D. Bundles and Structure Groups
recall given a fiber bundle

we have local trivializations
$U \subset M$ open and diffeomorphisms $P^{-1}(U) \xrightarrow{\phi} U \times F$ and for any 2 local trivializations $\left(v_{1}, \phi_{1}\right),\left(v_{2}, \phi_{2}\right)$
transition maps

$$
\left(v_{1} \cap v_{2}\right) \times F \stackrel{\phi}{\leftarrow} P^{-1}\left(v_{1} \cap v_{2}\right) \xrightarrow{\phi_{2}}\left(v_{1} \cap v_{2}\right) \times F
$$

$$
\begin{aligned}
\phi_{2} \circ \phi_{1}^{-1}:\left(u_{1} \cap v_{2}\right) \times F & \rightarrow\left(U_{1} \cap v_{2} \times F\right. \\
(x, y) & \mapsto\left(x, \tau_{21}(x)(y)\right)
\end{aligned}
$$

with $\tau_{21}: U_{1} \cap v_{2} \rightarrow$ Differ (F)
transition function or clutching function
note: if $\left\{\left(U_{k}, \phi_{\alpha}\right)\right\}$ a collection of local trivializations such that $M=U v_{\alpha}$
then transition maps satisfy

$$
\begin{align*}
& t_{\alpha \alpha}(x)=1 d_{F}^{\prime} \\
& t_{\beta \alpha}(x)=\left(t_{\alpha \beta}(x)\right)^{-1} \tag{*}\\
& t_{\gamma \alpha}(x)=t_{\gamma \beta}(x) \circ t_{\beta \alpha}(x)
\end{align*}
$$

exercise: Show that if $\left\{U_{\alpha}\right\}$ any cover of M by open sets and $\tau_{\alpha \beta}: U_{\alpha} \cap V_{\beta} \rightarrow$ Differ (F) any maps satisfying $(*)$ then \exists a bundle E that realizes this data

Hint: let $E=\frac{11}{\alpha}\left(U_{\alpha} \times F\right) / \sim$ where $(x, y) \in U_{\alpha} \times F \sim\left(x^{\prime}, y^{\prime}\right) \in U_{\beta} \times F$ of there is an obvious projection $E \rightarrow M$

$$
\tau_{\beta \alpha}(x)(y)=y^{\prime}, x=x^{\prime}
$$

exercise: Find a cover and the transition maps for

suppose $G \subset D_{1} f f e 0(F)$ is a sub-Lie group (we will only consider closed subgroups)
If a bundle $F \rightarrow E$ has a collection of transition functions

$$
\tau_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G
$$

then we say E has structure group G
if the transition functions can be homotoped to lie in G via a homotopy that always satisfies (x) then we say the structure group reduces to G
note: If G preserves some structure on F then the fibers of E all have this structure!
examples:

1) If $F=\mathbb{R}^{n}$ and $G=G L(n, \mathbb{R}) \subset D$ iffeo $\left(\mathbb{R}^{n}\right)$ then each fiber of E has a linear structure zee. E is a vector bundle
2) if $F=\mathbb{R}^{n}$ and $G=G L^{+}(n, \mathbb{R})$, then E is an oriented vector bundle
3) if $F=\mathbb{R}^{n}$ and $G=O(n, \mathbb{R})$, then E is a vector bundle with a metric
note: $O(n) \hookrightarrow G L(n, \mathbb{R})$ a homotopy equivalence
\Rightarrow all vector bundles have metrics!
 same
4) if $f=\mathbb{R}^{n}$ we have $G L(k) \times C L(n-k) \subset C L(n)$

$$
(A, B) \longmapsto\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)
$$

E has structure group $C L(h) \times G L(n-h) \Leftrightarrow E=E_{1} \oplus E_{2}$ where
E_{1} a vector \mathbb{R}^{k} bundle
E_{2} a vector \mathbb{R}^{n-k} bundle
specifically $G L(n-h) \hookrightarrow G L(n)$ so E has structure group $G L(n-h)$ $A \mapsto\left(\begin{array}{ll}A & 0 \\ 0 & I_{n}\end{array}\right)$

So when can you reduce the structure group?
to systematically study this we need a new idea

if \exists a smooth right action

$$
P \times G \rightarrow P
$$

s.t.1) $y \in P^{-1}(x) \Rightarrow y \cdot g \in p^{-1}(x) \quad \forall g, x, y \quad$ (ie. action preserves fibers)
2) G acts freely and transitively on $p^{-1}(x) \forall x$

Remark: Can more consisely define a principal G-bundle as a smooth manifold P with a smooth right G action $P \times G \rightarrow P$ that is free and proper
$P \times G \rightarrow P_{\times} P$ is proper
$(p, g) \mapsto(P \cdot g . P)$ proper inverse image of compact is compact
examples:

1) If $F \rightarrow \underset{L}{E}$ is a bundle with structure group G
then \exists a cover of M by trivicilizations $\left\{\left(V_{\alpha}, \phi_{\alpha}\right)\right\}$ with transition functions $\tau_{\alpha \beta}: v_{\alpha} \cap v_{\beta} \rightarrow G$
we can construct a privicipal G-bundle as follows

$$
P_{E}=\frac{\| 1}{\alpha} U_{\alpha} \times G / \sim \quad \text { where }(x, g) \in U_{\alpha} \times G \sim\left(x^{\prime}, g^{\prime}\right) \in U_{\beta} \times G
$$

exercise: Check P_{E} is a principal G-bundle

If E is a vector bundle then P_{E} is a principal $G L(n, \mathbb{R})$-bundle it is called the frame bundle because you can think of the fibers of P_{E} as frames for the fibers of E
exercise: throb through this
we denote this bundle $\mathcal{F}(E)$ note: $O(n) \simeq G L(n, \mathbb{R})$ so we could
2) $S^{\prime} \rightarrow \underset{\downarrow}{S^{2 n+1}}$ is a principal S^{\prime}-bundle look at orthonormal frame bundle with fiber $O(n)$ (still denote $f(E)$)
3) Regular covering spaces of manifolds M are principal bundles
exercise: Check this. What are the fibers?
Can irregular covers be principal bundles over M?
exercises:

