6P*

suppose
$$G \in Diffeo(F)$$
 is a sub-Lie group (we will only consumer closed subgroups)
If a bundle $F \Rightarrow E$ has a collection of transition functions
 \int_{M}^{P} $T_{i,b}: (L_{i} N U_{j} \rightarrow G)$
then we say E has structure group G
if the transition functions can be homotoped to lie in G via a homotopy
that a liways satisfies (X) then we say the structure group reduces to G
note: If G preserves some structure on F then the fibers of E all have this structure!
examples:
i) if $F = R^{n}$ and $G = GL(n, R) \in Diffeo(R^{n})$ then each fiber of E has
a linear structure $x \in E$ is a vector bundle
z) if $F = R^{n}$ and $G = GL(n, R) \in Diffeo(R^{n})$ then each fiber of E has
a linear structure $x \in E$ is a vector bundle
z) if $F = R^{n}$ and $G = GL(n, R) = Diffeo(R^{n})$ then each fiber of E has
a linear structure $x \in E$ is a vector bundle
z) if $F = R^{n}$ and $G = GL(n, R) = Diffeo(R^{n})$ then each fiber of E has
a linear structure $x \in E$ is a vector bundle
z) if $F = R^{n}$ and $G = GL(n, R) = Diffeo(R^{n})$ then each fiber of E has
a linear structure $x \in E$ is a vector bundle
if $Y = F = R^{n}$ or $G = GL(n, R) = Diffeo(R^{n})$ then each fiber of E has
 $G = O(n, R)$, then E is a vector bundle with a metric
 $G = Sp(z_{n}) \Leftrightarrow E$ signal definitions structure
 $G = Sp(z_{n}) \Leftrightarrow E$ signal definitions structure
 $G = U(n) \Leftrightarrow E$ Hermitian structure
 $S = gall these structures$
 $S = gall these structure group $GL(R) \times GL(n-R) \subset GL(n)$
 $(A, R)^{1} \longrightarrow {n \choose {0}} B$
 E has structure group $GL(R) \times GL(n-R) \Leftrightarrow E \in E_{T} \oplus E_{T}$ where
 E_{T} a vector \mathbb{R}^{n} bundle$

specifically
$$GL(n-h) \rightarrow GL(n)$$
 so E has structure group $GL(n-h)$
 $A \mapsto \begin{pmatrix} A & 0 \\ 0 & I_n \end{pmatrix}$ E has a k-frame k linearly
 $E \rightarrow E \rightarrow E \rightarrow E \rightarrow E^{h}$ with E^{h} a vector \mathbb{N}^{n-h} handle

So when can you reduce the structure group? to systematically study this we need a new idea

If G is a Lie group then a bondle
$$G \rightarrow P$$
 is a principal G bundle
if $\exists a smooth right action P = G \rightarrow P$
st.) $y \in p^{-}(x) \Rightarrow y \in p^{-}(x) \forall g, x, y$ (i.e. action preserves files)
a) G acts freely and transitively on $p^{-}(x) \forall x$
Remark: Can more consistly define a principal G-bundle as a smooth monthold
P with a smooth right G action $P \times G \rightarrow P$ that is free and
proper $P_{xG} \rightarrow P_{x}^{-}$ is repertences image of compact
 $(y_{3}) + (t_{3})^{-}$ if $P = more propert$
 $(y_{3}) + (t_{3})^{-}$ is a bundle with structure group G
M then $\exists a cover of M by trivializations $\{U_{i}, t_{i}\}\}$
with transition functions $T_{x_{i}} : U_{i} \wedge U_{p} \rightarrow G$
we can construct a principal G-bundle as follows
 $P_{e} = \coprod U_{i} \times G_{i}$ where $(x, g) \in U_{i} \times G - (x, g') \in U_{p} \times G$
 e^{-}
 $P_{i} (x) (g), x = x'$
 $principal G-bundle then P_{e} is a principal GLin (R) - bundle
it is called the frame boundle because you can turk of the fibers
of P_{e} as frames for the fibers of E
 e^{-}
 e^{-} is a principal S-bundle
 $is a principal S-bundle for the fibers of F$
 $frame bundle with through this
we denote this bundle $f(E)$ note: $O(n) \cong GL(n,R)$ so we call look at orthonormal
 $frame bundle with fiber
 $O(n)$ (still denote $f(E)$)
 gp^{n}
3) hegular covering spaces of manifolds M are principal bundles$$$$

<u>enercise</u>: Chech His. What are the fibers? Can irregular covers be principal bundles over M? exercises:

1) Show a principal G-bundle is trivial
$$\Leftrightarrow$$
 it admits a section
2) If E is a vector bundle then show a section of E is the same as
a GL(n,R)-equivariant map:
 $v: \mathcal{F}(E) \rightarrow \mathbb{R}^n$
 $v(y \cdot g) = g^{-1} v(y)$
Huit: given $s: M \rightarrow E$
then for each $y \in \mathcal{F}(E)$ let $v(y) = s(p(y))$ expressed in
frame y

<u>Construction</u>

Given
$$P_{M}$$
 a privicipal G-bundle
and p:G->G' a homomorphism (of Lie groups) where G'c Diffeo (F)
then we can construct an F bundle with structure group G'
 $P_{X}F = \frac{P \times F}{(p \cdot g, f)} \sim (p, p \cdot g)(f))$

exercises:

1) Describe
$$P \times_{p} F$$
 using local trivializations
2) if $F = G'$ then $P \times_{p} G'$ is a principal G' -bundle
3) if E a vector bundle, then $E \cong \mathcal{F}(E) \times_{p} \mathbb{R}^{n}$ where $p = id_{GL(n,\mathbb{R})}$
4) recall $GL(n,\mathbb{R})$ acts on $(\mathbb{R}^{n})^{*}$ in a natural way
1.e. $GL(n,\mathbb{R}) \stackrel{p}{\rightarrow} GL((\mathbb{R}^{n})^{*}) = GL(n,\mathbb{R})$
Check $T^{*}M = \mathcal{F}(TM) \times_{p^{*}}(\mathbb{R}^{n})^{*}$
5) Similarly $GL(n,\mathbb{R})$ acts on $\Lambda^{k}(\mathbb{R}^{n})^{*}$ in a natural way
1.e. $GL(n,\mathbb{R}) \stackrel{p}{\rightarrow} GL(\Lambda^{k}(\mathbb{R}^{n})^{*})$
Check $\Lambda^{k}(T^{*}M) \cong \mathcal{F}(TM) \times_{p_{k}} \Lambda^{k}(\mathbb{R}^{n})^{*}$
now given a principal G -bundle \int_{Γ}^{P} and a subgroup $H < G$
 M
 $\mathcal{F} \exists a principal H \cdot bundle P_{H} \subset P$ then one can check
 $P_{H} \times_{H} G \longrightarrow P : [f,g] \longrightarrow f \cdot g$ is a bundle isomorphism
 $\int H acts on G by multiplication$

this isomorphism shows the transition functions for P could be chosen to have image in H so we say the structure group of P reduces to H in this case

<u>note</u>: If the structure group of $\mathcal{F}(E)$ reduces from $(L(n,\mathbb{R}))$ to H then so does the structure group of E: so we have turned questions $\mathcal{F}(E)_{\mu} \times_{\mu} \mathbb{R}^{n}$ about the structure group of E into questions about the structure group of principal bundles

now given a principal G-bundle y and a subgroup H<G

<u>lemma</u> 10:

Proof: (=>) given a reduction we have

and so

$$\begin{array}{c} P_{H} \hookrightarrow P \\ \searrow \mu \\ & \swarrow \\ P_{H}/_{H} \hookrightarrow P'_{H} \\ \approx \swarrow \\ x \end{array}$$

$$(\Leftarrow) P \xrightarrow{T} P'_{H} \text{ is a privicipal } H \text{-bundle}$$

$$i + s: M \rightarrow P'_{H} \text{ a section, then } \bigcup_{x \in M} \mathbb{T}^{-1}(s(x)) \subset P$$

