Section V: Constructions
A. Branched Covers
a map $p: M \rightarrow N$ is a branched cover if \exists a submanifold $B \subset N$ such that

$$
P l_{\left(M-\rho^{-1}(B)\right.}:\left(\mu-\rho^{-1}(B)\right) \rightarrow(N-B) \quad \text { is a covering map }
$$

and
for each $x \in P^{-1}(B)$ there are cooditionts about x and $\rho(x)$ in which ρ has the form

$$
\mathbb{R}^{n-2} \times \mathbb{C} \rightarrow \mathbb{R}^{n-2} \times \mathbb{C}
$$

$$
(y, z) \mapsto\left(y, z^{k}\right) \quad \text { some } k
$$

and B and $\rho^{-1}(B)$ are $\mathbb{R}^{n-2} \times\{0\}$ in these coordiriants
B is called the branch locus
example:

2) Given any manifold X, then $p \times i d: \Sigma_{g} \times X \rightarrow S^{2} \times X$ is a branched cover. eg T^{3} is a branched cover of $S^{2} \times S^{1}$
lemma 1:
let $p: M \rightarrow N$ be a branched cover of compact manifolds
with compact branch locus B
suppose 1) N has a symplectic form ω_{N}
2) B is a symptectic submanifold of $\left(N, \omega_{N}\right)$

Then \exists a symplectic form ω_{M} on M such that

$$
\left[\omega_{M}\right]=f^{*}\left[\omega_{N}\right] \in H^{2}(M ; \sharp) \text { and }
$$

$\omega_{M}=f^{*} \omega_{N}$ away from nbhd of $P^{-1}(B)$
Moreover, ω_{M} is well-defued upto isotopy
Proof: $f^{*} \omega_{N}$ is a closed 2-form and non-degenerate away from $P^{-1}(B)$ in particular, if $K_{x}=\operatorname{ker} d p_{x} \subset T_{x} M$ for $x \in B$ then K_{x} is an \mathbb{R}^{2}-bundle and ω is only degenerate on k_{*}
if α is any exact 2 -form that is non-degenerate and positive on $k_{x} \forall x \in P^{-1}(B)$
then for ε small enough $f^{*} \omega_{N}+\varepsilon \alpha$ is symplectic
to see such an α exists, take a coordinate chart about $x \in p^{-1}(B)$ and $p(x)$ such that p has the form

$$
\begin{gathered}
\mathbb{R}^{2 n-2} \times \mathbb{C} \rightarrow \mathbb{R}^{2 n-2} \times \mathbb{C} \\
(y, z) \longmapsto\left(y, z^{k}\right)
\end{gathered}
$$

let $\alpha_{x}=d\left(\phi_{x}(y) \psi_{x}(z) u d v\right)$ where ϕ_{x} is a bump function on $\mathbb{R}^{2 n-2}=1$ near x

$$
\psi_{x} " \quad " \quad \mathbb{C}=1 \text { near } x
$$

extend α_{x} by 0 off of support of $\phi_{x} \psi_{x}$
clearly α_{x} has desired property on the support of $\phi_{x} \psi_{x}$
now let α be the sum of α_{x} as x ranges over a finite set of $x \in p^{-1}(B)$
such that the supports of α_{x} cover $P^{-1}(B)$
clearly we have necessary α.
now ω_{x} is well-defined up to isotopy by Moser's Th" (Th"III.6)
since the space of α as above is convex
We can use the longuage of branched covers to extend Ellashberg's higher dimensional existence conjecture to $4 D$.

Conjecture:
If M a manifold of dimension 4 with

- a class $h \in H^{2}(M)$ s.t. huh $\neq 0$ and
- a non-degenerate 2-form ω_{0}

Then \exists an embedded surface $\Sigma \subset M$ such that

- [J] is Poincare dual to Nh for some large N
- there is some branched cover

$$
P: \widetilde{M} \rightarrow M
$$

with branch locus Σ

- \tilde{M} admits a symplectic structure ω sot.