1) Show a privicipal G-bundle is trivial \Leftrightarrow it admits a section
2) If E is a vector bundle then show a section of E is the same as
a $G L(n, \mathbb{R})$-equivaricint map:

$$
\begin{aligned}
& v: \mathcal{F}(E) \rightarrow \mathbb{R}^{n} \\
& v(y \cdot g)=g^{-1} v(y)
\end{aligned}
$$

Hint: given $s: M \rightarrow E$
then for each $y \in \mathcal{F}(E)$ let $v(y)=s(p(y))$ expressed in frame y
Construction
Given $\underset{\sim}{\perp}$ a privicipal G-bundle
and $p: G \rightarrow G^{\prime}$ a homomorphism (of Lie groups) where $G^{\prime} \subset$ Differ (F) then we can construct an F bundle with structure group G'

$$
P_{x} F=P \times F /(p \cdot g, f) \sim(p, p(g)(f))
$$

exercises:

1) Describe $P x_{\rho} F$ using local trivializations
2) If $F=G^{\prime}$ then $P x_{p} G^{\prime}$ is a principal G^{\prime}-bundle
3) if E a vector bundle, then $E \cong \mathcal{F}(E) \times \mathbb{R}^{n}$ where $\rho={ }_{1 d}{ }_{G L(n, \mathbb{R})}$
4) recall $G L(n, \mathbb{R})$ acts on $\left(\mathbb{R}^{n}\right)^{*}$ in a natural way

$$
\text { ie. } \left.G L(n, \mathbb{R}) \xrightarrow{P^{*}} G L\left(\mathbb{R}^{n}\right)^{*}\right)=G C(n, \mathbb{R})
$$

check $T^{*} M=f(T M) \times_{p^{*}}\left(\mathbb{R}^{n}\right)^{*}$
5) Similarly $G L \ln , \mathbb{R})$ acts on $\Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}$ in a natural way

$$
\text { ie. } \quad G L(n, \mathbb{R}) \xrightarrow{\rho_{k}} G L\left(\Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}\right)
$$

check $\Lambda^{h}\left(T^{*} M\right) \cong 7(T M) x_{P_{h}} \Lambda^{h}\left(\mathbb{R}^{n}\right)^{*}$
now given a privicipal G-bundle $\underset{M}{P}$ and a subgroup $H<G$
If \exists a prucipal H-bundle $P_{H} \subset P$ then one can check $P_{H} x_{H} G \rightarrow P:[f, g] \mapsto f \cdot g$ is a bundle isomorphism
this isomorphism shows the transition functions for P could be chosen to have image in H
so we say the structure group of P reduces to H in this case
note: If the structure group of $7(E)$ reduces from $G L(n, \mathbb{R})$ to H then so does the structure group of E :
so we have turned questions about the structure group of E into

$$
\mathcal{F}(E)_{H} \times{ }_{H} \mathbb{R}^{n}
$$

$H<G L(n, R)$ acts on \mathbb{R}^{n} questions about the structure group of principal bundles
now given a privicipal G-bundle $\underset{M}{P}$ and a subgroup $H<G$
we get the bundle $\underset{M}{\stackrel{\downarrow}{4}}$ with fibers G / H
lemma 10:
let P be a principal G-bundle and $H<G$ reductions of the structure group of P to H are in one-to-one correspondence with sections of P / H

Proof: \Leftrightarrow given a reduction we have

$$
\begin{gathered}
P_{H} \longleftrightarrow P \\
\downarrow_{M} \swarrow
\end{gathered}
$$

and so $\quad P_{H} / H \longrightarrow P / H$

$$
\approx \int_{x}^{\text {section }}
$$

$\Leftrightarrow P \xrightarrow{\pi} P / H$ is a privicipal H-bundle
if $s: M \rightarrow P / H$ a section, then $\bigcup_{x \in M} \pi^{-1}(s(x)) \quad \subset P$
is a principal H -bundle
example:
since $G L(n, \mathbb{R}) / O(n)$ is contractible and bundles with contractible fibers always have sections (chech this) we see $f(E) / O(n)$ has sections and so all vector bundles have metrics! So how can we tell if P / H has sections?
E. Obstruction Theory

We want to study sections of a fiber bundle
 we assume: A) M is a CW complex (always true for manifolds)
B) F is n-simple for all n (examples H-spaces,so Lie groups, loop space...) ie. action of $\pi_{1}\left(F, x_{0}\right)$ on $\pi_{n}\left(F, x_{0}\right)$ trivial
 not so important assumption so π_{n} rides. of x_{0}

