Section IV: Almost symplectic structures
an almost symplectic structure on a manifold M is a non-degenerate 2 -form η
clearly if we hope for M to be symplectic it is necessary that it be almost symplectic
we will see in this section that one can systematically study when a manifold has an almost symplectic structure
Here is the main conjecture of Elrashberg about the existence of symplectic structures
Conjecture:
If M a manifold of dimension $2 k>4$ with

- a class $h \in H^{2}(M)$ s.t. $\underbrace{h u \ldots \omega h}_{k \text { times }} \neq 0$ and
- a non-degenerate 2-form ω_{0}

Then \exists a symplectic structure ω on M such that

- ω is homofopic to ω_{0} through non-degenerate forms
- $[\omega]$ can be deformed to h keeping its $k^{\text {th }}$ power non-zero

Remark: Not true in dimension 4 (we discuss this more later)
But there is an alternate conjecture (discuss later) We discuss an approach to this conjecture later as well as some interesting test cases in 4D.
A. Linear Symplectic Group

Consider the standard symplectic vector space

$$
\begin{aligned}
& V=\mathbb{C}^{1}=\mathbb{R}^{2 n} \\
& e_{1} \ldots e_{n} \text { a complex basis } \\
& f_{1}=i e_{j} \\
& e_{1}, f_{1}, \ldots e_{n}, f_{1} \text { a real basis } \\
& \text { set } J_{0}=\left(\begin{array}{lll}
0-1 \\
10 & & \\
& & \\
& & -1
\end{array}\right)
\end{aligned}
$$

clearly $w(u, v)=u^{\top} J_{0} v \quad$ where $u=\left(\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{2 n}\end{array}\right)$ in basis above
so a linear map $L: V \rightarrow V$ is symplectic

$$
\begin{gathered}
\Leftrightarrow \\
L^{\top} J_{0} L=J_{0}
\end{gathered}
$$

and we see $S_{p}(2 a)=\{$ linear symplectic maps $\}$

$$
=\left\{L \in S L(2 n, \mathbb{R}): L^{\top} J_{0} L=J_{0}\right\}
$$

lemma 1:
If $L \in S_{p}(2 n)$, then

1) $\operatorname{det} L=1$
2) λ an eigenvalue of $L \Leftrightarrow \lambda^{-1}$ is (and multiplicities agree)
3) if $L v=\lambda v$ and $L u=\lambda^{\prime} u$ and $\lambda \lambda^{\prime} \neq 1$ then $\omega(v, u)=1$

Proof: 1) L preserves $\omega_{s t d}$ so preserves $\omega_{s t d}^{n} \leftarrow$ multiple of volume form $\therefore L$ preserves volume, ne $\operatorname{det} L=1$
2) Similar matrizies have same eigenvalues, and

$$
L^{\top}=J_{0} L^{-1} J_{0}^{-1}
$$

(eigenvalues of L^{-1} are inverses of those of L)
3) $\omega(v, u)=\omega(\angle v, L u)=\lambda \lambda^{\prime} \omega(v, u)$

$$
\text { so } \quad\left(1-\lambda \lambda^{\prime}\right) \omega\left(v_{،} u\right)=0
$$

recall some other linear groups

$$
\begin{aligned}
& \text { recall some other linear groups } \\
& \text { orthogonal group } \quad O(n)=\left\{L \in G L(n, \mathbb{R}): L^{\top} L=\mathbb{1}\right\}
\end{aligned}
$$

$G L(n, C)=\left\{\right.$ Linear maps of $\mathbb{C}^{\prime \prime}$ that preserve multiplication by $\left.i\right\}$
thinking of \mathbb{C}^{n} as $\mathbb{R}^{2 n}$
can write

$$
G L(n, C)=\left\{L \in G L(2 n, \mathbb{R}): L J_{0}=J_{0} L\right\}
$$

unitary group

$$
U(n)=\left\{L \in G L(2 n, \mathbb{R}): L^{\top} L=\mathbb{1} \text { and } L J_{0}=J_{0} L\right\}
$$

lemma 2:

$$
\begin{aligned}
S_{p}(2 n) \cap O(2 n) & =S_{p}(2 n) \cap G L(n, \mathbb{C}) \\
& =O(2 n) \cap G L(n, \mathbb{C}) \\
& =U(n)
\end{aligned}
$$