1) $p^{-1}(\Sigma)$ symplectic
2) $p^{*} h=[\omega]$
3) ω is homotopic to $p^{*} \omega_{0}$ through 2 -forms ω_{t} that are non-degenerate off of $\rho^{-1}(\Sigma)$ (maybe non-degenerate for $t \neq 1$)

Research Problem:
Verify conjecture for $\#_{2 n+1} \mathbb{C} P^{2}$ for $n>0$.
Verify conjecture for other almost symplectic 4-manifolds we will discuss later

In dimension 4 we can weaken the notion of branched covers
call $p: M^{4} \rightarrow N^{4}$ a branched cover if for each point $x \in M$ we have coordinate charts about x and $p(x)$ for which p has the form: $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$
$(u, v) \longmapsto(u, v)$
$(u, v) \longmapsto\left(u^{2}, v\right) \quad$ simple branch point
$(u, v) \longmapsto\left(u^{3}-u v, v\right)$ cusp
exercise:

1) let $R=\left\{x \in M: d p_{x}\right.$ not maximal rank $\}$
(for points with $2^{n d}$ model map, this is just $\{u=0\}$
for ones with $3^{\text {red }}$ " $\left\{v=3 u^{2}\right\}$)
show R is a smooth submanifold of M
2) $B=\rho(R)$ does not have to be a smooth submanitold of N
it has "cusp points"
near these points B is locally modeled on $\left\{27 z_{1}^{2}=4 z_{2}^{3}\right\} \subset \mathbb{C}^{2}$
3) for a generic P, B can also have isolated transverse double points
a) If N has a symplectic structure ω_{N} such that the coord. charts expressing ρ in model above pulls back the standard complex structure on C^{2} to one compatible with ω_{N}
Then M has a canonical (unto isotopy) symplectic structure agreeing with $P^{*} \omega_{N}$ off of R.
$\left(M, \omega_{M}\right)$ is called a symplectic branched cover over $\left(N, \omega_{N}\right)$ (need to distinguish from $1^{\text {st }}$ def n by context)
Th ${ }^{m}$ (Aurous):
any compact symplectic 4 -manifold (M, ω) is a symplectic branched cover of ($\left(\rho^{2}, \omega_{F S}\right)$

Remark: We discuss a proof later.
Auroux has a way to construct invariants of (M, ω) from this π^{m} (maybe discuss later)

B Symplectic Cuts and blowups
let (M, ω) be a symplectic manifold
suppose we have a Hamiltonian circle action on (M, ω)
recall this means $\exists H: M \rightarrow \mathbb{R}$ st, the flow of its Hamiltonian vector field X_{H} (recall $L_{X_{H}} \omega=d H$) generates an S^{\prime} action: $S^{\prime} \times M \rightarrow M$
(recall flow tangent to level sets)
let c be a regular value of H and assume the S^{1}-action on $H^{-1}(c)$ is free now consider $\hat{H}: \mu \times \mathbb{C} \rightarrow \mathbb{R}:(p, z) \mapsto H(p)-\frac{1}{2}|z|^{2}$ exercise:

1) $\hat{H}^{-1}(c)=\left[H^{-1}((c, \infty)) \times s^{1}\right] \cup H^{-1}(c)$
2) If we give $M \times C$ the symplectic structure

$$
\omega+d x \wedge d y
$$

then the Hamiltonian vector field of \hat{H} is $X_{H}+y \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}$
Show the action is free and

$$
\hat{H}^{-1}(c) / s^{\prime}=H^{-1}((c, \infty)) \cup H^{-1}(c) / s^{\prime}
$$

so this is a smooth symplectic mancfold (this is the same argument as we did for $G P^{n}$)
and $H^{-1}(c) / s^{\prime}$ and $H^{-l}((c, \infty))$ are symplectic submanifold
Hint: $\phi: H^{-1}((c, \infty)) \rightarrow \hat{H}^{-1}(c) \cap(\mu \times(0, \infty))$ is a symplectic embedding, and $x \longmapsto(x, \sqrt{2(H(x)-c)})$ transvense to s'-action