C) $\frac{\text { action }}{x, y}$ of $\pi_{1}(M)$ on $\pi_{n}(F)$ trivial
so $\pi_{n}\left(p^{-1}(x)\right)$ canonically independent of $x \in M$ (can get around this using "cohomology with local weff.")
Denote the n-skeleton of M by $M^{(n)}$
assuming we have a section $S_{h}: M^{(h)} \rightarrow E$ we define a cohomology cochain

$$
\tilde{\sigma}\left(S_{k}\right) \in C^{k+1}\left(M ; \pi_{k}(F)\right)
$$

as follows
recall $\tau \in C^{h+1}\left(M ; \pi_{k}(F)\right)$ simply a homomorphism $\tau: C_{k+1}(M) \rightarrow \pi_{k}(F)$ where $C_{k+1}(M)$ is the $C W$-chain group
which is generated by ${ }^{k+1}$ cells $e_{1}^{h+1}, \ldots e_{l}^{h+1}$ of M (recall $M^{(k+1)}=M^{(k)} \cup e_{1}^{h+1} \cup \ldots \cup e_{l}^{k+1} / \sim$
where $e_{1}^{h+1}=D^{k+1}$ and $\exists a_{1}: \partial e_{1}^{h+1} \rightarrow M^{(k)}$
let $I_{i}: e_{i}^{k+1} \rightarrow M$ be "inclusion" st. \sim above is gluing e_{1}^{k+1} to $M^{(k)}$ by a_{2})
$I_{1}^{*} E \cong D^{k+1} \times F$ since e_{1}^{k+1} contractible

$$
\stackrel{1}{2}_{\substack{k+1}}^{\downarrow}=D^{k+1}
$$

S_{k} pulls back to a section of $I_{i}^{*} E$ along ∂e_{2}^{k+1}
so $p_{2} \circ S_{k}: \partial e_{i}^{k+1} \rightarrow F$ gives an element of $\pi_{k}(F)$
$S^{k} \quad$ (here $\rho_{2}: e_{2}^{k+1} \times F \rightarrow F^{k}$ is projection)
now define $\tilde{\sigma}\left(S_{k}\right)\left(e_{2}^{k+1}\right)=\left[p_{2} \circ S_{k}\right]$ assumptions above say this is well-def so $\tilde{\sigma}\left(S_{k}\right) \in C^{k+1}\left(M_{j} \pi_{k}(F)\right)$
exercises:

1) $\tilde{\sigma}\left(S_{k}\right)$ invariant under homotopies of s_{k}
2) $\tilde{\sigma}\left(S_{k}\right)=0 \Leftrightarrow S_{h}$ extends over $\mu^{(k+1)}$
3) $\delta \tilde{\sigma}\left(S_{h}\right)=0$ (1.e. $\tilde{\sigma}\left(S_{h}\right)$ a cocycle)
4) it s_{k} and s_{k}^{\prime} are sections of E over $M^{(k)}$ that are homotopic on $M^{(k-1)}$ then

$$
\tilde{\sigma}\left(s_{k}\right)-\tilde{\sigma}\left(s_{k}^{\prime}\right)=\delta \tau\left(s_{k}, s_{k}^{\prime}\right)
$$

for some $\tau\left(s_{h} s_{k}^{\prime}\right) \in C^{k}\left(M ; \pi_{n}(Y)\right)$
5) by varying homotopy class of s_{k} on $M^{(h)}$ (relative to $M^{(k-1)}$) we can change $\tilde{\sigma}\left(s_{k}\right)$ by any coboundary
the above proves
Th ${ }^{\text {m }}$

$$
\text { given a bundle } F \rightarrow \underset{M}{E} \text { satisfying } A)-C \text {) above }
$$

and a section $s_{k}: M^{(k)} \rightarrow E$ then $\left.s_{k}\right|_{M^{(k-1)}}$ extends to $M^{(k+1)}$

$$
\begin{gathered}
\Leftrightarrow \\
\sigma\left(S_{k}\right)=\left[\tilde{\sigma}\left(S_{k}\right)\right]=0 \in H^{k+1}\left(M ; \pi_{k}(F)\right)
\end{gathered}
$$

So we have on obstruction to a section existing!
Remark: if $\pi_{k}(F)=0$ for $k<\operatorname{dim} B$, then \exists a section of
note: $\sigma\left(S_{h}\right)$ depends on $\left.S_{k}\right|_{M^{(k-1)}}$ ne. it is no just about whether there is a section of E over $M^{(k+1)}$ but wheather our chacie of section on $M^{(k)}$ (when restricted to $M^{(h-1)}$) extends to $M^{(n+1)}$
luckily the "first obstruction" is independent of any choices
Th ${ }^{\text {m }}$
given $F \rightarrow E$
\downarrow satisfying A)-C)
If $\pi_{k}(F)=0$ for $k<n$, then \exists a section $S_{n}: M^{(M)} \rightarrow E$
and the obstruction $\sigma\left(S_{n}\right)$ does not depend on S_{n} (well-defined indef. of choices) so we denote it $\gamma^{n+1}(E)$ (called $\frac{\text { primacy }}{\frac{\text { obstruction }}{} \text {) }}$
and if $f: N \rightarrow M$ a map then $\gamma^{n+1}\left(f^{*} E\right)=f^{*} \gamma^{n+1}(E)$
example

has a k-frame \Leftrightarrow structure group reduces to $G L(n-k)$
or first put a metric on E so structure group is $O(n)$ then E has on orthonormal k-frame \Leftrightarrow structure group reduces to $O(n-k)$ in terms of principal bundles, let $F(E)$ be the on. frame bundle (ie. principal $O(n)$ bundle associated to E)
now E has an orthonormal k-frame $\Leftrightarrow F(E) / O(n-k)$ has a section fibers of $\mathcal{F}(E) / O(n-k)$ are $O(n) / O(n-k) \longleftarrow \begin{aligned} & \text { called Stiefel manifold } \\ & V_{n}\left(\mathbb{R}^{n}\right)=\text { space of }\end{aligned}$ $V_{k}\left(\mathbb{R}^{n}\right)=$ space of on. k-frames in \mathbb{R}^{n}
exercise: $\pi_{i}\left(V_{k}\left(\mathbb{R}^{n}\right)\right)=0 \quad i<n-k$