Proof: Clear from above.
Th ${ }^{m}$ 3:
$U(n) \subset S_{p}(2 n)$ is the maximal compact subgroup of $S p(2 n)$ and the inclusion map is a homotopy equivalence
lemma 4:
let $L \in S_{p}(2 n)$
if L is symmetric and positive defurite
then $L^{\alpha} \in \operatorname{Sp}(2 n) \forall \alpha \geq 0$

Proof:
Symmetric \& pos. def \Rightarrow eigenvalues are positive real numbers $\lambda_{1} \ldots, \lambda_{k}$ and eigenvectors span $\mathbb{R}^{2 u}$
clearly L^{α} is defined to be mult by λ_{1}^{α} on E_{2} we just reed to check $L^{\alpha} \in S_{p}(2 n)$
for any $v \in \mathbb{R}^{n}$ write $v=v_{1}+\ldots+v_{k}$ with $v_{i} \in E_{i}$
now

$$
\begin{aligned}
& \omega\left(L^{\alpha} v_{1} C^{\alpha} u\right)=\sum_{i_{1}=1}^{k}\left(\lambda_{1} \lambda_{j}\right)^{\alpha} \omega\left(v_{1}, u_{j}\right) \\
&=\sum_{\lambda_{1}=1}^{k} \omega\left(v_{1}, v_{j}\right) \\
&=\sum_{1,1}^{k} \lambda_{1} \lambda_{1} \omega\left(\lambda_{1} \lambda_{j}\right)=1 \text { or } \omega\left(v_{1}, v_{j}\right)=0 \text { by lemma } 1 \\
&\text { so } \left.L^{\alpha} \in S_{p}(2 n)=1 v_{1} u\right)
\end{aligned}
$$

Proof of $T h^{n} 3$: to show $U(n) \hookrightarrow$ sp $(2 n)$ a homotopy equivalence we build a strong deformation retraction $H:[0,1] \times s_{p}(2 n) \rightarrow s_{p}(2 n)$ $(t, L) \longmapsto h_{+}(L)$
that is

$$
\begin{aligned}
& h_{0}=\mathbb{1}_{s_{p}(2 n)} \\
& h_{t}=\mathbb{1}_{U(n)} \quad \forall t \\
& h_{1}\left(S_{p(2 n)}\right)=U(n)
\end{aligned}
$$

to this end set $h_{t}(L)=L\left(L^{T} L\right)^{-t / 2}$
note $L^{T} L$ is symmetric and positive def. clearly $h t$ is contrimous \therefore so is $\left(L^{\top} L\right)^{-1}$ and use lemma 4
$L \in U(n)$ then $L^{\top} L=\mathbb{1}$ so $h_{t}(c)$ fixed $\forall t$ and $L \in S_{p}(2 n)$ then $h_{1}(L) \in S_{p}(2 n)$ st.

$$
\left[\left(L^{\top} L\right)^{\left.-1 / 1 /]^{\top}\right]_{\substack{\top}}^{L_{\text {commute (some eigenspaces) }}\left(L^{\top} L\right)^{-1 / 2}=\left(L^{\top} L\right)^{-1 / 2}}\left(L^{\top} L\right)^{-1 / L} L^{\top} L=\mathbb{1}} \text { so } L_{1}(C) \in U(n)\right.
$$

see McDuff-Salamon for U(n) max acpt subgroup (not hard, but we don't really need it)
B. Linear Complex Structures
a complex structure on a real vector space V is a linear map

$$
J: V \rightarrow V
$$

such that

$$
\sigma^{2}=-\mathbb{1}_{V}
$$

given J on V then V gets the structure of a \mathbb{C} vector space by defining $(x+1 y) v=x v+y J(v)$ so clearly V must be even dimensional
the matrix J_{0} above is the standard complex str. on $\mathbb{R}^{2 n}$
exercise: if V a $2 n$-diniensional vector space and J a complex structure on V, then \exists an isomorphism $\phi: \mathbb{R}^{2 n} \rightarrow V$ s.t.

$$
J_{0} \phi=\phi \circ J_{0}
$$

ie. ϕ conjugates J to J_{0}
(in appropriate basis J given by J_{0})

Lemma 5:
The space of complex structures on $\mathbb{R}^{2 n}$, denoted $Y\left(\mathbb{R}^{n}\right)$, is diffeomorphic to the homogeneous space $G L(2 n, R) / G L(n)$ so $\cdot J\left(\mathbb{R}^{2 n}\right)$ has two components