Remark: So we can put a smooth and symplectic structure on

$$
H^{-1}([c, \infty)) / s^{\prime} \text { action on d }
$$

this is called the positive symplectic cut of M at c
We can similarly consider $\tilde{H}: M \times \mathbb{C} \rightarrow \mathbb{R}:(p, z) \mapsto H(\rho)+\frac{1}{2}|z|^{2}$
to get a symplectic structure on $H^{-1}((-\infty, c)) / s^{\prime}$ action on d
this is the negative symplectic cut

exercise:
with notation as above note $H^{-1}(c)$ is a principal S^{\prime}-bundle (1.e. $U(1)$)
so $H^{-1}(c)$ has a Chern class $c_{1}\left(H^{-1}(c)\right)$
$H^{-1}(c) / s^{\prime}$ is a co-dimiension 2 submanifold of the positive cut so its normal bundle V_{+}has structure group $U(1)$
Show $C_{1}\left(\nu_{+}\right)=c_{1}\left(H^{-1}(c)\right)$
similarly $H^{-1}(c) / s^{1}$ has normal bundle $V_{\text {. in }}$ the negative cut Show $C_{1}\left(\nu_{-}\right)=-C_{1}\left(H^{-1}(c)\right)$
example:
Consider $M=\mathbb{C}^{n}$ and $H(x)=-\frac{1}{2}\|x\|^{2}$
let N be the negative symplectic cut at $c=-1 / 2$ (so $\|x\|=1$)
2.e. $N=H^{-1}([0,1]) / S^{1}$ action on $H^{-1}(1)=D^{2 n} / S^{1}$-action on d
note: $\quad \partial B^{2 n} / s^{\prime}=G P^{n-1}$ (by definition!)
exercise: $N=\mathbb{C} P^{n} \quad$ (we see $\mathbb{C} P^{n}-C P^{n-1}=i n t B^{2 n} \subset \mathbb{C}^{n}$ symplectically)
note: Cutting at other c still give GP n but with scaled w.
Now let N^{\prime} be the positive symplectic cut
so $N^{\prime}=\mathbb{C}^{n}-1 n^{\prime}+B^{2 n} / s^{\prime}$ action on ∂
topologically we have a diffeomorphism $\mathbb{C}^{n}-\left\{_{0}\right\} \longrightarrow \mathbb{C}^{n}-\left\{_{0}\right\}$

$$
z \longmapsto \frac{1}{\|z\|^{2}} z
$$

this is orientation reversing so we see

$$
N \cong-\mathbb{C} p^{n}-\{p t\}
$$

and there is a symplectic structure on it!
let (M, ω) be any symplectic manifold
and U CM be a Darboux chart symplectomorphic to an open ball in \mathbb{C}^{n} we can perform the above construction on a ball in U to get a symplectic structure on $M \#\left(\mathbb{C} P^{n}\right)$ this is called the symplectic blowup of M

Remark:

1) a standord abuse of notation is to write this $M \# \overline{\mathbb{C P}}^{n}$ even though conjugating the complex structure does not always reverse the orientation
2) The smooth type of the blowup is well-defined, but the actual symplectic structure depends on the size of the ball used
note: Suppose we have a bunch of 2-dimensional symplectic submanifolds of M intersecting in a point p sit I Darboux chart about p st. surfaces go to complex lines in \mathbb{C}^{n}

when we blow up we take a ball $B^{2 n} \subset \mathbb{C}^{n}$
the submant folds all $\cap \partial B^{2 n}$ in S^{\prime} orbits so in the blow up these be come disjoint points in $4 P^{n-1}$
2.e. S, disjoint in $M \# \overline{C P}^{n}$
(at least ρ removed form mtersection)

Now given a symplectic manifold $\left(M^{2 n}, \omega\right)$
if there is an embedding of $\left(C P^{n-1}, \lambda \omega_{F S}\right)$ in $\left(M^{2 n}, \omega\right)$ such that the normal bundle has Euler number -1
then $\mathbb{C P} \mathrm{P}^{n-1}$ has a neighborhood symplectomorphic to the C ρ^{n-1} in the positive symplectic cut above (Cor III. 4) thus $M^{2 n}-C p^{n-1}$ has a proper embedding of $i^{n}+B_{C+\varepsilon}^{2 n}-i n+B_{c}^{2 n}$ so we can glue in ($\left.\operatorname{nit}_{c+\varepsilon}^{2 n}, \omega_{\text {std }}\right)$ to get a new symplectic manifold ($M^{\prime}, \omega^{\prime}$) called the symplectic blow down of $\sigma \rho^{n-1}$ in M.
C. Normal Sums