$$
\pi_{n-k}\left(v_{k}\left(\mathbb{R}^{n}\right)\right) \cong\left\{\begin{array}{ccc}
\mathbb{Z} & n-k & \text { even or } k=1 \\
\mathbb{K} / 2 \mathbb{Z} & n-k \text { odd } \quad(n) /(n-1) \\
s^{\prime \prime n}
\end{array}\right.
$$

unfortunately $\pi_{1}(M)$ does not necissarily act trivially on $\pi_{n-h}\left(V_{k}\left(\mathbb{R}^{n}\right)\right)$ when it is \mathbb{Z} (see Steenrod book)
but if we take this $\bmod 2$ it will (only autom. of $\mathbb{z} / 2 z$ is id.) so we have a primiary obstruction to a k-frame over the $n-k+1$ skeleton of M

$$
\gamma_{n-k+1}(E) \in H^{n-k+1}\left(\mu ; \pi_{n-k}\left(V_{k}\left(\mathbb{R}^{n}\right)_{\bmod 2}\right)\right.
$$

set $w_{l}(E)=\gamma_{l}(E) \in H^{l}(\mu ; z / 2 z)$
this is called the $l^{t h}$ Stiefel-Whitney class of E
when l even (so $n-k$ odd where $l=n-k+1) \quad w_{l}(E)$ is the primary obstruction to \exists of a $n-l+1$ frame on $\mu^{(l-1)}$ that extends to $\mu^{(l)}$.
in general it is a "reduction" of this
Fact: (Steenrod) the w_{i} determine all the primary invariants
exeruses:
loses: $\quad \mathbb{R}^{n} \rightarrow E$

1) given $\begin{gathered}\mathbb{R}^{n} \rightarrow E \\ \vdots \\ \mu\end{gathered}, \quad w_{1}(E)=0 \Leftrightarrow \exists$ an n-frame over $M^{(0)}$ that extends over $\mu^{(1)}$
$\Leftrightarrow E$ is orientable
2) if E orientable, then $w_{2}(E)=0 \Leftrightarrow \exists$ an $(n-1)$-frame over $\mu^{(1)}$ that extends over $\mu^{(2)}$
$\Leftrightarrow \exists$ an n-frame over $\mu^{(a)}$ that extends over $m^{(2)}$
this is called a spin structure
another way to think of Stiefel-Whitney classes
\exists unique functions $w_{i}: \operatorname{Vect}(\mu) \rightarrow H^{i}(\mu ; \mathbb{Z} / 2) \quad \forall M$
satisfying
3) $w_{1}\left(f^{*} E\right)=f^{*} w_{1}(E) \quad \forall f: M \rightarrow N$
4) $w_{0}(E)=1, w_{2}(E)=0 \quad \forall i>$ fiber dim E
5) $w\left(E_{1} \oplus E_{2}\right)=w\left(E_{1}\right) \cup w\left(E_{2}\right)$
where $w(E)=1+w_{1}(E)+w_{2}(E)+\ldots$
6) $w_{1}(\gamma) \neq 0$ where γ is the universal line bundle over $\mathbb{R} p \infty$
for 4) recall $\gamma_{n}=\left\{(l, v) \in \mathbb{R} P^{n} \times \mathbb{R}^{n+1}: v \in l\right\}$
this is a line bundle over R P^{n}
7) $\Leftrightarrow w_{1}\left(\gamma_{n}\right)$ generates $H^{\prime}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \quad \forall n$
sample computation recall $H^{*}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \cong \mathbb{Z}_{2}[a] / a^{n+1}=1$ degree $a=1$

$$
w\left(T \mathbb{R} P^{n}\right)=(1+a)^{n+1}=1+\binom{n+1}{1} a+\binom{n+1}{2} a^{2}+\ldots
$$

eg $w_{1}=(n+1) a$ so $R P^{n}$ orientable $\Leftrightarrow n$ odd
example: if $\mathbb{R}^{n} \rightarrow \underset{\downarrow}{E}$ an oriented bundle
M then $\pi_{1}(M)$ acts trivially on $\pi_{n-1}\left(V_{1}\left(\mathbb{R}^{n}\right)\right) \cong \mathbb{Z}$
exercise: check this
so we get an obstruction $e(E) \in H^{n}(M ; \mathbb{Z})$ to the existence of a non-zero section of E $e(E)$ is called the Euler class of E
exercise: 1) if $s: M \rightarrow E$ is any section of E that is transverse to the zero section Z, then

$$
e(E)=P \cdot D \cdot\left[s^{-1}(z)\right]
$$

2) $e(T M)([M])=X(M)$
fundamental class

Euler characteristic
example: let $\mathbb{C}^{n} \rightarrow E$ be a vector bundle with structure group $G L(n ; \mathbb{C})$
that is a "complex bundle"
(from above we can assume $U(n)$)
so the frame bundle can be taken to be a principal $U(n)$-bundle as in the real case E will have a complex k-frame

$$
\Leftrightarrow
$$

$$
\mathcal{F}(E) / U(n-k) \text { has a section (this as a } U(n) / U(n-k)
$$

exercise: bund (e)

$$
\text { 1) } \pi_{i}(v(n) / U(n-k))= \begin{cases}0 & i<2(n-k) \\ \mathbb{z} & i=2(n-k)+1\end{cases}
$$