$$i + s = principal + bundle$$

Example:
Since GL(n,R)/G(n) is contractible and bundles with contractible types
always have sectrons (chech this) we see
$$F(E)/O(n)$$
 has
sections and so all vector bundles have an etrics!
So how can we tell if P/H has sections?
E Obstruction Theory
We want to study sections of a fiber bundle $F \rightarrow E$
We want to study sections of a fiber bundle $F \rightarrow E$
We assume : A) M is a CW complex (olways true for manifolds)
B) F is n-simple for all n (cramples H-space, so is graps, hop space...)
is a action of $\pi_i(F_ix_i)$ on $\pi_i(F_ix_i)$ trivial
 $f(F_ix_i) = f(F_ix_i)$ abelian and $\pi_i(F_ix_i) \stackrel{T}{\equiv} [S_i^*F] \stackrel{Hamilton theory}{f(F_ix_i)} = T_i(F_ix_i)$ abelian and $\pi_i(F_ix_i) \stackrel{T}{\equiv} [S_i^*F] \stackrel{Hamilton theory}{f(F_ix_i)} = T_i(F_ix_i)$ and $T_i(F_ix_i) \stackrel{T}{\equiv} [S_i^*F] \stackrel{Hamilton theory}{f(F_ix_i)} = So $\pi_i(F_ix_i)$ common the second this using "cohomology with boal coeff.")
Denote the n-skelebon of M by $M^{(n)}$
assuming we have a section $S_i:M^{(n)} \rightarrow E$ we define a cohomology cachain
 $\mathcal{B}(S_k) \in C^{k+1}(M)$ is the CW-chain graup
which is genero ted by kH cells $e_{i}^{k+1} \rightarrow f(F)$
where $e_{i}^{k+1} \rightarrow M$ be "indexion"
 $f_i \in \equiv D^{k+1} \times F$ since e_i^{k+1} units $e_i^{k+1} \rightarrow M^{(k)}$ by q_i)
let $T_i : e_{i}^{k+1} \rightarrow M$ be "indexion"
 $I_i \in \equiv D^{k+1} \times F$ since e_i^{k+1} units $e_i^{k+1} \rightarrow M^{(k)}$ by q_i)$

$$S_{k} \text{ pulls back to a section of } I_{i}^{*}E \text{ along } \partial e_{i}^{k+1}$$

$$S_{0} p_{2} \circ S_{k} : \partial e_{i}^{k+1} \to F \text{ gives an element of } \pi_{k}(F)$$

$$S_{k}^{*} \qquad (\text{here } p_{i} : e_{i}^{k+1} \times F \to F \text{ is projection})$$

$$now \text{ define } \widetilde{\sigma}(S_{k}) (e_{i}^{k+1}) = [p_{2} \circ S_{k}] \xrightarrow{assumptions above \\ say this is well-def}$$

$$S_{0} \quad \widetilde{\sigma}(S_{k}) \in C^{k+1}(M; \pi_{k}(F))$$

exercises:

1)
$$\tilde{\sigma}(s_{k})$$
 invariant under homotopies of s_{k}
2) $\tilde{\sigma}(s_{k}) = 0 \iff S_{k}$ extends over $\mathcal{M}^{(k+i)}$
3) $\tilde{\sigma}(s_{k}) = 0$ (1.e. $\tilde{\sigma}(s_{k}) = cocycle$)
4) if s_{k} and s_{k}' are sections of E over $\mathcal{M}^{(k)}$ that are homotopic
on $\mathcal{M}^{(k-i)}$ then
 $\tilde{\sigma}(s_{k}) - \tilde{\sigma}(s_{k}') = \tilde{\sigma} \tau(s_{k}, s_{k}')$
for some $\tau(s_{k}, s_{k}') \in (\mathcal{M}(\mathcal{M}; \mathcal{T}_{n}(Y))$
5) by varying homotopy class of s_{k} on $\mathcal{M}^{(k)}$ (relative to $\mathcal{M}^{(k-i)}$)
we can change $\tilde{\sigma}(s_{k})$ by any coboundary

the above proves

$$Th^{\underline{\alpha}}:$$
given a bundle $F \rightarrow E$
 M satisfying A)-c) above
$$M$$
and a section $S_{k}: M^{(k)} \rightarrow E$ then $S_{k}|_{M^{(k-1)}}$ extends to $M^{(k+1)}$

$$\Longrightarrow$$

$$O(S_{k}) = [\widetilde{O}(S_{k})] = O \in H^{k+1}(M; T_{k}(F))$$

So we have on obstruction to a section existing ! <u>Remark</u>: if $\pi_h(F) = 0$ for $k < \dim B$, then $\exists a$ section of $\exists f = 0$. M

note:
$$\sigma(S_{k})$$
 depends on $S_{k}|_{M^{k-1}}$ i.e. it is no just about
whether there is a section of E over $M^{(k+1)}$ but wheather
our choice of section on $M^{(k)}$ (when restricted to $M^{(k-1)}$) extends
to $M^{(k+1)}$
luckily the "first obstruction" is independent of any choices
Th^a:
given $F \rightarrow E$
given $F \rightarrow E$
 $given F \rightarrow E$
 $f \pi_{k}(F) = 0$ for $k \le n$, then $\exists a$ section $S_{n}: M^{(m)} \rightarrow E$
and the obstruction $\sigma(S_{n})$ does not depend on S_{n}
(well-defined indep of choices)
so we denote it $\mathcal{T}^{n+1}(E)$ (called primary
 $given if f: N \rightarrow M$ a map then $\mathcal{Y}^{n+1}(f^{*}E) = f^{*}\mathcal{Y}^{n+1}(E)$