Here is an interesting topological construction
let $f_{1}, f_{2}: N^{h} \hookrightarrow M^{n}$ be 2 embeddings with disjoint images
let ν_{i} be the normal bundle of $f_{1}(N)$
this is an \mathbb{R}^{n-k}-bundle over N
suppose there is an orientation reversing bundle map
$\psi: \nu_{1} \rightarrow \nu_{2}$ bundle isomorphism
so there are nbhds N_{i} of $f_{i}(N)$ differ to disk bundles in ν_{i}
exercise: Show ψ induces an orietation reversing diffeomorphism from ∂N_{1} to ∂N_{2} (still call it ψ)
let $\#_{N} M=M-\left(N_{1} \cup N_{2}\right) / \sim_{\psi}$
this is called the normal sum of M along $f_{1}(N)$ and $f_{2}(N)$ if $M=M_{1} \cup M_{2}$ and $f_{2}(N) \subset M_{1}$ then we write $M_{1} \#_{N} M_{2}$
note: If $N=\{\rho t\}$, then $M_{1} \#_{N} \mu_{2}=M_{1} \# M_{2}$ the ordinary connect sum! so $M_{1} \#_{N} M_{2}$ in general is like an N-parametric connect sum exercise: If $f_{1}: N^{n-2} \longrightarrow M^{n}$ are 2 embeddings
then ν_{1} orientation reversing diffeomorphic to ν_{2}

$$
c_{1}\left(\nu_{1}\right)=-c_{1}\left(\nu_{2}\right)
$$

Th르2(Gompf):
Suppose $f_{i}:\left(N, \omega_{N}\right) \hookrightarrow\left(M, \omega_{M}\right), 2=1,2$, are codimiension 2 symplectic embeddings with disjoint images
Assume $c_{1}\left(\nu_{1}\right)=-c_{1}\left(\nu_{2}\right)$
For any choice of orientation reversing bundle isomorphism $\psi: \nu_{1} \rightarrow \nu_{2}$ the normal sum $\#_{N} M$ has a symplectic structure ω such that outside of the gluing locus ω agrees with ω_{M}
exercise: Prove this if ν_{z} trivial
Why does this only work for codimension 2?
Hint: S^{n} admits symplectic structure $\Leftrightarrow n=2$
the proof is another application of symplectic cuts
let $\quad \begin{array}{cc}S^{\prime} \rightarrow P \\ \pi \downarrow \\ M\end{array}$ be a principal S^{\prime}-bundle
given $x \in P$ we get a map $\gamma_{x}:(-\varepsilon, \varepsilon) \rightarrow P: t \mapsto x \cdot e^{\text {at }}$
let $R(x)=\gamma_{x}^{\prime}(0)$ this is a vector at x
and R is a vector field on P
note: flow of R is the s^{\prime}-action
exercise:

1) \exists a 1 -form α on P such that $\alpha(R)=1$
α called a connection 1-form

$$
\mathcal{L}_{R} \alpha=0
$$

2) $\mathcal{Z}_{R} d \alpha=0$ and $L_{R} d \alpha=0 \quad$ Hunt: check $2^{\text {ad }}$ formula on R and her α
show this implies $\exists \omega \in \Omega^{2}(M)$
such that $\pi^{*} \omega=d \alpha$
ω is called the curvature of α
3) show $-[\omega / 2 \pi]$ is in $H^{2}(\mu ; z)$ and $e(P) \stackrel{\downarrow}{=}-[\omega / 2 \pi]$ Weill

Euler class
now suppose w is a symplectic form on $M^{2 n}$
and consider

$$
\mathbb{R}_{r} \times P \text { and } \omega_{p}=\pi^{*} \omega+d(r \alpha)=\pi^{*} \omega+d \wedge \alpha+r d \alpha
$$

note: $\quad \omega_{p}^{n+1}=(n+1) d r \wedge \alpha \wedge\left(\pi^{*} \omega\right)^{n}+r$ (other terms)
let $v_{1} \ldots v_{2 n}$ be linearly independent in her α at some pt x clearly $d \pi$ isomorphisms her α to $T M$
so

$$
d r \wedge \alpha \wedge\left(\pi^{*} \omega\right)^{n}\left(\frac{\partial}{\partial r}, R, v_{1} \ldots v_{2 n}\right) \neq 0
$$

\therefore for r sufficiently small (say $r \epsilon(-\varepsilon, \varepsilon)$)

$$
\left(\omega_{p}\right)^{n+1}\left(\frac{\partial}{\partial r}, R, v_{1} \ldots v_{2 n}\right) \neq 0
$$