2) $\pi_{1}(M)$ acts trivially on $\pi_{2(n-k)+1}(U(n) / U(n-k))$ where we thin of $u(n) / v(n-k)$ as the fiber of $F(E) / v(n-k)$
thus the primiary obstruction to a complex k-frame is

$$
\gamma_{2(n-k)+2} \in H^{2(n-k)+2}(M ; \underbrace{\pi_{2(n-k)+1}(v(n) / v(n-k))}_{\mathbb{Z}})
$$

we detivie $C_{k}(E)=\gamma_{2 k}(E) \in H^{2 k}(\mu ; \notin)$
this is the $k^{\text {th }}$ Chern class of E
clearly $C_{k}(E)$ is the obstruction to a complex $(n-k+1)$ frame on $M^{(2 k-1)}$ that extends to $M^{(2 k)}$
exercise: if E a complex C^{n}-bundle over M

1) $C_{n}(E)=e(E)$
2) $w_{21+1}(E)=0 \quad \Rightarrow$ complex bundles are oriented)
3) $w_{2 i}(E)=C_{1}(E) \bmod 2$
4) $C_{1}(E)=0 \Leftrightarrow$ structure group of E reduces to SU(n) "complex orientation"
5) If \bar{E} is E with "conjugate complex structure" (re. $-J$) then $C_{2}(\bar{E})=(-1)^{i}(E) \quad H_{i n t}$ easy for $C_{n}(E)$, reduce to this. See Milnor-Stacheff
another way to think of Chern classes
\exists unique functions $c_{i}: \operatorname{Vect}_{c}(\mu) \rightarrow H^{2 i}(\mu ; z) \quad \forall M$ satisfying
6) $c_{1}\left(f^{*} E\right)=f^{*} c_{1}(E) \quad \forall f: M \rightarrow N$
7) $c_{0}(E)=1, C_{2}(E)=0 \quad \forall i>$ fiber $G-\operatorname{dim} E$
8) $c\left(E_{1} \oplus E_{2}\right)=c\left(E_{1}\right) \cup C\left(E_{2}\right)$
where $C(E)=1+C_{1}(E)+C_{2}(E)+\ldots$
9) $c_{1}(\gamma)$ generates $H^{2}\left(c P^{\infty}\right)$, where γ is the universal \mathbb{C}-line bundle over $\mathbb{C} P^{\infty}$
sample computation recall $H^{*}\left(\mathbb{C} P^{n} ; \not Z\right) \cong \mathbb{Z}[a] / a^{n+1}=1$
when $E=i \mu$
we denote by $\quad c\left(\mathbb{C} P^{n}\right)=(1+a)^{n+1}=1+\binom{n+1}{1} a+\binom{n+1}{2} a^{2}+\ldots$
$\left(\begin{array}{l}(M) \\ (M)\end{array}\right.$ eg $c_{1}=(n+1) a$ so $c_{1}\left(G P^{\prime}\right)=2 a \quad\left(X\left(s^{2}\right)=2\right)$
$c_{1}\left(G P^{2}\right)=3 a$ and $c_{2}\left(G P^{2}\right)=3 a^{2}$
there is one more "standard" characterisic class
given a real vector bundle
then $E \otimes_{\beta} \mathbb{C}$ is a complex vector bundle
the $?^{\text {th }}$ Pontrjagin class of E is

$$
P_{1}(E)=(-1)^{i} c_{2 i}(E \otimes \mathbb{C})
$$

exercises:

1) Show $E \oplus \mathbb{C}$ and $\overline{E \oplus \mathbb{C}}$ are isomorphic use this to show $c_{2 i+1}(E \otimes \mathbb{C})$ is 2 -torsion
2) $\left(1-p_{1}\left(\mathbb{C P} P^{n}\right)+p_{2}\left(\mathbb{C}^{n}\right)-\ldots \pm p_{n}\left(C^{n}\right)\right)=\left(1-a^{2}\right)^{n+1}$
where a generates $H^{2}\left(c p^{n}\right)$
so $p_{1}\left(\delta \rho^{2}\right)=3 a^{2}, \rho_{1}\left(\Delta \rho^{3}\right)=4 a^{2}, \ldots$
3) if E an oriented $2 n$-bundle then $p_{n}(E)=e(E)$ vel((E)
4) if E is complex bundle and $E^{\mathbb{R}}$ denotes underlying real bundle then $E_{\mathbb{R}}^{\mathbb{R}} \subset \underset{\hat{C}}{\cong} E \oplus \bar{E}$
as complex bundles
5) if E is a \mathbb{C}^{n} bundle then

$$
\left(1-p_{1}(E)+p_{2}(E) \ldots \pm p_{n}(E)\right)=\left(1+c_{1}(E)+\ldots \pm c_{n}(E)\right) v\left(1-c_{1}(E) \ldots \pm c_{n}(E)\right)
$$

eg. $\quad p_{1}(E)=c_{1}(E) \cup c_{1}(E)-2 c_{2}(E)$
Recall, if M is a closed, oriented $4 n$-manifold then

$$
\begin{aligned}
& \hat{H}^{2 n}(M) \times \hat{H}^{2 n}(M) \xrightarrow{I} \mathbb{Z} \\
& (\alpha, \beta) \longmapsto \\
& H^{4 n}(M) \\
& \alpha \sim \beta(\underbrace{\left.\left.\sum \mu\right]\right)}_{H_{4 n}(M)} \quad \text { where } \hat{H}^{2 n}(M)=H^{2 n}(M) / \text { torsion } .
\end{aligned}
$$

is a symmetric non-degenerate pairing
this can be diagonalized over \mathbb{R}
the signature of M is
$\sigma(M)=$ \# positive eigenvalues of I - \# negative eigenvalues of I
Hirzebruch Signature Theorem: \qquad
If M is a closed oriented smooth in manifold, then there is a polynomial L_{n} in the Pontrjagin classes st.