Unfortunately
$$\pi_{i}(M)$$
 does not necissarily oct trivially on
 $\pi_{i+h}(V_{k}(R^{n}))$ when it is Z' (see steened book)
but if we take this mod 2 it will (only autom of Z_{22} is id)
so we have a priviary obstruction to a k-frame
over the n-kti skeleton of M
 $\eta_{n-kti}(E) \in H^{n-kti}(M; \pi_{n-k}(V_{k}(R^{n}))_{mid} 2)$
set $w_{2}(E) = \vartheta_{2}(E) \in H^{A}(M; Z_{2}Z)$
this is called the I^{th} Strefel-Whitney class of E
when L even (so n-k odd where $L=n-kti$) $w_{2}(E)$ is the
priviary obstruction to \exists of a n-Lti frame on $M^{(L-1)}$
it quered it is a "reduction" of thus
fact: (Steenrod) the w_{1} determine all the priviary invariants
 $exercises:$ $R^{n-2}E$
i) given L or $(L) = 0 \Leftrightarrow \exists$ on n-frame over $M^{(n)}$
 M , $v_{1}(E) = 0 \Leftrightarrow \exists$ on n-frame over $M^{(n)}$
 $E is orientable$
2) if E orientable, then $w_{1}(E) = 0 \Leftrightarrow \exists$ on n-frame over $M^{(n)}$
 $E is orientable$
2) if E orientable, then $w_{1}(E) = 0 \Leftrightarrow \exists$ on n-frame over $M^{(n)}$
 $for a n-frame over $M^{(n)}$
 $for a n-frame over $M^{(n)}$
 $for a spin structure
 M is indefinitions w_{2} : $Vect(M) \rightarrow H^{(1)}(M;Z_{2}) \forall M$
sotisfying
 $i) w_{1}(H^{*}E) = f^{*}w_{1}(E) \forall f: M \rightarrow N$
 $i) w_{2}(E) = 1, w_{1}(E) = 0 \forall i > fiber ohin E$$$$

3)
$$W(E_i \oplus E_z) = W(E_i) \cup W(E_z)$$

where $W(E) = 1 + w_i | E \rangle + w_i (E) + ...$
4) $W_i (X) \neq 0$ where X is the Universal line
bundle over $R P^{00}$

for 4) recall
$$y_{\mu} = \{(L, \pi) \in \mathbb{RP}^{n} \times \mathbb{R}^{n+1} : \pi \in \mathbb{R}\}$$

this is a line bundle over \mathbb{RP}^{n}
 $q) \iff w_{1}(Y_{n})$ generates $H'(\mathbb{RP}^{n}; Z_{2}) \neq n$
sample computation recall $H^{*}(\mathbb{RP}^{n}; Z_{2}) \equiv Z_{2}[a_{1}]_{a^{n+1}=1}$
 $degree a=1$
 $w(T\mathbb{RP}^{n}) = (i+a)^{n+1} = i+\binom{n+1}{i}a+\binom{n+1}{2}a^{i}(a^{n+1})a^{i}+...$
 $eg w_{i} = (n+1)a$ so \mathbb{RP}^{n} orientable $\Leftrightarrow n$ odd
example: if $\mathbb{R}^{n} \rightarrow E$ on oriented bundle
 M then $T_{i}(M)$ octs trivially on $T_{n-1}(V_{i}(\mathbb{R}^{n})) \equiv Z$
exercise: check this
so we get an obstruction $e(E) \in H^{n}(M; Z)$
to the existence of a non-zero section of E
 $e(E)$ is called the Euler class of E
exercise: i) if $s: M \rightarrow E$ is any section of E that is transverse
to the zero section Z_{i} then
 $e(E) = PD_{i}[s^{-1}(Z)]$
2) $e(TM)([M]) = Y(M)$
fundamental
 $Caller Class$