- component containing J_{0}, denoted $J^{+}\left(\mathbb{R}^{2 n}\right)$, is $\quad G L^{+}(2 n, R) / G L(m, \sigma)$ \therefore htroy equivalent to $\mathrm{SO}(2 n) / U(n)$

$$
\text { . } \begin{aligned}
\mathcal{J}^{+}\left(\mathbb{R}^{2}\right) & \simeq\{*\} \\
\cdot J^{+}\left(\mathbb{R}^{4}\right) & \simeq S^{2}
\end{aligned}
$$

Proof: exercise above $\Rightarrow G L(2 n, \mathbb{R})$ acts trasitively on $J\left(\mathbb{R}^{2 n}\right)$
by $A \longmapsto A^{-1} J_{0} A$
and the stabilizer of J_{0} is $G L(n, c)$
proof of $T^{m}=3$ gives $\quad L^{+}(2 n, \mathbb{R}) / G L(n, C) \simeq 50(2 n) / U(n)$
for $\mathcal{J}^{+}\left(\mathbb{R}^{2}\right) \simeq S O(2) / U(1) \cong S^{1} / S^{1} \simeq\{*\}$
for $J^{+}\left(\mathbb{R}^{4}\right)$, upton homotopy any J is $A^{-1} J_{0} A$ with $A \in S O(4)$
thus $v \cdot J v=A v \cdot J_{0} A v=\omega_{s t d}(A v, A v)=0$
(so $A^{-1}=A^{\top}$)
so \sqrt{v} orthogonal to v
note: J determined by $J\left(\frac{\partial}{\partial y_{1}}\right) \in\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \mid x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}=1\right.$ $x_{1}=0 \quad 3=s^{2}$
since $J\left(\frac{\partial}{\partial x}\right) \in S^{2}$ and if $E=\operatorname{span}\left\{\frac{\partial}{\partial x}, J \frac{\partial}{\partial x_{1}}\right\}$
then J on $E \frac{1}{N}$ is rotas by $\pi / 2$ (exercise)
If (V, ω) a symplectic vector space we say a complex structure J on V is compatible with ω if

$$
\begin{array}{ll}
\omega(J v, J u)=\omega(v, u) & \left(J^{*} \omega=\omega\right) \\
\omega(v, J v)>0 \quad \forall v \neq 0 & (\text { called tame })
\end{array}
$$

note: :1) $g_{J}(v, u)=\omega\left(v, J_{u}\right)$ is an inner product:

$$
\begin{aligned}
& \cdot g_{\tau}(v, u)=\omega(v, \tau u)=\omega\left(v_{v}, v^{2} u\right)=-\omega\left(v_{1} u\right) \\
& =\omega(u, J v)=g(u, v)
\end{aligned}
$$

$$
g_{J}(v, v)=\omega\left(v, v_{v}\right)>0 \text { if } v \neq 0
$$

2) $g_{J}(J v, J u)=g_{J}(v, u)$ (ie. $\left.J^{*} g_{J}=g_{J}\right)$
lemma 6:
let V be a vector space
ω a symplectic structure on V
J a complex structure on V
Then the following are equivalent
3) J is compatible with w
4) $g_{J}\left(v_{u} u\right)=\omega\left(v_{1} \sigma_{u}\right)$ is a J-invariant uinerproduct
5) (v, ω) has a basis $v_{1}, v_{v_{1}}, \ldots v_{n}, v_{v_{n}}$ St. in this basis ω given by J_{0}
6) \exists isomorphism $\phi: \mathbb{R}^{2 n} \rightarrow V$ such that

$$
\phi^{*} \omega=\omega_{\text {std }} \quad \phi^{*} J=J_{0}
$$

5) ω tamed by J and \forall Lagrangian subspaces $L C V$ the space JL also Lagrangian

Proof:

1) \Rightarrow 2) above
2) $\Rightarrow 1) \omega\left(v, v_{v}\right)=g_{J}(v, v)>0$ af $v \neq 0$ by non-degen of g_{J} symmetry of $g_{J} \Rightarrow$ symmetry of ω
3) $\Leftrightarrow 4$) clear
4) \Rightarrow 1) clear
5) \Rightarrow 3) let LCV be a Lagrangian subspace let $v_{1} \ldots v_{n}$ be a g_{J} orthogonal basis for V
you can check that $v_{1}, J v_{1}, \ldots, v_{n}, J v_{n}$ is the desired basis
6) \Rightarrow 5) L Lagrangian means $L^{\perp}=L$

$$
\begin{aligned}
J^{*} \omega=\omega \Rightarrow & \left(v \in L^{\perp} \Leftrightarrow J v \in(J L)^{\perp}\right) \\
& \text { so }(J L)^{\perp}=J\left(L^{\perp}\right)=J L
\end{aligned}
$$