$$
\sigma(M)=L_{n}([M])
$$

for example $L_{1}=\frac{1}{3} \rho_{1}(M)$

$$
L_{2}=\frac{1}{45}\left(7 \rho_{2}(M)-p_{1}(M) \cup p_{1}(M)\right)
$$

note: $T h M$ you get integer classes even though there are fractions in formula! can use this to show there are monitolds homeomorphic but not diffeomorphic to the 7-sphere (and liger dim'l spheres)

Application: S^{4} does not have an almost complex structure!
to see this suppose it does, then

$$
p_{1}\left(s^{4}\right)=c_{1}^{2}\left(s^{4}\right)-2 c_{2}\left(s^{4}\right)
$$

evaluate on $\left[s^{4}\right]$ to get

$$
3 \sigma\left(s^{4}\right)=c_{1}^{2}\left(s^{4}\right)\left(\left[s^{4}\right]\right)-2 X\left(s^{4}\right)
$$

since $H^{2}\left(s^{4}\right)=0$ we see $c_{1}^{2}\left(s^{4}\right)\left[\left[s^{4}\right]\right)=0$, so

$$
3 \sigma\left(s^{4}\right)=-2 x\left(s^{4}\right)
$$

but $\sigma\left(s^{4}\right)=0$ and $X\left(s^{4}\right)=2 \varnothing$ so s^{4} has no almost \mathbb{C}-str.
Fact: Can use same argument to see $s^{4 n}$ doesn't hare a complex structure
with more work can show
S^{n} has an almost complex structure

$$
\Leftrightarrow
$$

$$
n=2,6
$$

"Open" Problem: Does s^{6} have a complex structure
Characteristic classes, in general, do not determine a bundle, but we do have
I) Complex line bundles are determined by c_{1}

Moreover, any $\alpha \in H^{2}(M)$ is c_{1} of some complex line bundle
II) \mathbb{C}^{2}-bundles are determined by c_{1} and c_{2}

Moreover, $\forall(\alpha, \beta) \in H^{2}(M) \times H^{4}(M) \exists a \mathbb{C}^{2}$-bundle $\underset{M}{E}$ sit. $c_{1}(E)=\alpha$, $C_{2}(E)=\beta$
III) $S O(3)$ bundles are isomorphic $\Leftrightarrow w_{2}$ and p_{1} agree
III) $S O(4)$ bundles are isomorphic $\Leftrightarrow w_{2}, p_{1}$ and e agree
exercise: prove the above. I)- II) "easy" (we will do I) later)
III)-IV) harden
F. Existence of Almost Complex Structures

We want to see when M admits an almost complex structure (and hence an almost symplectic one)
We start with an oriented manifold M of dimension in So we can assume its structure group is $S O(2 a)$ and F(TM) is a principal SO $(2 n)$ bundle
thus M has an almost complex structure $\Leftrightarrow \mathcal{F}(T M) / U(n)$ has a section the fibers of this bundle are $S O(2 n) / U(n)$ so we need for $i<2 n-1$

$$
\pi_{1}(S 0(2 n) / U(n))=\left\{\begin{array}{ll}
\mathbb{Z} & 1 \equiv 2 \bmod 4 \\
\mathbb{Z} / 2 \sharp & 1 \equiv 0,7 \bmod 8 \\
0 & \text { otherwise }
\end{array} \quad \text { Bott } 159\right.
$$

and

$$
\left.\pi_{2 n-1}(s 0(2 n)) /(n)\right)= \begin{cases}Z+z / 2 z & n \equiv 0 \bmod 4 \\ z /(n-1)!z & n \equiv 1 \bmod 4 \\ z & n \equiv 2 \bmod 4 \\ Z / \frac{(n-1)!}{2} z & n \equiv 3 \bmod 4\end{cases}
$$

so there are obstruction to M having on almost complex structure in

$$
\begin{array}{ll}
r_{2}^{c} \in H^{i}(M ; \mathbb{Z}) & \text { for } 1<2 n \text { and } 1 \equiv 3 \bmod 4 \\
r_{1}^{C} \in H^{2}(M ; \mathbb{Z} / 2 \mathbb{Z}) & \text { for } 2<2 n \text { and } 2 \equiv 0,1 \bmod 8
\end{array}
$$

recall the exact sequence $0 \rightarrow \mathbb{Z} \xrightarrow{x^{2}} \rightarrow \mathbb{Z} / 2 \boldsymbol{Z} \rightarrow 0$ giver rise to a long exact sequence

$$
\ldots \rightarrow H^{n}(M ; Z) \rightarrow H^{n}(M ; Z) \rightarrow H^{n}(M ; \mathbb{z} / 2 z) \xrightarrow{\beta} H^{n+1}(M ; \mathbb{E}) \rightarrow \ldots
$$

β is called the Bockstein homomorphism
the ritegral Steifel-Whitney classes of a bundle ${ }_{m}^{E}$ are

$$
W_{i}(E)=\beta\left(w_{i}(E)\right) \in H^{i}\left(M_{i} \mathbb{E}\right)
$$

note: $W_{1}(E)$ is obstruction to integral lift of $w_{1-1}(E)$

Theorem (Massey):
let M be an oriented $2 n$-manifold let $s: M^{(4 k+2)} \rightarrow \mathcal{F}(M) / U(n)$ be a section
Then

$$
W_{4 k+3}(M)= \begin{cases}(2 k)!\gamma_{4 k+3}^{\mathbb{C}}(s) & k \text { even } \\ \frac{1}{2}(2 k)!\gamma_{4 k+3}^{\mathbb{C}}(s) & k \text { odd }\end{cases}
$$