Prample: let
$$C^{A} \rightarrow E$$
 be a vector bundle with structure group $GL(n; C)$
that is a "complex bundle"
(from above we can assume $U(n)$)
So the frame bundle can be taken to be a principal $U(n)$ -bundle
as withe real case E will have a complex k-frame
 $\exists E/U(n+k)$ has a section (this as a $U(n)/U(n-k)$)
 $\exists T_{E}(U(n)/U(n-k)) = \begin{cases} 0 & i < 2(n-k) \\ 2 & 2 = 2(n-k) + i \end{cases}$
2) $T_{i}(n)$ acts trivially on $T_{2(n-k)+i}(U(n)/U(n-k))$ where we think of
 $U(n)/U(n-k)$ as the fiber of $\overline{\mathcal{I}(E)}/U(n-k)$
thus the primary obstruction to a complex k-frame is
 $\overline{\mathcal{I}(n-k)+z} \in H^{2(n-k)+z}(M; \overline{\mathcal{I}_{2(n-k)+1}(U(n)/U(n-k))})$
we define $C_{R}(E) = \overline{\mathcal{I}_{2k}(E)} \in H^{2k}(M; \overline{\mathcal{I}})$
this is the $k^{\underline{H}}$ Chern class of E
clearly $C_{k}(E)$ is the obstruction to a complex $(n-k+1)$ frame
on M^{2k-1} that extends to M^{2k}
 $i) C_{n}(E) = e(E)$
 $i) W_{2n+i}(E) = 0 (\Rightarrow complex bundles are oriented)$
 $j) W_{i}(E) = C_{i}(E) \mod 2$
 $i) C_{i}(E) = 0 (\Rightarrow complex bundles are oriented)$
 $j) W_{i}(E) = C_{i}(E) \mod 2$
 $i) C_{i}(E) = 0 (\Rightarrow tracture group of E reduces to $SU(n)$
"complex orientation"
 $S) if E$ is E with "conjugate complex structure" (ne.J)
then $C_{i}(\overline{E}) = (i)^{1}(E)$ that easy for $C_{i}(E)$, reduce to
this, see Milnor -Stacheff$

another way to think of Chern closses

$$\exists \text{ unique functions } C_i: \operatorname{Vect}(M) \to \operatorname{H}^{2i}(M; \mathbb{Z}) \quad \forall M$$
sotisfying

$$i) \quad C_n(f^*E) = f^*C_n(E) \quad \forall f: M \to N$$

$$2) \quad C_0(E) = 1, \quad C_2(E) = 0 \quad \forall i > \text{ fiber } G - dim E$$

$$3) \quad C(E_i^{\oplus}E_2) = C(E_i) \cup C(E_2)$$
where $C(E) = 1 + C_1(E) + C_2(E) + \dots$

$$4) \quad C_n(\mathbb{X}) \text{ generates } \operatorname{H}^2(G \rho^{\otimes o}), \text{ where } \mathbb{X} \text{ is the universal}$$

$$G - \text{line bundle over } \subset \rho^{\infty}$$

$$\begin{array}{rcl} sample computation & recall & H^*(\mathbb{C}P^n; \mathcal{H}) \stackrel{\scriptstyle =}{=} \stackrel{\scriptstyle \mathcal{H}}{=} \stackrel{\scriptstyle [a]}{/}_{a^{n+1}=1} & degree \ a=2 \\ & c(\mathcal{M}) \stackrel{\scriptstyle H}{=} & c(\mathcal{C}P^n) = (1+q)^{n+1} = 1 + \binom{n+1}{1} a + \binom{n+1}{2} a^2 + \dots \\ & eg \ C_1 = (n+1)a \ so \ C_1(\mathcal{C}P^1) = 2a \ (\mathcal{H}/\mathcal{S}^2) = 2) \\ & c_1(\mathcal{L}P^2) = 3a \ and \ C_2(\mathcal{C}P^2) = 3a^2 \\ & there \ is \ one \ more \ "standard " \ characterisic \ class \\ & given \ a \ real \ vector \ bundle \ & H^n \rightarrow E \\ & & M \\ & & M \\ & & M \\ & & then \ E \otimes_R C \ is \ a \ complex \ vector \ bundle \\ & & the \ 2^{\frac{H}{2}} \ Pontrjagin \ class \ of \ E \ is \\ & P_1(E) = (-1)^i \ c_{2i} \ (E \otimes G) \end{array}$$

exercises:

1) Show
$$E \otimes C$$
 and $\overline{E \otimes C}$ are isomorphic
use this to show $C_{2i+1}(E \otimes C)$ is 2-torsion
2) $(I - \rho_1(CP^n) + \rho_2(CP^n) - \dots I \rho_n(CP^n)) = (I - q^2)^{n+1}$
where a generates $H^2(CP^n)$
50 $\rho_1(CP^2) = 3a^2$, $\rho_1(CP^3) = 4a^2$, ...