5) $\Rightarrow 2)$ let $g_{丁}(u, v)=\omega\left(u, \sigma_{v}\right)$
we check g_{J} a J-init innerproduct if g_{J} is not J-invariant then $\exists u, v$ st.

$$
\begin{array}{ll}
& g_{J}(J u, J v) \neq g_{J}(u, v) \\
\text { so } & \omega(v, J u) \neq \omega(u, J v)
\end{array}
$$

so $v \neq 0$ and $\omega\left(v, \tau_{v}\right)>0$ by tamed condition set $w=u-\frac{\omega\left(v_{i} J_{u}\right)}{\omega\left(v_{1} J_{v}\right)} v$

$$
\text { so } \omega\left(v, J_{w}\right)=\omega\left(v, J_{u}\right)-\frac{\omega\left(v_{v}, J_{u}\right)}{\omega\left(v_{1}, J_{v}\right)} \omega\left(v, J_{v}\right)=0
$$

but $\omega\left(w_{1} J_{v}\right)=\omega\left(u, J_{v}\right)-\omega\left(v_{1} J_{u}\right) \neq 0$ (by assumption)
exercise: \exists Lagrangian $L \subset V$ containing v, J_{w} so $w_{1} J_{v} \in J L$ so $J L$ not Lagrangian
this $\phi \Rightarrow g_{J}$ is σ-ivivariait ω tamed by $J \Rightarrow g_{J}$ an innerproduct
an inner product g on V is compatible with a complex structure J if it is J-invariant: $J^{*} g=g$
note: g wien g and J compatible, then $\omega_{J}(u, v)=g(J u, v)$ is a symplectic structure compatible with σ given an inner product g and symplectic structure w on V
we get

$$
\begin{aligned}
& A \rightarrow V \\
& \phi_{\omega} \underset{V^{*}}{\stackrel{\Xi}{\underline{E}} \phi_{g}} \quad A=\phi_{g}^{-1} \circ \phi_{\omega} \\
& \text { and } \cdot w(v, u)=g(A v, u) \\
& \text { - } g(A v, u)=\omega\left(v_{c}, u\right)=-\omega(u, v)=-g(A u, v) \\
& =-g(v, A u)
\end{aligned}
$$

A shew-adjoint for g
we call g and ω compatible if $A^{2}=-11$
exeruse: 1) given any 2 of 3 possible compatible structures show you get a unique $3^{\text {ad }}$ structure that is compatible with the other 2.
2) If g, ω, J are all compatible on V
then $h=g+2 \omega$ is a Hermitian structure on V thought of as C-v.s.w/J
ne. $h: V \times V \rightarrow \mathbb{C}$ is \mathbb{R}-biluriear

$$
h(u, v)=\overline{h(r, u)}
$$

$h(v, v) \leftrightarrows 0$ note this is real number
$h(v, J u)=i h(v, u)$ (slightly different than std def n of Hermitian
Th ${ }^{m} 7:$
$\left.{ }^{1}\right)(V, \omega)$ symplectic vector space

$$
J(V, \omega)=\{\text { compatible complex structures with } \omega\}
$$

is contractible (and non-empty)
2) (V, J) a vector space with complex structure $\Omega(V, J)=\{$ symplectic structures compatible with $J\}$ is contractible (and non-empty)

Remark: This theorem essentially says "choosing a complex structure on V is more or less the same as choosing a symplectic structure"
Proof:

1) let $I(V)=\{$ inner products on V $\}$ ω induces a map

$$
\begin{gathered}
\mathcal{J}(v, \omega) \xrightarrow{\phi} I(v) \\
J \xrightarrow{\text { nap }}
\end{gathered}
$$

we now build a map in other direction: g ven $g \in I(V)$ we have

$A=\phi_{g}^{-1} \circ \phi_{\omega}$ isomorphism
as above $\omega(v, u)=g(A v, a)$

