## Section I: Constructions

A. Branched Covers

a map  $p: M \to N$  is a <u>branched</u> <u>cover</u> if  $\exists$  a submanifold  $B \in N$ such that  $p|_{(M-p^{-1}(B)) \to (N-B)}$  is a covering map

and

for each  $x \in p''(B)$  there are cooditionts about x and p(x) in which p has the form  $\mathbb{R}^{n-2} \times \mathbb{C} \to \mathbb{R}^{n-2} \times \mathbb{C}$  $(y, z) \longmapsto (y, z^k)$  some k

and B and p<sup>-1</sup>(B) are R<sup>n-2</sup>x{0} in these coordinants

 2) Given any manifold X, then pxid: Zg×X→S\*×X is a branched cover. eg T<sup>3</sup> is a branched cover of S<sup>2</sup>×S'

let  $p: M \rightarrow N$  be a branched cover of compact manifolds with compact branch locus B suppose i) N has a symplectic form  $\omega_N$ 2) B is a symplectic submanifold of  $(N, \omega_N)$ Then  $\exists a$  symplectic form  $\omega_M$  on M such that  $[\omega_m] = f^*[\omega_N] \in H^2(M; \mathbb{Z})$  and  $\omega_m = f^* \omega_N$  away from nbhd of  $p^- Y(B)$ Moreover,  $\omega_M$  is well-defined up to isotopy

**Proof**: 
$$f^*\omega_N$$
 is a closed 2-form and non-degenerate away from  $p^{-1}(B)$   
in particular, if  $K_x = \ker dp_x \in T_x M$  for  $x \in B$  then  $K_x$  is an  $\mathbb{R}^2$ -bundle  
and  $\omega$  is only degenerate on  $K_x$ 

if x is any exact 2-torm that is non-degenerate and positive on Kx Vxep" (B) then for & small enough f" W, + E x is symplectic to see such an  $\alpha$  exists, take a coordinate chart about  $x \in p^{-1}(B)$ and p(x) such that p has the form  $\mathbb{R}^{2^{n-2}} \times \mathbb{C} \to \mathbb{R}^{2^{n-2}} \times \mathbb{C}$  $(Y_1z) \longrightarrow (Y_2z^k)$ let  $\alpha_x = d(\phi_x(y) \psi_x(z) u dv)$  where  $\phi_x$  is a bump function on  $\mathbb{R}^{2n-2} = (neor \times 1)^{2n-2}$ C = 1 near x 11 4 " and z = u+ir extend x, by 0 off of support of \$x tx clearly x, has desired property on the support of  $\Phi_{x}$  ", now let a be the sum of ax as x ranges over a finite set of x e p (B) such that the supports of  $d_x$  cover  $p^{-1}(8)$ clearly we have necissary a. now wx is well-defined up to isotopy by Moser's The (Thm II.6) since the space of x us above is convex I We can use the longuage of branched covers to extend Eliashberg's higher

dumensional existence conjecture to 4D.

Conjecture: If M a manifold of dimension t with • a class  $h \in H^{2}(M)$  st. huh  $\pm 0$  and • a non-degenerate 2-form  $\omega_{0}$ Then  $\exists$  an embedded surface  $\Sigma \subset M$  such that •  $[\Sigma]$  is Poincaré dual to Nh for some large N • there is some branched cover  $p: \widetilde{M} \rightarrow M$ with branch locus  $\Sigma$ •  $\widetilde{M}$  admits a symplectic structure  $\omega$  s.t. •)  $p'(\Sigma)$  symplectic 2)  $p^{*}h = [\omega]$ •)  $\omega$  is homotopic to  $p^{*}\omega_{0}$  through 2-forms  $\omega_{t}$ that are non-degenerate off of  $p^{-1}(\Sigma)$ (maybe non-degenerate for  $t \pm 1$ )

