VIII Covering Spaces

A. Covering Spaces

recall, when we computed $\pi_i(s')$ we used the map $p: \mathbb{R} \rightarrow s'$ $t \mapsto (\cos 2\pi t, \sin 2\pi t)$

the key facts about p were

path lifting: given
$$\delta: [0, 1] \rightarrow 5'$$
, then for each
 $x \in p^{-1}(\delta(0)), \exists unique \delta_{x}: [0, 1] \rightarrow \mathbb{R}$
st. $\delta_{x}(0) = \chi$ and $p \circ \delta_{x} = \delta$

homotopy lifting: given a homotopy
$$H:[0,1] \times [0,1] \rightarrow S'$$

then for each $x \in p^{-1}(H(0,0))$, \exists unique
 $\widetilde{H}_{x}:[0,1] \times [0,1] \longrightarrow \mathbb{R}$ s.t. $\widetilde{H}_{x}(0,0) = x$ and
 $p_{0} \widetilde{H}_{x} = H$

to prove these properties we used that:

$$S' = A \cup B \quad with \quad A \text{ and } B \text{ open}$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i: \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad s.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i: \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad S.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i: \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad S.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i: \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad S.t.$$

$$P^{-'}(A) = \bigcup_{i=-\infty}^{U} A_i: \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} B_i: \quad S.t.$$

$$P^{-'}(B) = \bigcup_{i=-\infty}^{U} A_i: \quad P^{-'}(B) = \bigcup_{i=-\infty}^{U} A_$$

given a topological space Xa covering space of X is a pair (\tilde{X}, p) where \tilde{X} is a

topological space and

$$p: \tilde{X} \to X$$

is a continuous map (called a covering map) such that
 $\forall x \in X$, there is an open set $U \in X$ containing x
 $st. p^{-1}(U) = \{U\}_{\substack{k \in I}}$
where the U_i are open, pairwise disjoint sets in \tilde{X}
and $p|_{U_i}: U_i \to U$ is a homeomorphism
 $\{U \text{ is called on evenly covered set}\}$
examples:
i) $p: \mathbb{R} \to S'$ is clearly a covering map
a) $p_i: \mathbb{R}^2 \to T^2 = S' \times S'$ where p is from 1)
 $(x,y) \mapsto (p(x_i, p(y))$
can easily be checked
to be a covering map
more generally
exercise: if $p_X: \tilde{X} \to X$ and $p_Y: \tilde{Y} \to Y$ are covering maps,
then show $p(x, y) = (\mathbb{R} \setminus S, [\mathbb{R} \to S']$ (The II.8 and 10)

we get

Thmz (Homotopy Infing): -

$$\begin{split} & i \neq p: \tilde{X} \to X \text{ is a covering map,} \\ & H: \{0,1\} \times \{0,1\} \to X \text{ a homotopy, and} \\ & x \in p^{-1}(H(0,0)) \\ & \text{then } \exists \text{ ungive } \tilde{H}_{x}: \{0,1\} \times \{0,1\} \to \widetilde{X} \text{ such that} \\ & \tilde{H}_{x} | 0,0 \} = X \text{ and } p \circ \tilde{H}_{x} = H \end{split}$$

$$\frac{lemma 3:}{|let p: \tilde{X} \rightarrow X be a covering map with X connected}$$