$\therefore \omega_{p}$ non-degenerate!
2e. a symplectic form on $(-\varepsilon, \varepsilon) \times P$
let $H:(0, \infty) \times P \rightarrow \mathbb{R}$ be projection
so $d H=d r$ and so the Hamiltonian vector field is $X_{H}=-R$ generates (minus) s'-action
now $H^{-1}(0)=P$
so $H^{-1}(0) / s^{\prime} \cong M$ and induced form is ω and positive symplectic cut of $\mathbb{R} \times P$ at O is an \mathbb{R}^{2}-bundle over M with a symplectic structure and "Euler class" $e(P)$ moreover, (M, ω) embeds as "zero section" similarly negative cut of $\mathbb{R} \times P$ at 0 is an \mathbb{R}^{2}-bundle over M with a symplertic structure and "Euler class"-e(P) moreover, (M, ω) embeds as "zero section"

Proof of Th ${ }^{\mathrm{m}} 2$:
given the embeddings $f_{i}:\left(N, \omega_{N}\right) \rightarrow\left(M, \omega_{M}\right)$ from theorem let ν_{2} be their normal bundles and P be unit S^{\prime}-bundle in ν_{2} let $\omega_{P}=\pi^{*} \omega_{N}+d\left(r_{\alpha}\right)$ on $(-\varepsilon, \varepsilon) \times P$ as above
let $C_{ \pm 1}= \pm$ symplectic cut of $\left(-\varepsilon_{\varepsilon} \varepsilon\right) \times P$ at 0 .
and $Z_{ \pm 1}$ the embedding of $\left(N, \omega_{N}\right)$ in $C_{ \pm 1}$
from Cor III. $4 \quad f_{1}(N)$ has a neighborhood $U_{ \pm 1}$ symplectomorphic to a nobly of $z_{(\# 1)^{i}}$ in $C_{(\pm 1)^{i}}$
by shrinking ε can assume $C_{(11))^{i}} \stackrel{\text { is }}{=}$ symplectomorphic to nbhd $U_{(\pm 1)^{i}}$ of $f_{1}(N)$
note: $U_{(+1)}-f_{2}(N)$ symplectomorphic to $(0, \varepsilon) \times P$

$$
U_{(-1)}-f_{1}(w) \quad " \quad(-\varepsilon, 0) \times P
$$

so we can glue $M-\left(f_{1}(N) \cup f_{2}(N)\right)$ and $(-\varepsilon, \varepsilon) \times P$ to get a symplectic str on $\#_{N} M$

Cor 3 (Gompf):
let G be any finitely presented group Then there is a closed symplectic $2 n$-manifold $(n \geq 2) M$ with $\pi_{1}(M) \cong G$

Remark: There are strong restrictions on the fundamental groups of Kähler manifolds, eg we already saw b_{1} must be even So this result shows there are many more symplectic manifolds than Kähler.
Proof:
We construct a symplectic 4 -manifold M then $\mu \times s^{2} \times \ldots \times s^{2}$ will realize G in any dimension $2 n, n \geq 2$.
let $G=\left\langle g_{1} \ldots g_{k} \mid r_{1} \ldots r_{l}\right\rangle$
let \sum be a surface of genus k

$$
\text { and } \alpha_{1} \ldots \alpha_{k}, \beta_{1} \ldots \beta_{k}
$$

be standard generators of $H_{1}\left(\Sigma_{h}\right)$

note: $\pi_{1}\left(\Sigma_{k}\right) /\left\langle\beta_{1} \ldots \beta_{h}\right\rangle$ is the free group generated by $\alpha_{1} \ldots \alpha_{k}$ (connected to common base pot!)
let γ_{i} be an immersed curve in Σ_{k} realizing r_{i} in above quotient (where α_{j} are substituted for g_{j} in r_{i})
also let $\gamma_{l+1}=\beta_{i}$ for $1=1 \ldots k$

$$
\text { so } \pi_{1}\left(\Sigma_{k}\right) /\left\langle\gamma_{1} \ldots \gamma_{l+h}\right\rangle \cong G
$$