Remarks:

1) Amazing $\gamma_{4 k+3}^{c}(s)$ doesn't really depend on s !
2) If $H^{4 h+3}(M ; Z)$ has no p-torsion for any prime $p \leq 2 k$
then $W_{4 k+3}=0 \Rightarrow \gamma_{4 k+3}^{c}(s)=0$
3) $\gamma_{3}^{\mathbb{C}}(s)=W_{3}(M)$ and $\gamma_{7}^{\mathbb{C}}(s)=W_{7}(M)$
note:
a) no obstruction to oriented surface having almost complex structure
b) when M is an oriented 4 -manifold we hove

$$
\pi_{k}(s 0(4) / U(2))= \begin{cases}0 & k=1 \\ \mathbb{Z} & k=2,3\end{cases}
$$

so a 4-manifold always has an almost complex structure on $M^{(2)}$ obstruction to extending over $M^{(3)}$ is

$$
\gamma_{3}^{\&}(M)=W_{3}(M)
$$

so have almost complex structure on $M^{(3)}$

$$
\Leftrightarrow
$$

\exists integral lift of $\omega_{2}(\mu)$
we consider obstruction to extension to M later
c) When M is an oriented 6-manifold we have

$$
\pi_{k}(s 0(6) / U(3))= \begin{cases}0 & k=1,2,4,5 \\ \mathbb{Z} & k=3\end{cases}
$$

so the first and only obstruction to an almost complex structure on M^{6} is

$$
\gamma_{3}^{C}(T M)=W_{3}(M)
$$

When M is 4n-dimensional the top dimensional obstruction is in

$$
\begin{aligned}
&H^{4 n}(M ; \underbrace{\pi_{2 n-1}(O(4 n)} / U(2 n))) \\
&= \begin{cases}\mathbb{Z} & n \text { odd } \\
\mathbb{Z} \oplus \mathbb{W} / 2 \mathbb{E} & n \text { even }\end{cases}
\end{aligned}
$$

let $\gamma_{4 n}^{z}(M)$ be $\gamma_{4 n}^{C}(M)$ if hod and the $H^{4 n}(M ; z)$ component of $\gamma_{4 n}^{c}(M)$ if n even
recall if $T M$ is a complex bundle

$$
P_{k}(M)=(-1)^{n} \sum_{1+j=2 k}(-1)^{i} c_{1}(M) \cup c_{j}(M)
$$

Th ${ }^{m}$ (Massey):
let M be an oriented $4 n$-manifold
let $s: M^{(4 n-1)} \rightarrow \mathcal{F}(M) / U(n)$ be a section
Then

$$
4 \cdot \gamma_{4 n}^{z}(s)=(-1)^{n+1} p_{n}(M)+\sum_{i+j=2 n}(-1)^{i} c_{2}(\mu) u c_{j}(\mu)
$$

where the $c_{1}(M)$ are the Chern classes of $\left.T M\right|_{M^{(2 n-1)}}$ coming from the complex structure induced by s and $C_{2 n}(M)=e(M)$

The discussion above covers all the "integral obstructions" to on almost complex structre the non-integral obstructions are harder
But we do get
Th ${ }^{m} \|$: \qquad \Leftrightarrow
\exists a cohomology c lass $a \in H^{2}(M ; z)$ such that

$$
\begin{aligned}
& w_{2}(M) \equiv a \bmod 2 \text { and } \\
& a^{2}([M])=3 \sigma(M)+2 x(M)
\end{aligned}
$$

sometimes called Wu's theorem

Moreover, any such a is c_{1} of an almost complex structure

Proof: \Leftrightarrow follows from discussion of characteristic classes from Section E \Leftrightarrow follows from 2 then's of Massey above
for the last statement, prove using last exercise in Section E (about SO (4) and $U(2)$ bundles)
exercise: Do this and prove \Leftrightarrow result in $T^{\prime \prime}$ in the same way
Th ${ }^{\text {m }} 12$:
A closed oriented 6 -manifold M has an almost complex structure
$\exists a$ cohomology class $a \in H^{2}(M ; z)$ such that

$$
w_{2}(M) \equiv a \bmod 2
$$

Moreover, if $H^{2}(M ; z)$ has no 2-torsion, then there is a one-to-one correspondence

$$
\left\{\begin{array}{c}
\text { almost complex } \\
\text { structures on } M
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
a \in H^{2}(M ; z) \\
w_{2}(M) \equiv a \bmod \bmod 2
\end{array}\right\}
$$

and complex structure corresponding to a has

$$
c_{1}=a, c_{2}=\left(a^{2}-p_{1}(M)\right) / 2 \text {, and } c_{3}=e(M)
$$

Proof: \Leftrightarrow follows as in last proof
the one-to-one correspondance follows from more obstruction theory

Recall: All statements in T^{m} ㅍ 11 and 12 also hold for almost symplectic manifolds
\qquad /l \qquad

So what closed oriented 4 -manifolds might have symplectic structures?