$$if \exists a point x_0 \in X with |p^{-1}(x_0)| = k, Hien$$

$$|p^{-1}(x)| = k, \forall x \in X$$

$$|p^{-1}(x)| \text{ is called the degree of the covering space}$$

$$\frac{Proof}{e} | et A = \{x \in X \text{ s.t. } |p^{-1}(x)| = k\}$$

$$A \neq \emptyset \text{ suice } x_0 \in A$$

$$\frac{C|a_{1}m}{e} : A \text{ is open}$$

$$indeed if x \in A, \text{ then let } U \text{ be an evenly covered}$$

$$open \text{ set containing } x$$

$$p^{-1}(U) = \{V_{A}\}_{A \in I}$$

but
$$U_{x} \cap \rho^{-1}(x) = 1$$
 point $\forall x$
 $\therefore I = \{1, ..., k\}$
so $|\rho^{-1}(y)| = k, \forall y \in U$
 $\therefore A$ is open
Claim: A is closed
switch argument enercise
since X is connected $A = X$ (lemma II. 10)
lemma 4:
 $p: \tilde{X} \rightarrow X = covering map, \tilde{X}_{o} \in \tilde{X}, x_{o} = p(x_{o})$
then
 $p_{x}: \mathcal{T}_{i}(\tilde{X}, \tilde{X}_{o}) \rightarrow \mathcal{T}_{i}(X, x_{o})$
is injective
Moreover, $[\mathcal{V}] \in p_{*}(\mathcal{T}_{i}(\tilde{X}, \tilde{X}_{o}))$
 \Leftrightarrow
the lift of \tilde{X} to a path based
 $at \tilde{X}_{o}$ is a loop in \tilde{X}

<u>Proof</u>: $[X] \in II_{i}(X, \tilde{k}_{0})$ Suppose $p_{*}([X]) = e$ 1.e $p \circ X = \tilde{k}_{0}$ so \exists homotopy $H: [o, 1] \times [o, 1] \rightarrow X$ s.t $k_{0} \xrightarrow{V'_{i}H_{i}} x_{0}$ homotopy lifting says $\exists H: [0, 1] \times [o, 1] \rightarrow \tilde{X}$ $s.t. \tilde{H}(0, 0) = \tilde{X}_{0}$ and $p \circ \tilde{H} = H$

note: poH(s,o) = por so H(s,o) is a lift of por starting at Xo, so it is & :. H(s, o) = V(s) also $\widetilde{H}(o,t) \in p^{-1}(x_o) \in points with discrete topology$ so $\widetilde{H}(o,t) = \widetilde{x}_{o} \ \forall t$ similarly H(1,t)= & Ut and H(s,1)= & Hs 1<u>C</u>. \tilde{x}_{o} $\frac{1}{H}$ $\frac{1$ and p* is injective now, if $[\gamma] \in P_*(T_1(\widetilde{X}, \widetilde{K}))$ then $\exists [Y] \in T_1(\widetilde{X}, \widetilde{K})$ st. p,([x]) = [y] ne por = m let i be a lift of M storting at i. by homotopy lifting &= if rel end points but & a loop so & a loop too if [7] & P* (TI, (X, x)), then the lift of of y based at % can't be a loop since it it were then $[\tilde{\gamma}] \in T_{I_1}(\tilde{X}, \tilde{x})$ and $[\tilde{\gamma}] = \rho_*([\tilde{\gamma}]) \approx$ $\underline{exercise}: \left[\mathcal{T}_{I_{i}}(X, x_{o}) : p_{*}(\mathcal{T}_{i}(\widetilde{X}, \widetilde{x_{o}})) \right] = degree of (\widetilde{X}, p)$ Cindex of subgroup Hint: Show there is a bijection from right cosets of $P_{x}(T_{i}(\widetilde{X},\widetilde{\chi_{o}}))$ to $p^{-1}(\chi_{o})$

so image $(p_*) = \langle a, b, bab^{-\prime} \rangle = G$ G has index 2 in $\pi_r(X, x_s) \cong F_2$! note rank went up! 4) consider Σ_2

let's find a degree 2 cover (there are actually a lot)

define p to be

exercise: 1) Show this is a 2-fold covering map $\Sigma_3 \rightarrow \Sigma_2$ 2) Work out in (ρ_*) 3) Experiment constructing other covers of other surfaces e.g. $\Sigma_n \rightarrow \Sigma_2$ by an n-1 fold cover for $n \ge 2$

let
$$p: \tilde{X} \to X$$
 be a covering map with $p(\tilde{x}_0) = \tilde{x}_0$
 $f: Y \to X$ be a continuous map such that $f(y_0) = \tilde{x}_0$
a lift of f to \tilde{X} is a continuous map $\tilde{f}: Y \to \tilde{X}$
s.t. $\tilde{f}(y_0) = \tilde{x}_0$ and $p \circ \tilde{f} = f$
 $\tilde{f} = \tilde{x}_0 \tilde{X}$
 $f = \tilde{y} \tilde{X}$