Claim: We can find a surface Σ and curves $\gamma_{1} \ldots \gamma_{m}$ such that

$$
\pi_{1}(\Sigma) /\left\langle\gamma_{1} \ldots \gamma_{m}\right\rangle \cong G \text { and } \exists \text { closed } 1 \text {-form } \text { p on } \Sigma
$$

that restricts to a volume form on each γ_{i}
assuming this for now we build our manifold
start with $\sum \times T^{2}$ with a product symplectic form ω
let α, β be curves

$$
\text { in } T^{2}=\alpha \times \beta
$$

let θ be angular coord on α so do closed 1-form on T^{2}
note: $T_{i}=\gamma_{1} \times \alpha$ is Lagrangian $\forall i$
but if we set $\eta=\pi_{1}{ }^{*} \rho \wedge \pi_{2}^{*} d \theta$ (where π_{i} are proj to $1^{\text {th }}$ and $2^{\text {add }}$ then $\omega+t \eta$ is symplectic for small t factors)
moreover T_{i} now symplectic!
note: We can perturb the T_{i} to be embedded and symplectic indeed $\Sigma \times T^{2}=(\Sigma \times \beta) \times \alpha$
and we can clearly c^{∞}-small perturb $\gamma_{1} \times\{\beta \cap \alpha\}$ in $\Sigma x \beta$ to be embedded: when crossing these curves with α we get a torus cos close to original T_{i} (still call T_{i}) since being symplectic an open condition the new τ_{1} still symplectic
exercise: normal bundles to all T_{i} trivial
Fact: in $E(1)=6 \rho^{2} \#_{q}\left(\bar{S}^{2} \exists\right.$ an embedded symplectic torus T with trivial normal bundle and $\pi_{1}(E(1)-T)=\{1\}$

$$
\text { now } \pi_{1}\left(\Sigma \times T^{2}\right)=\pi_{1}(\Sigma) \times \pi_{1}\left(T^{2}\right)
$$

(maybe prove later but well-known fact)

Van Kampen's $T h \underline{\underline{m}}$ says $\Sigma \times T^{2} \#_{T_{1}=T} E(1)$
has fundamental group $\pi_{1}(\Sigma) \oplus Z /\left\langle r_{1}\right\rangle$
(note: $\pi_{1}\left(\partial\left(\Sigma x \tau^{2}-\operatorname{nbh}\left(T_{2}\right)\right)=\mathbb{Z}^{3}\right.$ gen by α, γ_{1}, meridian)
so if we let $X=\Sigma_{x} T^{2}$ normall summed a copy of $E(1)$ for each T_{i} and an $E(1)$ for $\{x\} \times T^{2}$, we see $\pi_{1}(X) \cong G$ and X symplectiz! so we are done once we verity claim exercise: think about base point
Proof of Claim:
for homological reasons our original $\gamma_{1} \ldots \gamma_{k+e}$ in Σ_{k} might not have such a ρ so we start by modifying our surface we can assume γ_{1} intersect transversely so we get a graph $\Gamma \subset \Sigma_{k}$

now consider $T^{2}=\alpha_{\gamma} \beta$

for each edge e of Γ connect sum T^{2} as follows

add a curve γ parallel to β and a disk D about pt on γ
let Σ be $\tau_{h} \#$ all these tori and γ_{i} now be old γ_{i} (\# with γ in $T^{2 \prime}$) and the α and β from T_{s}^{2} clearly we still have $\pi_{1}(\Sigma) /\left\langle r_{i}\right\rangle \cong G$
but also each edge in new graph Γ has a segment in a T^{2} (on α, β or γ)
we now construct ρ
first note T^{2} has a closed $1-$ form λ that has positive integral on $\alpha, \beta_{1} \gamma$ and is O on D

let $\lambda=(g \circ f)^{*}$ do
now let ρ_{0} be the 1 -form on Σ that equals λ on all T^{2} and 0 elsewhere
note: $S_{e} \rho_{0}>0 \quad \forall$ edges in Γ
-forms on Stare ado so

thus for each γ_{i}, \exists a volume form θ_{i} sf. for each e in γ_{i}

$$
\int_{e} \theta_{i}=\int_{e} \rho_{0}
$$

so \exists functions f_{i} on γ_{i} st $d f_{1}=\theta_{1}-\rho_{0}$ and f is O at each vertex of Γ f_{i} define a function on Γ that extends to $F: \Sigma \rightarrow \mathbb{R}$ now $\rho=\rho_{0}+d F$ is the desired form

