_{i} \equiv c(a_{i})$
this will give a homomorphism if the relations r_{i} :
are respected:
 $a_{k}^{-i}a_{i}a_{k}a_{i+1}$
becomes:
 $(\gamma x^{i}a)^{-i}(\gamma x^{i})(\gamma x^{i}a_{k})(\gamma x^{i}a_{i+1})^{-i}$
 $= x^{c_{i}}c_{k}\gamma^{-i}\gamma^{-i}x^{c_{k}}x^{-c_{k+1}}\gamma^{-i}$
 $= x^{c_{i}}c_{k}\gamma^{-i}\gamma^{-i}x^{c_{k}}x^{-c_{k+1}}\gamma^{-i}$
 $= x^{c_{i}}c_{k}\gamma^{-i}x^{-c_{k+1}}\gamma^{-i}$



so de is a homomorphism <u>Claim</u>: de is onto

since at least 2 labels are used there is a crossing st. $c_1 \neq c_{n+1} \mod p$

 $c_i = c_n + c_n + c_n + c_n + c_n + c_n$

 $C_{1} \neq C_{1+1} \mod \rho \Rightarrow C_{1+1} - C_{1} \equiv 0 \mod \rho$ so $C_{1+1} - C_{1}$ is represented by an integer between l and ρ -1

so $(c_{n+1}-c_n)$ is relatively prime to p (since p prime) <u>Algebra Fact</u>: \exists integers m, m' such that $m(c_{n+1}-c_n) + m'p = 1$

 $ne. m(C_{n+1}-C_n) \equiv 1 \mod p$

$$now \ \phi_{c} \left(\left(a_{i} a_{i+1} \right)^{m} \right) = \left(Y \times^{c_{i}} Y \times^{c_{i+1}} \right)^{m} = \left(Y^{2} \times^{c_{i+1}-c_{i}} \right)^{m} \\ = \times^{m(c_{2+1}-c_{i})} = \chi^{1} = \chi \\ and \ \phi_{c} \left(a_{i} \left(\left(a_{i} a_{i+1} \right)^{m} \right)^{-c_{i}} \right) = Y \times^{c_{i}} \chi^{-c_{i}} = Y \\ 50 \ \phi_{c} \ onto \ \end{pmatrix}$$

Now given $\phi: \pi_i(X_k) \rightarrow D_p$ surjective then for a diagram D_k let the arcs be $a_1, ..., a_n$ <u>note</u>: $\phi(a_i) = x^{b_1} \gamma x^{b_2} \gamma ... \gamma x^{b_k i} = \gamma^{\epsilon_i} x^{\epsilon_i}$ where $\epsilon = 0$ or 1 and $c_i \epsilon \{0, ..., p-1\}$

Claum:
$$\varepsilon_{z} = 1$$
 for all i
if not, then for some i we have $\varepsilon_{i} = 0$
now conside
 $\varphi(a_{h}^{-1}a_{i}a_{h}a_{n+1}) = x^{-c_{h}}y^{\varepsilon_{h}}x^{c_{h}}x^{c_{h}}x^{-c_{h+1}}y^{\varepsilon_{h+1}}$
 $= y^{2\varepsilon_{h}+\varepsilon_{h+1}}x^{?} = y^{\varepsilon_{h+1}}x^{?}$
since this must be ε_{i} we must have $\varepsilon_{i+1} = 0$
inducting we see all $\varepsilon_{h} = 0$
thus y is not in the image of ϕ
thus we see $\phi(a_{i}) = y x^{-c_{i}} \forall i$
define $c: \{a_{1}, ..., a_{n}\} \longrightarrow \mathbb{Z}_{p}: a_{i} \longmapsto c_{i}$
exercise: check this is a p -labeling