Thm 5 (lifting criterion):

$$p: \hat{X} \rightarrow X \ a \ covering \ map, \ p(\hat{x}_{o}) = \chi_{o}$$

$$f: Y \rightarrow X \ a \ continuous \ map \ st. \ f(\chi_{o}) = \chi_{o}$$
assume Y is path connected and
$$locolly \ path \ connected$$
Then $\exists a \ lift \ \tilde{f}: Y \rightarrow X \ of \ f$

$$\Leftrightarrow$$

$$f_{*}(\pi_{i}(Y_{i}\chi_{o})) \leq p_{*}(\pi_{i}(\tilde{X}_{i}\tilde{\chi}_{o}))$$

$$if \ \tilde{f} \ exists \ it \ is \ unique$$

a space is locally path connected if for every point x and open set U containing it, there is an open set V such that $x \in V \subset U$ and V is path connected

<u>example</u>: $\begin{pmatrix} \{ \forall_n \} \times [0, i] \\ \downarrow \cup (\{ 0 \} \times [0, i]) \\ \downarrow \cup ([0, i] \times \{ 0 \}) \\ path connected but not \\ locally path connected \\ \end{pmatrix}$

note: all manifolds are locally path connected

Proof: (=) if
$$\overline{f}$$
 exists, then clearly
 $f_*(\pi_i(Y, y_0)) = \rho_*\circ f_*(\pi_i(Y, y_0)) = \rho_*(\pi_i(\overline{X}, \overline{y_0}))$
(=) need to construct $\overline{f}: Y \to \overline{X}$
given $y \in Y$, $|e + \overline{Y}_y: \{o, 1\} \to Y$ be a path st
 $\overline{Y_y(o)} = \overline{Y_o}$, $\overline{Y_y(i)} = \overline{Y}$ (we path connected)
 $f \circ \overline{Y_y}$ is a path in X from $\overline{X_o} = f(y_0)$ to $f(y)$
 $lift f \circ \overline{Y_y}$ to a path $\overline{S_y}$ in \overline{X} starting at $\overline{X_o}$
 $define: \overline{F(Y)} = \overline{Y_y(i)}$
 $if \overline{f}$ is well-defined, the clearly $p \circ \overline{F(y)} = f(y)$
so \overline{f} is a lift of \overline{f}
to see \overline{f} is well-defined, let $\overline{Y_y}$ be another
path from Y_0 to \overline{Y}
note: $\overline{Y_y} = \overline{Y_y}$ is a loop in Y based at $\overline{Y_o}$
so $[\overline{Y_y} + \overline{g_y}] \in \pi_i[Y, \overline{Y_o})$
 $\overline{Y_y} = \underbrace{f_y} = [f \circ \overline{Y_y}] * [\overline{f} \circ \overline{Y_y}] = \pi_i(X, x_o)$
by assumption $[[f \circ \overline{Y_y}] * [\overline{f} \circ \overline{Y_y}]] = \pi_i(X, x_o)$
so by lemma t $f \circ \overline{Y_y} * [\overline{f} \circ \overline{Y_y}]$ lifts that
this bop is $(\overline{f} \circ \overline{Y_y}) * [\overline{f} \circ \overline{Y_y}]$. If survive at
 $\overline{T_y(1)}$

so f is well-defined the last thing we need to do is see f is continuous. this is more involved (and uses local connectivity) you can find a proof in Hatcher, but the idea is: given YEY, 3 an open set UCY containing y and open set V in X containing f(y) such that $f'_{U} = p'_{V} \circ f$ continuous $(\mathbf{V} \cdot \mathbf{F}(\mathbf{y})) \mathbf{x}$ $\underbrace{\underbrace{}}_{Y} \underbrace{}_{Y} \underbrace$ Fact: given a surface Eg of genus g if g>0, then I a covering map $p: \mathbb{R}^{2} \longrightarrow \mathbb{Z}_{q}$ (for g>1, this uses "hyperbolic geometry") The 6: _ If g ≥ 1 and n ≥ 2, then any $f: S^n \to \mathbb{Z}_g$ is homotopic to the constant map! Recall, this was used in the proof of Thm II.6 <u>Proof</u>: given f, clearly $f_*(\pi_1(s^n)) = \{e\} \subset p_*(\pi_1(\mathbb{R}^2))$ so f lifts to a map $f: S^n \rightarrow \mathbb{R}^2$ " covering map by Thm 5