Research Problem: Verify conjecture for #2n+1 CP for n>0. Verity conjecture for other almost symplectic 4-manifolds we will discuss later In dimension 4 we can weaken the notion of branched covers call p: M-> N a branched cover if for each point x CM we have coordinate charts about x and p(x) for which p has the form:  $C^2 \rightarrow C^2$  $(u,v) \mapsto (u,v)$  $(u, v) \mapsto (u^2, v)$ simple branch point  $(u, v) \mapsto (u^3 - uv, v)$ cusp <u>exercise:</u> 1) let R = { x ∈ M: dpx not maximal ranh } (for points with 2nd model map, this is just {u=0} " {v=3u2]) for ones with 3<sup>cd</sup> " show R is a smooth submanifold of M 2) B = p(R) does not have to be a smooth submanifold of N it has "cusp points" near these points B is locally modeled on {27 zi = 4 zi } CC2 3) for a generic p, B can also have isolated transverse double points 4) If N has a symplectic structure w, such that the coord. charts expressing p in model above pulls back the standard complex structure on C to one compatible with  $\omega_N$ Then M has a canonical (up to isotopy) symplectic structure agreeing with p\* w off of R. (M, w) is called a symplectic bronched cover over (N, w) (need to distinguish from 1st def" by context) Thm (Auroux): any compact symplectic 4-manifold (M,w) is a symplectic branched cover of (6P2, wFS)

<u>Remark</u>: We discuss a proof later.

Auroux has a way to construct invariants of  $(M, \omega)$  from this The (maybe discuss later)

B Symplectic Cuts and blowups

let 
$$(M, \omega)$$
 be a symplectic manifold  
suppose we have a Hamiltonian circle action on  $(M, \omega)$   
recall this means  $\exists H: M \Rightarrow R$  st the flow of its Hamiltonian  
wetter field  $X_{\mu}$  (recall  $(x_{\mu}, \omega = dH)$  generates an  $S^{1}$  action:  $S^{1} M \Rightarrow M$   
(recall flow targent to lood cets)  
let c be a regular value of H and assume the  $S^{1}$ -action on  $H^{1}(c)$  is free  
now consider  $\widehat{H}: M \times G \to R^{1}: (p, z) \mapsto H(p) - \frac{1}{2}|z|^{2}$   
biter(ise:  
 $u) \widehat{R}^{1}(c) = [H^{1}((c, a)) \times S^{1}] \cup H^{-1}(c)$   
 $u)$  H we give  $M \times G$  the symplectic structure  
 $(\omega + dx ady)$   
then the Hamiltonian vector field of  $\widehat{H}$  is  $X_{\mu} + y \widehat{S}_{\mu} = y \widehat{S}_{\mu}$   
Show the action is free and  
 $\widehat{H}^{1}(c)/_{S^{1}} = H^{1}(c, ab) \cup H^{-1}(c)_{S_{1}}$   
so thus is a smooth symplectic manifold (this is the same argument  
 $\alpha > w e did for GP^{n}$ )  
and  $H^{1}(c)/_{S^{1}}$  and  $H^{-1}(c) a(n \times (n, m))$  is a symplectic cubedding and  
 $\chi \longmapsto (\chi, (\overline{2}H(n)-c))$   
Hais is called the positive symplectic structure on  
 $H^{-1}(L^{1}, a^{n})) \stackrel{(s)}{S^{1}}$  action and  
this is the negative symplectic structure on  
 $H^{1}(L^{1}, a^{n}) \stackrel{(s)}{S^{1}}$  action on  $\partial$   
there is a similarly consider  $\widehat{H}: M \times C \to \mathbb{R}: (p, 2) \mapsto H(p) + \frac{1}{2} |z|^{2}$   
to get a symplectic structure on  
 $H^{1}(L^{1}, a^{n}) \stackrel{(s)}{S^{1}}$  action on  $\partial$   
this is the negative symplectic cut  
 $M \longrightarrow H^{1}(L^{n}, a^{n}) \stackrel{(s)}{I} \stackrel{(s)}{I} = H^{1}(L^{n}, c)/_{S^{1}}$  action on  $\partial$   
Hais is the negative symplectic cut  
 $M \longrightarrow H^{1}(L^{n}, a^{n}) \stackrel{(s)}{I} \stackrel{(s)}{I} \stackrel{(s)}{I} = to on  $H^{1}(L^{n}, c)/_{S^{1}}$  action on  $\partial$   
Hais is the negative symplectic cut  
 $M \longrightarrow H^{1}(L^{n}, a^{n}) \stackrel{(s)}{I} \stackrel{(s)}{I} \stackrel{(s)}{I} \stackrel{(s)}{I} \stackrel{(s)}{I} = to on  $\partial$   
 $H^{n}(s)$  is the negative symplectic cut  
 $M \longrightarrow H^{n}(L^{n}, a^{n}) \stackrel{(s)}{I} \stackrel{(s)}{I$$$ 

errercise:

4

ith notation as above note 
$$H^{-1}(C)$$
 is a principal S'-bundle (i.e.  $U(1)$ )  
SO  $H^{-1}(C)$  has a Chern class  $C_1(H^{-1}(C))$   
 $H^{-1}(C)_{S^1}$  is a co-dimension 2 submanifold of the positive cut  
So its normal bundle  $V_+$  has structure group  $U(1)$   
Show  $C_1(V_+) = C_1(H^{-1}(C))$   
Similarly  $H^{-1}(C)_{S^1}$  has normal bundle  $V_-$  in the negative cut  
Show  $C_1(V_-) = -C_1(H^{-1}(C))$ 

example:

Consider 
$$M = C^{n}$$
 and  $H(x) = -\frac{1}{6} \|x\|^{2}$   
let  $N$  be the negative symplectic cut at  $c = -\frac{1}{2}$  (so  $\|x\| = 1$ )  
*A.e.*  $N = H^{-1}([0, 0])/s^{1}$  action on  $H^{-1}(1) = \frac{D^{2n}}{s^{2}}$  be action on  $\partial$   
*note:*  $\partial B^{2n}/s^{1} = GP^{n-1}$  (by definition!)  
*exercise:*  $N = CP^{n}$  (we see  $CP^{n} - CP^{n-1} = wit B^{2n} - C^{n}$  symplectially)  
*note:* Cutting at other  $c$  still give  $GP^{n}$  but with scaled  $\omega$ .  
*Now let*  $N'$  be the positive symplectic cut  
*so*  $N' = \frac{C^{n-1}wt B^{2n}}{s^{1}}$  action on  $\partial$   
topologically we have a diffeomorphism  $C^{n-1}_{-1}(x) \rightarrow C^{n-1}_{-1}(x)$   
 $Z \longrightarrow U^{1}_{-2} = \frac{C^{n-1}wt B^{2n}}{s^{2}} = \frac{CP^{n}}{s} = \frac{1}{s}$   
*two is orientotion reversing so we see*  
 $N \cong -CP^{n} - \frac{1}{s}Pt_{s}^{2}$   
and there is a symplectic structure on it!  
*let*  $(M, \omega)$  be any symplectic manifold  
and  $U \subset M$  be a Darboux chart symplectomorphic to an open ball in  $C^{n}$   
we can perform the above construction on a ball in U to get a  
symplectic structure on  $M # (-CP^{n})$  this is called the

symplectic blowup of M

Remark:

- 1) a standard abuse of notation is to write this M # CP" even though conjugating the complex structure does not always reverse the orientation
- 2) The smooth type of the blowup is well-defined, but the actual symplectic structure depends on the size of the ball used

67

· Cp<sup>n-1</sup>

note: Suppose we have a bunch of 2-dimensional symplectic submanifolds of M intersecting in a point p st J Darboux chart about p st. surfaces go to complex lines in C<sup>n</sup> Darboux chart

> when we blow up we take a ball  $B^{un} \subset C^n$ the submanifolds all  $\Lambda \supset B^{un}$  in 5' orbits so in the blow up these become s, disjoint points in  $CP^{n-i}$ re. S, disjoint in  $M \# \overline{CP}^n$

(at least p removed form intersection)

Now given a symplectic manifold  $(M^{2n}, \omega)$ if there is an embedding of  $(CP^{n-1}, \lambda \omega_{FS})$  in  $(M^{2n}, \omega)$ such that the normal bundle has Euler number -1 then  $CP^{n-1}$  has a neighborhood symplectomorphic to the  $CP^{n-1}$  in the positive symplectic cut above (Cor III.4) thus  $M^{2n} - CP^{n-1}$  has a proper embedding of  $m^2 B_{C+E}^{2n} - m + B_{C}^{2n}$ so we can give in  $(m^2 B_{C+E}^{2n}, \omega_{stal})$  to get a new symplectic manifold  $(M_1^{1}, \omega^{1})$  called the symplectic blow down of  $CP^{n-1}$  in M.