1) S^{4} : No for many reasons: no $a \in H^{2}\left(s^{4}\right)$ with ava $\neq 0$ and if $a \in H^{2}\left(s^{4}\right)$ with $w_{2} \equiv \operatorname{amod} 2$
then $\quad 2 x+3 \sigma=4 \neq a^{2}\left[s^{4}\right]=0$
so no almost symplectic structure
2) $S^{1} \times S^{3}$: does has almost symplectic structure since $w_{2}\left(s^{1} \times s^{3}\right)=0$ so $a=0 \in H^{2}\left(s^{1} \times s^{3}\right)$ is a lift of w_{2} and

$$
2 x+3 v=0=a^{2}\left(\left[s^{\prime} \times s^{2}\right]\right)
$$

so by $T_{h} \underline{m} \exists$ almost complex/symplectic structure (in fact easy to put complex structure on $s^{1} \times s^{3}$) but no a $\in H^{2}\left(s^{1} \times s^{2}\right)$ with ava $\neq 0$ so No symplectic structure
3) $\#_{n} \subset P^{2}$: when does it have an almost symplectic structure?
$H^{2}\left(\#_{n} \measuredangle P^{2}\right)=\Theta_{n} \mathbb{Z} \quad$ Intersection pairing $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
so $\sigma=n$ and $X=n+2$
thus $2 x+3 \sigma=2 n+4+3 n=5 n+4$
also $w_{2}\left(\#_{n} \subset P^{n}\right)=(1,1, \ldots 1) \in H^{2}\left(\#_{n} \subset P^{2} ; \mathbb{Z} / 2 \mathbb{Z}\right) \cong \oplus_{n} \mathbb{Z} / 2 \mathbb{Z}$
so $\#_{n} \mathbb{C} P^{2}$ almost symplectic $\Leftrightarrow \exists a \in H^{2}\left(\#_{n} \mathbb{C} P^{2} ;\right.$ z) with
$(1,1, \ldots 1) \equiv a \bmod 2$ and

$$
a^{2}\left(\left[\#_{n} \subset \rho^{2}\right]\right)=5 n+4
$$

suppose $a=\left(a_{1}, \ldots a_{n}\right) \in \oplus_{n} \mathbb{Z}$

$$
a^{2}=\sum_{i=1}^{n} a_{i}^{2}
$$

so we need $a_{i} \in \mathbb{Z}$ st. $\sum_{i=1}^{n} a_{i}^{2}=5 n+4$ and a_{i} odd
$n=1:$
$a_{1}{ }^{2}=9$ so most have $a_{1}= \pm 3$
$\therefore C P^{2}$ admits 2 almost complex/symplectic structures
(only one upto conjugation)
of course $\mathbb{C} P^{2}$ is also symplectic! (Kähler)
$n=2$: need $a_{1}^{2}+a_{2}^{2}=14$ no sol!
so $\mathbb{C} \rho^{2} \# \mathbb{C} \rho^{2}$ has no almost symplectic structure!
\therefore no symplectic str.
even though $\exists \alpha \in H^{2}\left(\rho^{2} \# \mathbb{C} P^{2}\right)$
St. $\alpha^{2}>0$
$n=3$: need $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=19$ sol ns $(\pm 3, \pm 3, \pm 1)$ (and permutations)
so $\mathbb{C} P^{2} \# \mathbb{C} \rho^{2} \# \mathbb{C} \rho^{2}$ has almost symplectic structures Call are diffeomorphic)
also has $\alpha \in H^{2}$ st. $\alpha^{2}>0$
Is $\mathbb{C} P^{2} \# C P^{2} \# \mathbb{A} P^{2}$ symplectic? No but very hard to show!
Taubes: Symplectic manifolds with $b_{2}^{+} \geq 2$ number of pos. eigenvalues in intersection pairing have non-vanishing Seiberg-Wiften invar cants
Kotschich: If $X^{4}=X_{1} \# X_{2}$ is simply connected and $b_{2}^{+}\left(x_{1}\right) \geq 1$, then seiberg-witten invariants vanish.
so no $\#_{n} \subset P^{2}$ symplectic if $n>1$!
exercise: $\#_{n} \subset P^{n}$ is almost symplectic $\Leftrightarrow n$ odd e.g. $n=5$ get so lng $(5,1,1,1,1)$ and $(3,3,3,1,1)$ (these are really different)
lemma 13:
If M a 4 -manifold with an almost symplectic structure then $b_{2}^{+}(M)$ and $b_{1}(M)$ have opposite parity

Proof: Wu showed that for any $c \in H^{2}(M ; Z)$

$$
C \cup C \equiv w_{2}(M) \cup C \bmod 2
$$

suppose a is an integral lift of $w_{2}\left(\mu^{4}\right)$ then

$$
c u c \equiv \operatorname{auc} \bmod z
$$

such an a is called a characteristic element
not to hard to show for any characteristic element

$$
\operatorname{cuc}([M]) \equiv \sigma \bmod 8
$$

so if M has an almost complex structure then $c_{1}(M) \equiv w_{2} \bmod 2$
and

$$
\begin{aligned}
& c_{1}^{2} \equiv \sigma \bmod 8 \\
& c_{1}^{2}=3 \sigma+2 x
\end{aligned}
$$

so

$$
\begin{aligned}
& \sigma+8 k=3 \sigma+2 x \text { some } k \\
& 8 k=2(\sigma+x) \\
& 2 k=\frac{\sigma+x}{2} \\
& \text { ne. } \frac{\sigma+x}{2} \equiv 0 \bmod 2 \\
& \frac{b_{2}^{+}-b_{2}^{-}+2-2 b_{1}+b_{t}-b_{-}}{2} \equiv 0 \bmod 2
\end{aligned}
$$

so $b_{2}{ }^{+}-b_{1}+1$ is even if M almost complex
exercise: 1) let M be a simply connected oriented 4-manifold.
Show M has an almost symplectic structure
2) at most 2 of M_{1}^{4}, M_{2}^{4}, and $M_{1} \# M_{2}$ have an almost symplectic structure