$$
g(A v, u)=-g(v, A u)
$$

so $-A^{2}$ is self-adjoint and $g\left(-A^{2} v, v\right)=g(A v, A v)>0$ if $v \neq 0$
so $-A^{2}$ is a positui definite self-adj map just as in proof of Lemma $4-A^{2}$ has a square root set $J_{g}=\left(-A^{2}\right)^{-1 / 2} A$ commute clearly $J_{g}^{2}=\left(-A^{2}\right)^{-1 / 2} A\left(-A^{2}\right)^{-1 / 2} A=\left(-A^{2}\right)^{-1} A^{2}=-\mathbb{1}$
so J_{g} a complex structure
and $\omega\left(v_{1} J_{g} v\right)=g\left(A v_{1}\left(-A^{2}\right)^{-1 / 2} A v\right)>0$ if $v \neq 0$
since $A v \neq 0$ and $\left(-A^{2}\right)^{-1 / 2}$ pos-def operator
finally $\omega\left(J_{g} v, J_{g} u\right)=g\left(A J_{g} v, J_{g} u\right)=-g\left(A v, J_{g}^{2} u\right)=g(A v, u)$ J_{g} shew adj w.r.t.g $=\omega(v, u)$
So $J_{g} \in \mathcal{T}(V, \omega)$
thus we hove $\psi: I(v) \rightarrow \tilde{J}(v, \omega)$
note: $\quad \psi \circ \phi=1 d$ on $T(V, \omega)$
$\phi \circ \psi: I(V) \rightarrow I(V)$ is not identity but if is homotopic to identity since $I(v)$ is contractible
indeed, choose a basis and $I(V) \approx$ \{positive-def. symmetric matricies\} ~
exercise: This is a convex open subset of all matricies
\therefore contractible.
$\therefore \mathcal{T}(V, \omega) \simeq I(V)$ is contractible,
proof of 2 similar
exercise:

1) Show $I\left(\mathbb{R}^{n}\right) \cong G L(n) / O(n)$
(\therefore since I contractible $O(n) \hookrightarrow G L(n)$ hip. equiv.)
2) If $\mathscr{H}\left(\mathbb{C}^{n}\right)=\left\{\right.$ Hermitician str. on $\left.\mathbb{C}^{n}\right\}$
then $H\left(\mathbb{C}^{n}\right) \cong G L(n, \mathbb{C}) / U(n)$
and $H\left(\mathbb{C}^{n}\right)$ contractible
$(\therefore u(n) \hookrightarrow G L(n, G)$ hoy equiv.)
3) $J\left(\mathbb{R}^{2 n}, \omega_{s+d}\right) \cong S_{p}(2 n) / U(n)$
so $T_{h}{ }^{m} 3$ says $J\left(\mathbb{R}^{2 n}, \omega_{\text {std }}\right)$ contractible
C. "Almost" Structures
let M be an n-manifold
an almost complex structure on M is a bundle map

s.t. $\mathcal{J}^{2}=-i_{\tau \mu}$ (he. fiberwise J_{x} a complex structure on $T_{x} M$)
an almost symplectic structure on M
is a non-degenerate 2 -form ω he fiberwise ω_{x} is a symp! str. on $T_{x} M$)
a (Riemanneai) metric on M is a smoothly varying inner product on each $T_{x} M$
we call any 2 of the above compatible if they are compatible on each tangent space
an almost Hermitian structure on M is an almost complex structure and together with a smoothly varying Hermitian form on each $T_{x} M$
Th 픙
M any smooth manifold
4) space of metrics $M(M)$ is non-empty and contractible
5) given an almost symplectic structure w on M the space

$$
I(M, \omega)=\left\{\begin{array}{l}
\text { almost complex str on } M\} \\
\text { compatible with } \omega
\end{array}\right.
$$

is non-empty and contractible
3) given an almost complex structure J on M the space

$$
\Omega(M, J)=\left\{\begin{array}{c}
\text { almost symplectic str on } M \\
\text { compatible with } J
\end{array}\right\}
$$

is non-empty and contractible
4) given an almost complex structure U on M the space