## C. Normal Sums

Here is an interesting topological construction  
let f<sub>i</sub>, f<sub>i</sub>: 
$$N^{h} \rightarrow M^{n}$$
 be 2 embeddings with disjoint images  
let  $V_{i}$  be the normal bundle of  $f_{i}(N)$   
this is an  $\mathbb{R}^{n-h}$ -bundle over  $N$   
suppose there is an orientation reversing bundle map  
 $\Psi: V_{i} \rightarrow V_{i}$  bundle isomorphism  
so there are ablas  $N_{i}$  of  $f_{i}(N)$  diffeo to disk bundles in  $V_{i}$   
enercise: Show  $\Psi$  induces an orientation reversing diffeomorphism  
from  $\partial N_{i}$  to  $\partial N_{i}$  (still call it  $\Psi$ )  
let  $\#_{N}M = M - (N_{i} NN_{i})/_{N_{i}}$   
this is called the normal sum of  $M$  along  $f_{i}(N)$  and  $f_{2}(N)$   
if  $M = M_{i} UM_{i}$  and  $f_{i}(N) CM_{i}$  then we write  $M_{i} \#_{N} M_{i}$   
note: If  $N = \{pt\}$ , then  $M_{i} \#_{N}M_{i} = M_{i} \#M_{i}$  the ordinary connect sum !  
so  $M_{i} \#_{N}M_{i}$  in general is like an  $N$ -parametric connect sum  
erercise: If  $f_{i}: N^{n-2} \rightarrow M^{n}$  are 2 embeddings  
then  $V_{i}$  orientation reversing diffeomorphic to  $V_{i}$   
 $\stackrel{\bigoplus}{H} C_{i}(V_{i}) = -C_{i}(V_{i})$ 

Suppose 
$$f_i: (N, \omega_N) \hookrightarrow (M, \omega_M), 1=1, 2$$
, are codimension 2 symplectic  
embeddings with disjoint images  
Assume  $c_i(v_i) = -c_i(v_2)$   
For any choice of orientation reversing bundle isomorphism  
 $\Psi: v_i \longrightarrow v_2$  the normal sum  $\#_N M$  has a symplectic  
structure  $\omega$  such that outside of the gluing locus  
 $\omega$  agrees with  $\omega_M$ 

enercise: Prove this if 
$$v_{i}$$
 trivial  
Why does this only work for codimension 2?  
Hint:  $S^{n}$  admits symplectic structure  $\Leftrightarrow n=2$   
the proof is another application of symplectic cuts  
let  $S' \rightarrow P$   
 $Iet \qquad s' \rightarrow P$ 

given  $x \in P$  we get a map  $T_x: (-\varepsilon, \varepsilon) \rightarrow P: t \mapsto x \cdot e^{it}$ let  $R(x) = r_x'(o)$  this is a vector at xand R is a vector field on P<u>note:</u> flow of R is the S-action!

**Chercise:**  
i) 
$$\exists a \vdash form u \text{ on } P$$
 such that  $u(R) = 1$   
 $d_R u = 0$   
is called a connection  $\vdash form$   
2)  $d_R dx = 0$  and  $L_R dx = 0$  Hint: Check  $2^{ad}$  formula on R and  
kerd  
show this implies  $\exists w \in S^2(M)$   
Such that  $\pi^* w = du$   
 $winde case of Chern-
 $ueil$   
3) show  $-\sum_{i=1}^{N} z_{i=1}^{i=1}$  is in  $H^2(M;Z)$  and  $e(P) = -\sum_{i=1}^{N} z_{i=1}^{i=1}$   
Euler class  
now suppose  $w$  is a symplectic form on  $M^{2n}$   
And consider  
 $R \times P$  and  $w_p = \pi^* w + d(rw) = \pi^* w + draw + rdw$   
 $note: w_p^{n+1} = (n+1) draw A(\pi^*w)^n + r (other terms)$$ 