_

3) if E an oriented 2n-bundle then
$$p_n(E) = e(E) \lor e(E)$$

4) if E is complex bundle and E^R denotes underlying real bundle
then $E^R \subseteq E \in \overline{E}$
as complex bundles
5) if E is a C^n bundle then
 $(1 - p_i(E) + p_i(E) \dots \pm p_n(E)) = (1 + c_i(E) + \dots \pm c_n(E)) \lor (1 - c_i(E) \dots \pm c_n(E))$
eg. $p_i(E) = c_i(E) \lor c_i(E) - 2c_2(E)$

Recall, if M is a closed, oriented 4n-manifold then

 $\sigma(M) = \# positive eigenvalues of I - \# negative eigenvalues of I$

Hirzebruch Signature Theorem:

If M is a closed oriented smooth 4n manifold, then there is a polynomial L_n in the Pontrjagin Closses s.t. $\sigma(M) = L_n(EMJ)$

for example
$$L_1 = \frac{1}{3} \rho_1(M)$$

 $L_2 = \frac{1}{45} (7\rho_2(M) - \rho_1(M) \vee \rho_1(M))$
note: $Th^{\underline{m}} \Rightarrow$ you get integer classes even though
there are fractions in formula!
Can use this to show there are monifolds
homeomorphic but not diffeomorphic
to the 7-sphere (and higer dim'd spheres)

Application: S^4 does not have an almost complex structure !to see this suppose it does, then $p, (S^4) = C_i^2(S^4) - 2 C_2(S^4)$ $evaluate on [S^4]$ to get $3 \sigma(S^4) = C_i^2(S^4)([S^4]) - 2 \gamma(S^4)$ $Since H^2(S^4) = 0$ we see $C_i^2(S^4)([S^4]) = 0$, so $3 \sigma(S^4) = -2\gamma(S^4)$ $but \sigma(S^4) = 0$ and $\chi(S^4) = 2$ to so S^4 has no almost C-str.Fact:Can use some argument to see S^{4m} doesn't havea complex structurewith more work can show S^n has an almost complex structurem = 2, 6

"Open" Problem: Does 56 have a complex structure

Characteristic classes, in general, do not determine a bundle, but we do have

I) Complex line bundles are determined by C, Moreover, any a & H²(M) is C, of some complex line bundle

I) C^2 -bundles are determined by c_1 and c_2 Moreover, $\forall (u,\beta) \in H^2(M) \times H^4(M) \exists a C^2$ -bundle \downarrow s.t. $C_1(E) = d$, $C_2(E) = \beta$

- II) 5013) bundles are isomorphic (=) we and p, agree
- II) SO(4) bundles are isomorphic $\Leftrightarrow v_2, \rho$, and e agree <u>enercise</u>: prove the above. I)-I) "easy" (we will do I) later) II)-II) harden

F. Existence of Almost Complex Structures We want to see when M admits an almost complex structure (and hence an almost symplectic one) We start with an oriented manifold M of dumension 2n 50 we can assume its structure group is SO(2n) and 7(TM) is a principal SO(2n) bundle thus M has an almost complex structure = F(TM)/ has a section the fibers of this bundle are $\frac{50(2n)}{U(n)}$ so we need for i < 2n-1 1=Z mod 4 Bott '59 1=0,7 mod 8 otherwise and $\pi_{u-1} \begin{pmatrix} \text{solen} \end{pmatrix} = \begin{cases} \frac{2}{2} + \frac{2}{2} \\ \frac{2}{(n-1)!} \\ \frac{2}{2} \\$ $n \equiv 0 \mod 4$ $M \equiv 1 \mod 4$ Mossey '61 $n \equiv 2 \mod 4$ $n \equiv 3 \mod 9$

So there are obstruction to M having on almost complex structure in $\gamma_1^{e} \in H^{i}(M; \mathbb{Z})$ for i < 2n and $1 \equiv 3 \mod 4$ $\gamma_1^{e} \in H^{i}(M; \mathbb{Z}/2\mathbb{Z})$ for i < 2n and $1 \equiv 0, 1 \mod 8$

recall the exact sequence $0 \rightarrow \mathcal{Z} \xrightarrow{\mathcal{X}} \mathcal{Z} \rightarrow \mathcal{Z}_{2\mathcal{Z}} \rightarrow 0$ gives rise to a long exact sequence $\dots \rightarrow H^{n}(M;\mathcal{Z}) \rightarrow H^{n}(M;\mathcal{Z}) \rightarrow H^{n}(M;\mathcal{Z}_{2\mathcal{Z}}) \xrightarrow{\beta} H^{n+1}(M;\mathcal{U}) \rightarrow \dots$ β is called the <u>Bockstein homomorphism</u> the <u>integral Steifel-Whitney classes</u> of a bundle $\int_{M}^{\mathcal{E}} are$ $W_{i}(E) = \beta(w_{i}(E)) \in H^{i}(M;\mathcal{Z})$

note: $W_{1}(E)$ is obstruction to integral lift of $w_{1}(E)$

Theorem (Massey):

let M be an oriented 2n-manifold
let s:
$$M^{(4k+2)} \rightarrow \mathcal{F}(M)/_{U(n)}$$
 be a section
Then
 $W_{4k+3}(M) = \begin{cases} (2k)! & \overset{\circ}{\mathcal{S}}_{4k+3}(S) & h even \\ & \frac{1}{2}(2k)! & \overset{\circ}{\mathcal{S}}_{4k+3}(S) & h odd \end{cases}$