let
$$\widehat{H}: S^* \times [a, 1] \to \mathbb{R}^2$$

 $(p, t) \mapsto f(p)$
 $\widehat{H}(p, 0) = \text{ constant}$
 $\widehat{H}(p, 1) = \widehat{F}$
 $\text{set } H = po \widehat{H}: [a, 1] \times [a, 1] \to \mathbb{Z}_g$
this is a homotopy from the constant map to \widehat{F}_{gg}
We saw that for every covering $p: \widehat{X} \to X$, there is a
 $\text{Subgroup } G = p_*(\pi_i(\widehat{X}, \widehat{X})) \text{ of } \pi_i(X, \varepsilon_0)$
For most spaces, there is a converse !
Fact:
 $extin = 1 \text{ let } X \text{ be path connected}$
 $\text{ locally path connected}$
 $\text{ let } X \text{ be path connected}$
 $\text{ Semi-locally simply connected}$
 $\text{ Then } \forall G < \pi_i(X, \varepsilon_0) \text{ there is a covering space}$
 $p: \widehat{X} \to X$ such that $p_*(\pi_i(\widehat{X}, \widehat{z}_0)) = G$
 $a \text{ space } X \text{ is semi-locally simply connected} \text{ if}$
 $\forall x \in X, \exists \text{ on open set } U < X \text{ such that } \pi \in U \text{ and}$
 $1_y: \pi_i(U, x) \to \pi_i(X, \varepsilon_0)$
 $\text{ is the trivial map, where $1: U \to X$ is inclusion
 $\text{Fact:} \text{ mainfolds ond CW complexes are semi-locally simply connected}.$$

(()

We will not prove this, but the idea for G={e}< Ti(X) is let X = { paths in X starting at Xo}/n here Xn n if they are homotopic rel end points set p: X→X: [x] + X(1) you can pat a topology on X so this is the desired covering space B. <u>Subgroups</u>

we use covering spaces to show Th^m7(<u>Mielsen-Schreier</u>):

any subgroup of a free group is free

We need some lemmas <u>lemma 8:</u> let X be a graph, then TT, (X) is free

<u>Proof</u>: we can assume X is connected if X has only one vertex, then X is a wedge of circles so from Section II we know M(X) free group

if X has more than one vertex, then there is an edge e in X connecting district verticies

<u>CW Fact</u>: if X is a CW complex, and A is a contractible subcomplex, then X/A = X
<u>exercise</u>: try to prove this in above situation
so X/e = X and T_i(X) = T_i(X/e),
but X/e is a graph with one less vertex
thus we can inductively find a graph Y with one
vertex that is homotopy equivalent to X
... done ##

<u>lemma 9:</u>— If X is a graph and p: X→X is a covering space then X is a graph

more generally, coverings of CW complexes are CW complexes

Sketch of Proof: p⁻¹(X⁽⁰⁾) is a discrete set of points in X this will be X⁽⁰⁾ each edge e of X is a path so it lifts to X the union of all lifts of all edges will be the edges of X to make this rigorous we need to see how to "attach" edges to the verticies but hopefully this is intuitively clear Proof of Th -7:

given a free group F_n on a generators let $W_n = wedge$ of n-circles so $\pi_i (W_n) \cong F_n$ given any $G < F_n \cong \pi_i (W_n)$, \exists a covering space $p: \tilde{X} \to X$ by injectivity such that $\pi_i (\tilde{X}) \cong P_* (\pi_i (\tilde{X})) = G$ now lemma 9 says \tilde{X} is a graph and thus by lemma 8, $\pi_i (\tilde{X})$ is a free group $\therefore G$ is a free group \blacksquare

lots of other things you can prove about groups using topology, eg.

The 10(Kurosh Subgroup The) -

let I be a subgroup of a free product A *B Then H= (*, H,) * F where H, is a conjugate of a subgroup of A or B and F is a free group

Ginilecomposable it G=A*B ⇒ A or B trivial gray Gor II: an indecomposable subgroup of a free product is isomorphic to Z or contained in a conjugate of o factor

lor 12: If two non-trivial elements of a free product commute, then they are either powers of a single element or are both contained in a conjugate of a factor

Cor 13: If two elements of a free group commute, then they are powers of a single element

Cor 14: The center of a non-trivial free product is trivial