let 
$$v_1 \dots v_{2n}$$
 be linearly independent in here at some pt  $x$   
clearly  
 $(T^*\omega)^n (v_{1} \dots v_{2n}) = \omega(T_n v_{1} \dots T_n v_{2n}) \neq 0$   
So  
 $draw A(T^*\omega)^n (\frac{2}{2}r, R_1 v_{1} \dots v_{2n}) \neq 0$   
 $\therefore$  for  $r$  sufficiently small (say  $r \in (-\xi, \xi)$ )  
 $(\omega_p)^{n+1} (\frac{2}{2}r, R_1 v_{1} \dots v_{2n}) \neq 0$   
 $\therefore \omega_p$  non-degenerate !  
 $z_{\xi} \in symplectic form on (-\xi, \xi) \times P$   
let  $H: (v_1, v_1) \to R$  be projection  
so  $dH = dr$  and so the Hamiltonian vector field is  $X_{\mu} = -R$   
generates (minus)  $S' = action$ 

Now 
$$H(0) = P$$
  
So  $H^{-1}(0)/_{S^{1}} \equiv M$  and induced form is  $\omega$   
and positive symplectic cut of  $R \times P$  at 0 is an  $R^{2}$ -bundle over  $M$   
with a symplectic structure and "Euler class"  $e(P)$   
moreover,  $(M, \omega)$  embeds as "zero section"  
similarly negative cut of  $R \times P$  at 0 is an  $R^{2}$ -bundle over  $M$   
with a symplectic structure and "Euler class"  $-e(P)$   
moreover,  $(M, \omega)$  embeds as "zero section"

Proof of Thm2:

given the embeddings  $f_i: (N, \omega_N) \rightarrow (M, \omega_M)$  from theorem let  $V_i$  be their normal bundles and P be unit S<sup>1</sup>-bundle in  $V_2$ let  $\omega_p = \pi^* \omega_N + d(r_N)$  on  $(-\varepsilon, \varepsilon) \times P$  as above let  $C_{\pm 1} = \pm \text{ symplectic cut of } (-\varepsilon, \varepsilon) \times P$  at 0. and  $Z_{\pm 1}$  the embedding of  $(N, \omega_N)$  in  $C_{\pm 1}$  from (or II. 4  $f_{1}(N)$  has a neighborhood  $U_{\pm 1}$  symplectomorphic to a nbhd of  $Z_{\pm 0}^{i}$  in  $C_{(\pm 1)}^{i}$ by shrinhing  $\varepsilon$  can assume  $C_{(\pm 1)}^{i}$  is symplectomorphic to nbhd  $U_{(\pm 1)}^{i}$  of  $f_{1}(N)$ <u>note</u>:  $U_{(\pm 1)}^{i} - f_{2}(N)$  symplectomorphic to  $(0, \varepsilon) \times P$  $U_{(\pm 1)}^{i} - f_{1}(N)$   $\cdots$   $(-\varepsilon, 0) \times P$ So we can glue  $M - (f_{1}(N) \cup f_{2}(N))$  and  $(-\varepsilon, \varepsilon) \times P$ to get a symplectic str on  $\#_{N}^{i}M$  $f_{1}(N)$ M N M M

Cor3 (Compf):

let 6 be any finitely presented group Then there is a closed symplectic 2n-manifold (nz2) M with Ti(M) = 6

<u>Remark</u>: There are strong restrictions on the fundamental groups of Kähler manifolds, eg we already saw b<sub>1</sub> must be even So this result shows there are <u>many</u> more symplectic manifolds than Kähler.

Proof: We construct a symplectic 4-manifold M then M×5<sup>2</sup>×...×5<sup>2</sup> will realite G in any dimension 2n, nzz. let G = {g<sub>1</sub>...g<sub>k</sub> | r<sub>1</sub>...r<sub>2</sub>} let Σ be a surface of genus k