<u>Remarks</u>:

1) Amazing
$$\mathcal{V}_{4k+3}^{c}(s)$$
 doesn't really depend on s!
2) If $H^{4k+3}(M; 2)$ has no p-torscon for any prime $p \leq 2k$
then $W_{4k+3} = 0 \implies \mathcal{V}_{4k+3}^{c}(s) = 0$
3) $\mathcal{V}_{3}^{c}(s) = W_{3}(M)$ and $\mathcal{V}_{7}^{c}(s) = W_{7}(M)$

note:

- a) no obstruction to oriented surface having almost complex structure
- b) when M is an oriented 4-manifold we have

$$\pi_{k} \begin{pmatrix} 50(4) \\ 0(2) \end{pmatrix} = \begin{cases} 0 & h = 1 \\ 2 & k = 2, 3 \end{cases}$$

so a 4-manifold always has on almost complex structure on M^{2} obstruction to extending over M^{3} is

 $\mathcal{T}_{3}^{\mathcal{C}}(\mathcal{M}) = W_{3}(\mathcal{M})$ so have almost complex structure on $\mathcal{M}^{(3)}$ $\overset{(3)}{=}$ \exists integral lift of $W_{2}(\mathcal{M})$

we consider obstruction to extension to M later

c) When M is an oriented G-manifold we have

$$\pi_{h}(\frac{50(6)}{U(3)}) = \begin{cases} 0 & h = 1, 2, 4, 5 \\ 2 & h = 3 \end{cases}$$

so the first and only obstruction to an almost complex Structure on M^6 is $Y_3^6(TM) = W_3(M)$

recall if TM is a complex bundle

$$P_{k}(M) = (-1)^{k} \sum_{1+j=2k} (-1)^{i} c_{1}(M) \cup c_{j}(M)$$

Thm (Massey):

let Mbe an oriented 4n-manifold let s: $M^{(4n-1)} \rightarrow \mathcal{F}(M)/_{U(n)}$ be a section Then $4 \cdot \gamma_{4n}^{2}(s) = (1)^{n+1} p_n(M) + \sum_{i+j=2n} (-1)^{i} c_i(M) \cup c_j(M)$ where the c, (m) are the Chern classes of TM (Man-1) coming from the complex structure induced by s and $C_{2n}(M) = e(M)$

The discussion above covers all the "integral obstructions" to on almost complex structure the non-integral obstructions are harder

theorem

But we do get

Th=11:

sometimes A closed oriented 4-manifold M has an almost complex structure called Wu's 3 a cohomology class a & H²(M; 2) such that w. (M) = a mool 2 and $q^{2}([m]) = 3\sigma(M) + 2\chi(M)$ Moreover, any such a is c, of an almost complex structure

Proof: (=>) to llows from discussion of characteristic classes from Section E (=) follows from 2 th "'s of Massey above

tor the last statement, prove using last exercise in Section E (about 50(4) and U(2) bundles)

exercise: Do this and prove = result in The in the same way

Thm 12:

A closed oriented 6-manifold M has an almost complex structure

$$\exists a \ cohomology \ class \ a \in H^{2}(M; 2) \ such that$$

$$w_{2}(M) \equiv a \ mod \ 2$$
Moreover, if $H^{2}(M; 2)$ has no 2-torsion, then there is a
one-to-one correspondence
$$\begin{cases} almost \ complex \ for mod \ 2 \\ (structures \ on \ M) \end{cases} \longleftrightarrow \begin{cases} a \in H^{2}(M; 2) \ with \\ w_{2}(M) \equiv a \ mod \ 2 \end{cases}$$
and complex structure corresponding to a has
 $C_{1} = a, \ C_{2} = (a^{2} - p_{1}(M))/2, \ and \ C_{3} = e(M)$

<u>Proof</u>: (=) follows as in last proof the one-to-one correspondance follows from more obstruction theory

<u>Recall</u>: All statements in Th^m II and 12 also hold for almost symplectic manifolds

So what closed oriented 4-manifolds might have symplectic structures?