$$
\text { If }(M, \sigma)=\{\text { almost Hermitian str. on }(M, \sigma)\}
$$

is non-empty and contractible.
Remark: So upto homotopy
a) any manifold has a unique metric!
b) almost complex, almost symplectic, almost Hermetian structures are the same! (u pto homotopy)
Proof: 1) note if $g_{1}, \ldots g_{n}$ are miner products on V
and $t_{1}, \ldots t_{n} \geq 0$ s.t. $\sum t_{2}=1$
then $\sum t_{1} g_{i}$ an inner product on V if $\left\{U_{\alpha}\right\}$ a cover of M by coordinant charts
let g_{α} be any metric on U_{α} (ie. $T U_{\alpha}=U_{\alpha} \times \mathbb{R}^{n}$ take any I.P. on))
and $\left\{\rho_{a}\right\}$ a partition of unity subordinant to $\left\{V_{a}\right\}$
then $\sum \rho \alpha g_{\alpha}$ is a metric on M
if g_{0}, g_{1} are metrics on M, then so is $t g_{1}+(1-t) g_{0}$
exercise: Show this implies $M(M)$ is contractible.
2) 3) follow directly from $T^{m} 7$ (proof)
4) just like for 1)
if (M, J) an almost complex manifold then $Y \subset M$ an almost complex submanifold if $J(T Y) \subset T Y$ (so $J I_{T Y}$ an almost complex str on N) exercise: in if J is compatible with ω on M and N an almost complex submanitold of (M, J) then N is also a symplectic submanifold
2) Show converse not true
3) If $L c(\mu, \omega)$ Lagrangian and $J_{\text {is }}$ compatible with ω, then $J(T L)$ is
the normal bundle of L in M
(note this completes the proof of Cor III. 5 about nblds of Lagrangian submanifolds)

We will use this theorem to show there are lots of manifolds that cant be symplectic, but first we discuss how to "remove the almost"
of course, an almost symplectic structure ω is symplectic if $d \omega=0$
recall a complex manifold is simply a (Hausdorff, $2^{\text {nd }}$ countable) space M with a maximal atlas of coordiviant charts $\left\{\phi_{\alpha}: U_{\alpha} \rightarrow V_{\alpha}\right\}$ where $V_{\alpha} \subset \mathbb{C}^{n}$ and transition maps are holomorphic
exercise: Show a complex manifold \uparrow complex differentiable
has an almost complex structure
an almost complex structure J on M is called integrable if M has a complex structure inducing J.
recall an almost Hermiticin structure on an almost complex manifold (M, J) gives (and is determined by) a compatible almost symplectic structure w. If J is integrable and $d w=0$ then $\left(M_{1},, w\right)$ is called a Kähler manifold
example: $\mathbb{C} P^{n}=\mathbb{C}^{n+1}-\{(0, \ldots 0)\} / \mathbb{C}-\{0\}$
has coordinate charts $\phi_{1}: U_{1} \rightarrow V_{1}$ where $U_{1}=\left\{\left\{z_{0}: . . z_{m}\right\} \mid z_{i} \neq 0\right\}$ you can easily see transition maps are holomorphic
so $C P^{n}$ a complex manifold
exercise: Check $\omega_{S F}$ is compatible with complex structure so $\left(\mathbb{C P}{ }^{n}, \omega_{F s}\right)$ a Kähler manifold and all complex submanifolds are too.
Remark: later we will see not all complex and not all symplectic manifolds are Kähler.
recall a function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}:\left(z_{1}, \ldots, z_{n}\right) \longmapsto\left(f_{1}\left(z_{1}, \ldots z_{n}\right), \ldots f_{m}\left(z_{1}, \ldots z_{1}\right)\right)$ with $f_{j}=u_{j}+1 v_{j}$ is holomorphic if coorderiant functions satisfy

$$
\begin{aligned}
& \frac{\partial u_{j}}{\partial x_{k}}=\frac{\partial v_{j}}{\partial y_{k}} \\
& \frac{\partial u_{1}}{\partial y_{k}}=-\frac{\partial v}{\partial y_{k}}
\end{aligned}
$$

$$
\forall k_{1} j
$$

Cauchy-Riemann Eqns

$$
\begin{aligned}
& V_{1}=\mathbb{C}^{n} \\
& \phi\left(\left\{z_{0} \ldots: z_{n}\right\}\right)=\left(z_{o} / z_{i}, \ldots, \ldots, z_{i_{1}}, \ldots z_{z_{i}}\right) \\
& \phi^{-1}\left(z_{1} \ldots z_{n}\right)=\left\{z_{1}: \ldots: 1: \ldots: z_{n}\right] \\
& { }^{c_{2} \text { te }} \text { entry }
\end{aligned}
$$

exercise: If J_{1} is almost complex structure on \mathbb{C}^{n} (coming from i) and $J_{2} " \quad$ " " \mathbb{C}^{m} (" ")
then $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is holomorphic

$$
\begin{gathered}
\Longleftrightarrow \\
d f \circ J_{1}=J_{2} \circ d f
\end{gathered}
$$

now if (M, J) and $\left(M!J^{\prime}\right)$ are almost complex manifolds then a function $f: M \rightarrow M^{\prime}$ is called (pseudo) holomorphic (or J-holomorphic or (,,$\left.J^{\prime}\right)$-holomorphic ...) if

$$
d f \circ J=J^{\prime} \circ d f *
$$

from exercise above we see for complex manifolds this is the same as being holomorphic
Remarks:

1) Given $f: M \rightarrow M^{\prime}$ as above with dim $M=2 n$, then when you write out $*$ in local coordriants you see that if
$n>1$ system of PD.E.s is overdetermined
$n=1$ " "is elliptic
2) So for $n>1$ expect No solutions. It's a miracle of complex geometry that there are any such functions but for generic almost complex structures expect no solis
3) for $n=1$ expect sol's to be "nice"

In 1985 Gromov observed this and revolutionize symplectic geometry by studying pseudo-hdomorphic curves (more on this later)
4) In 1996 Donaldson noticed you could study functions that almost solve * and learn a lot about symplectic manifold (more on this later)

So when is an almost complex manifold complex? given an almost compler manifold (μ, σ) define

$$
N_{J}(v, u)=[J v, J u]-[v, u]-J[v, J u]-J[J v, u]
$$

for vector fields $v, u \in X(M)$
exercise: 1) N is a tensor (ie $N(f v . g u)=f g N(v, u)$)
2) if \mathcal{J} is integrable show $N=0$
3) for any diffeomorphism $\phi: M \rightarrow M: N_{\phi^{*} J}\left(\phi^{*} v, \phi^{*} u\right)=\phi^{*} N_{\sigma}\left(v_{,} u\right)$
N_{J} is called the Nijehuis tensor of J
Th ${ }^{m}$ (Newlander-Nivenberg'57):
an almost complex structure J on M is integrable If and only if $N_{J}=0$

Proof is beyond this course (mainly P.D.E.)
let's understand this more geometrically
if J an almost complex structure on M
then eigenvalues of $J_{x}: T_{x} M \rightarrow T_{x} M$ are $t i$ (root of e.v. of $-i d T_{x} M$) so cant diagonalize over \mathbb{R}
let $T_{\mathbb{C}} M=T M \otimes \mathbb{C}$ complexified tangent bundle
now we can write $T_{\mathbb{C}} M=(T M)^{(1,0)} \oplus(T M)^{(0.1)}$ eiyenspace of i eigenspace of $-i$
exercise:
Show $T M \rightarrow(T M)^{(1,0)}$ and $T M \rightarrow(T M)^{(0,1)}$

$$
v \longmapsto \frac{1}{2}(v-i J v) \quad v \mapsto \frac{1}{2}(v+1 J v)
$$

are linear isomorphisms
the dual of $J_{x}: T_{x} M \rightarrow T_{x} M$ is

$$
J_{x}^{*}: T_{x}^{*} M \rightarrow T_{x}^{*} M
$$

so we have a "complex structure" on $T^{*} M$ as well as above we have

$$
T_{C^{*}} M=T^{*} M \otimes \mathbb{C}=\left(T^{*} M\right)^{(1,0)} \oplus\left(T^{*} M\right)^{(0,1)}
$$

and

$$
\begin{aligned}
& \Lambda^{k} \tau_{\mathbb{C}}^{*} \mu=\Lambda^{h}\left(\tau^{*} \mu \otimes \mathbb{C}\right)=\oplus_{\rho+q=k} \Lambda^{(p .9)} T^{*} M \\
& \Omega^{\rho \cdot q}(M)=\Gamma\left(\Lambda^{(p . q)} T^{*} \mu\right)
\end{aligned}
$$

now if $v_{i} \ldots v_{n}$ is a basis for $T_{x} M$ then
$v_{1}, J v_{1}, \ldots v_{n}, \tau v_{1}$ is a real basis for $\left(T_{C} M\right)_{x}$
and

$$
\begin{array}{ll}
w_{j}=\frac{1}{2}\left(v_{j}-i J_{v_{j}}\right) & \left.J=1 \ldots n \operatorname{span}(T M)^{\left(u_{1}\right)}\right) \\
\bar{w}_{j}=\frac{1}{2}\left(v_{j}+i J v_{j}\right) & J=1 \ldots n \operatorname{span}(T M)^{\left.\left(\sigma_{1}\right)\right)} \\
w_{j}^{*}=v_{1}^{*}+2 J^{*} v_{j}^{*} & \left.J=1 \ldots n \operatorname{span}\left(T^{*} \mu\right)^{\left(4_{0}\right)}\right) \\
\bar{w}_{j}^{*}=v_{j}^{*}-2 J^{*} v_{j}^{*} & J=1 \ldots n \operatorname{span}\left(T^{*} M\right)^{(0,1)}
\end{array}
$$

moreover $\eta \in \Omega^{(0.9)}(M)$ can be written

$$
\eta=\sum_{|A|=p,|B|=q} \eta_{A, B} w_{A}^{*} \wedge \bar{w}_{B}^{*}
$$

where $\eta_{A, B}$ functions A, B multi: index $\operatorname{leg} A=\left(\varphi_{1}-\eta_{0}\right)$ and $w_{A}^{*}=w_{1_{1}}^{*} \wedge \ldots 1 w_{p_{p}}^{*}$ etc. $\left.{ }_{q}, \in\{1, \ldots, n\}\right)$
exercise:

1) if $y \in \Omega^{p, q}(M)$ then $d y \in \Omega^{p+2, q-1}(M) \oplus \Omega^{p+1, q}(M) \oplus \Omega^{p, q+1}(M) \oplus \Omega^{p-1, q+2}(M)$
2) if (M, J) integrable then $d y \in \Omega^{p+1, q}(M) \oplus \Omega^{p, q+1}(M)$
denote $\partial: \Omega^{p . q}(M) \rightarrow \Omega^{p+1.9}(M)$
$\bar{\partial}: \Omega^{\rho_{1 q}}(M) \rightarrow \Omega^{\rho_{1} q+1}(M)$ the composition of d. with appropriate projection
So you showed if M complex

$$
d=\partial+\bar{\partial}
$$

3) if M complex show $\partial^{2}=\bar{\partial}^{2}=\partial \cdot \delta+\bar{\partial} \partial \partial=0$
4) Nijehuis tensor $N_{J}=0 \Leftrightarrow(T M)^{(1,0)}$ closed under $L_{1} e$ bracket $\Leftrightarrow \bar{j}^{2}=0$ on functions

$$
\begin{aligned}
& \Leftrightarrow d=\partial+\bar{\partial} \\
& \Leftrightarrow d\left(\Omega^{p, q}(M)\right) \subset \Omega^{p+1, q}(M) \oplus \Omega^{p, q+1}(M)
\end{aligned}
$$

so all of these $\Leftrightarrow \mathcal{J}$ integrable
If M is a complex manifold then $\bar{\partial}^{2}=0$, and we can define the
Dolbeault cohomology of M to be
exercise: if $f: M \rightarrow N$ a holomorphic map between complex manifolds then $f^{*}: \Omega^{h}(N) \rightarrow \Omega^{k}(M)$ induces a map

$$
f^{*}: \Omega^{p .9}(N) \rightarrow \Omega^{0.9}(M)
$$

st. $\quad f^{*} \bar{\partial}=\bar{\partial} \circ f^{*}$
so we get a map

$$
f^{*}: H_{\frac{2}{2}}^{0.9}(N) \rightarrow H_{\frac{1}{2}}^{p .9}(M)
$$

Hodge Th ${ }^{\text {m }}$:
for a compact complex manifold $H_{\partial}^{\rho \cdot 9}(M)$ if finite dimensional
proof is all about elliptic PDE and beyond this course but I put notes on course web page.
More Facts: if M is a compact, connected complex n-manifold with a Hermitian form, then

$$
H_{\frac{1}{2}}^{n, n}(M) \cong \mathbb{C}
$$

and

$$
H \frac{1,9}{\partial}(\mu) \times H_{\frac{n-\rho, n-9}{\partial}}(\mu):(\alpha, \beta) \mapsto \int_{M} \alpha \wedge \beta
$$

is nondegenerate, so

$$
H_{\delta}^{n-p, n-q}(M) \cong\left(H_{\frac{p, q}{}}^{p}(M)\right)^{*}
$$

we write $h^{p, q}=\operatorname{dim} H \frac{H_{2}^{p, q}}{2}(\mu) \quad$ called Hodge numbers
from above we have $h^{p, q}<\infty$

$$
\begin{aligned}
& n^{n, n}=1 \\
& h^{n-p, n-q}=h^{p, q}
\end{aligned}
$$

More Facts: if M is a compact Kähler n-manifold, then we have the Hodge decomposition

$$
H_{D R}^{r}(M) \cong \underset{p+q=r}{\oplus} H_{\partial}^{P \cdot q}(M)
$$

and
and $h^{k, h}>0$
so we have the Hodge diamond:

symmetric about middle line
Cor 9:
for a Kähler manifold M we have

$$
\operatorname{dim}_{H_{O R}}^{2 k+1}(M) \text { is even }
$$

Proof: Clear from symmetry of diamond