and & ... & B. ... B. be standard generators of  $H_i(\Sigma_n)$ **«**、 de do <u>note:</u>  $\pi(\mathcal{I}_{k})/\{\beta_{1}...,\beta_{k}\}$  is the free group generated by  $\varkappa_{1}...,\varkappa_{k}$ ( connected to common base pt !) let & be an immersed curve in Zk realizing ri in above quotient (where d; are substituted for g; in r;) also let  $V_{l+1} = \beta_i$  for  $1 = 1 \dots k$ so m. (In)/ ≥ G <u>Claim</u>: We can find a surface E and curves of .... on such that TI, (E)/(E,... Em) = G and 3 closed 1-form pon E that restricts to a volume form on each Vi assuming this for now we build our manifold start with ZXT2 with a product symplectic form w let x, ß be curves in T2 = XXB let the angular coord on a R so do closed 1-form on T<sup>2</sup> <u>note</u>:  $T_i = \delta_i \times \alpha$  is Lagrangian  $\forall i$ but it we set  $\gamma = \pi_1 * \rho \wedge \pi_2 * d + (where \pi_are proj to 1st and 2 * d + and 3 * d + an$ factors) then w+ ty is symplectic for small t moreover Ti now symplectic!

<u>note</u>: We can perturb the  $T_i$  to be embedded and symplectic indeed  $\Sigma \times T^2 = (\Sigma \times \beta) \times \alpha$ 

> and we can clearly  $C^{\infty}$ -small perturb  $\delta_{\eta} \times \{\beta \land \alpha\}$  in  $\Sigma \times \beta$ to be embedded : when crossing these curves with  $\alpha$  we get a torus  $C^{\infty}$  close to original  $T_i$  (still call  $T_i$ ) since being symplectric an open condition the new  $T_{\eta}$ still symplectric

exercise: normal bundles to all T; trivial Fact: in E(1) = GP2 # GP2 ] an embedded symplectic torus T with trivial normal bundle and  $\pi_i(E(i)-T) = \{i\}$ now  $\pi_i(\mathbb{Z} \times T^2) = \pi_i(\mathbb{Z}) \times \pi_i(T^2)$   $\int gen by \alpha_i \beta$ (maybe prove later but well-known fact) Van Kampen's Th<sup>m</sup> says IXT<sup>2</sup># E(1) \_ P has fundamental group TT, (I) & Z/(r,)  $(note: T_{i}(\partial(\mathbb{Z}\times T^{2}-nbhd(T_{i}))=\mathbb{Z}^{3}$  gen by  $\alpha, \delta_{i}, meridian)$ so if we let X = ZxT<sup>2</sup> normall summed a copy of E(1) for each Ti and an E(1) for  $\{x\} \times T^2$ , we see  $T_{i,i}(x) \equiv G$  and X symplectic! so we are done once we verify claim <u>exercise</u>: think about base point Proof of Claim: for homological reasons our original Ji... JK+R in ZR might not have such a p so we stort by modifying our surface we can assume of intersect transversely so we get a graph FCZk add a curve of now consider T<sup>2</sup>=dxp parallel to p and a disk D about pt on 8 for each edge c of r connect sum T<sup>2</sup> as follows e = e let I be The # all these tori and I now be old Si (# with Y in T''s) and the & and & from T's clearly we still have  $\pi_{i}(\Sigma)/\langle x_{i} \rangle \cong G$ 

but also each edge in new graph 
$$\Gamma$$
 has a segment in a  $T^2$   
(on  $\alpha$ ,  $\beta$  or  $\delta$ )

we now construct p

first note T<sup>2</sup> has a closed 1-form  $\lambda$  that has positive integral on «.p. 8 and is 0 on D



let 
$$\lambda = (g \circ f)^{k} d\Theta$$
  
now let  $p_{0}$  be the 1-form on  $\Sigma$  that equals  $\lambda$  on  
all  $T^{2}$  and 0 elsewhere

t forms on S'are gdo so

thus for each 
$$V_i$$
,  $\exists$  a volume form  $\Theta_i$  s.t. for each  $e$  in  $V_i$   
 $\int_e \Theta_i = \int_e \rho_0$   
so  $\exists$  functions  $f_i$  on  $V_i$  s.t.  $df_i = \Theta_i - \rho_0$  and  $f$   
is  $O$  at each vertex of  $\Gamma$   
 $f_i$  define a function on  $\Gamma$  that extends to  $F: \mathbb{Z} \to \mathbb{R}$   
now  $\rho = \rho_0 + dF$  is the desired form