i) S^{4} : No for many reasons: no $a \in H^{2}(S^{4})$ with $a \cup a \neq 0$ and if $a \in H^{1}(S^{4})$ with $w_{z} \equiv a \mod 2$ then $2\chi + 3\sigma = 4 \neq a^{2}[S^{4}] = 0$ so no almost symplectic structure

2) 5'×5³: does has almost symplectic structure since w₂(5'×5³)=0 so a=0 ∈ H²(5'×5³) is a lift of w₂ and 2X+35=0 = q²([5'×5²]) So by Th^A] almost complex/symplectic structure (in fact easy to put <u>complex</u> structure on 5'×5³) but no a ∈ H²(5'×5³) with ava≠0 so <u>No</u> symplectic structure

3) #_n
$$\mathbb{CP}^2$$
: when does it have an almost symplectic structure?
 $H^2(\#_n \mathbb{CP}^2) = \mathfrak{G}_n \mathbb{Z}$ Intersection poining $\binom{1}{0}, \binom{1}{0}$
So $\sigma = n$ and $\chi = nte$
thus $2\chi + 3\sigma = 2n + 4 + 3n = 5n + 4$
also $w_1(\#_n \mathbb{CP}^n) = (1, 1, ... 1) \in H^2(\#_n \mathbb{CP}^1; \mathbb{Z}_1; \mathbb{Z}_2) \cong \mathfrak{G}_n \mathbb{Z}_{1/2}^2$
So $\#_n \mathbb{CP}^2$ almost symplectic $E = 3a \in H^2(\#_n \mathbb{CP}^1; \mathbb{Z}_1)$ with
 $(1, 1, ... 1) \equiv a \mod 2$ and
 $a^q [! \#_n \mathbb{CP}^1] = 5n + 4$
Suppose $a = (a_1, ..., a_n) \in \mathfrak{G}_n \mathbb{Z}$
 $a^2 = \prod_{j=1}^n a_i^{\perp}$
So we need $a_j \in \mathbb{Z}$ st. $\prod_{j=1}^n a_i^{\perp} = 5n + 4$ and a_j odd
 $n=1$:
 $a_i^2 = q$ so must have $a_i = \pm 3$
 $\therefore \mathbb{CP}^2$ admits 2 almost complex/symplectic structures
 $(only one up to conjugation)$
of course \mathbb{CP}^2 is also symplectic! (Kähler)
 $n=2$: need $a_i^{\perp} + a_i^{\perp} = 14$ no sol^m!
So $\mathbb{CP}^2 \# \mathbb{CP}^2$ has no almost symplectic structure !
 \therefore no symplectic structure !

<u>n=3</u>: need $a_1^2 + a_2^2 = 19$ sol²s (±3, ±3, ±1) (and permutations)

50 $G\rho^2 \# G\rho^2 \# G\rho^2$ has almost symplectic structures (all are diffeomorphic) also has $\alpha \in H^2$ st. $\alpha^2 > 0$

Is Cp2 # Cp2 # Cp2 symplectic? No but very hard to show !

Taubes: Symplectic manifolds with 6, 22 have non-vanishing Serberg-Witten intersection intersection pairing Kotschich: If X=X, #Xz is simply connected and bz (Xi) ≥ 1, then Serberg-Witten intersection

SO no
$$\#_n \mathbb{CP}^2$$
 symplectic $i\#_n > 1$.
exercise: $\#_n \mathbb{CP}^n$ is almost symplectic \Leftrightarrow n odd
eg. n=5 get solⁿs (5,1,1,1,1) and (3,3,3,1,1) (these are really different)

lemma 13: If M a 4-manifold with an almost symplectic structure then b^t_z(M) and b_i(M) have opposite parity

Proof: Wu showed that for any CEH (M; 2) CUC ≡ w2 (M) UC mod 2 suppose a is an integral lift of w_(M") then LUC = QUC mod 2 such an a is called a characteristic element not to hard to show for any characteristic element $(uc([M]) \equiv \sigma \mod 8$ so if M has an almost complex structure then ci(M) = in mod 2 and $C_i \equiv \sigma \mod 8$ $c_1^2 = 3\sigma + 2\gamma$ $\sigma + 8k = 3\sigma + 2\chi$ some k 50 $8h = 2(\sigma + \pi)$ $2h = \frac{\sigma + \chi}{2}$ $\frac{1}{2} \frac{\sigma + \chi}{2} \equiv 0 \mod 2$ $\frac{b_{2}^{+}-b_{1}^{-}+2-2b_{1}+b_{1}-b_{-}}{=0 \mod 2}$ so b2+b1+1 is even if M almost complex