III Almost Complex Geometry

A. Donaldson's Results

The first result we would like to prove is Th=1(Donaldson):

> If (M,ω) is a closed symplectic manifold with ±= [ω] ∈ H²(M;z)
> then for large k, there is a codimension 2
> symplectic submanifold Σ st. [Σ]= Poincaré dual of ±=[ω]
> Moreover, M-Σ is a Weinstein manifold

<u>Remarks</u>: This theorem gives a good way to try and see if a given manifold is symplectic or not.

More specifically, the says any symplectic zn-manifold breaks into 2 pieces:

a symplectic D² - bundle over a (2n-2) - manifold
 a Weinstein manifold

<u>non-existence</u>: eg. Does GP² have an exotic smooth structure that supports a symplectic structure ("Symplectic Poincaré conjecture") If X homeomorphic to GP² and X admits a symplectic structure w, then X = A UB where A = D²-bundle over a surface and B = Weinstein manifold <u>note</u>: 1) DA concave = DB convex 2) topology of B (eg. homology) is somewhat determined by genus of A and GP²

does S'-bundle
$$\partial A$$
 with given context structure
have an appropriate Vensien filling?
eg if A is D'-bundle are a surface Z st. [Z] generator
then one can use fact that $g(\omega) = t_3$ of $H_1(GP)$
to see $Z \equiv S^{\alpha}$ (use "adjunction formula") with T
in this case $\partial A = S^3$ and unique choice for B
so $\chi = SP^{\alpha}$
similarly if $(Z] = 2 \in H_2(GP)$ then $\partial A = L(P_1) = \frac{Leus}{2000}$
and only Z choices for B and only one
McOutf has right homology so $\chi \equiv GP^2$
what about for other Z?
ORISTENCE: (an you inductively prove 2n-manifold
with almost symple crizi structure has
symple crizi structure?
The (Pancheli):
If χ^{α} a manifold of dimension $= 4$
 $\propto \in H^{2}(\chi; Z)$
then \exists an oriented submanifold M^{n-2}
st. i) $[M] = Poincaré Dual of M Z $\chi - M$ admits a Morse function
with no critical points
 $> \frac{M^{2n}}{Z}$$

so if X²ⁿ is a manifold with a non-degenerate 2 form w_o and a class h∈ H²(X) s.t. hⁿ ≠0 then th^m above gives M Poincaré dual to h s.t. X-M hos handles of index = M

<u>The Z (Donaldson)</u>: (M, ω) a symplectic manifold Suppose [ω] ∈ H²_{DR}(M) is an integral class For sufficiently large integers K there is a topological Lefschets pencil on M whose fibers are symplectz and homologous to the Poincaré dual of k[ω]

<u>Remark</u>: In Sections I E-F we already discussed using this theorem to study symplectic manifolds Thm 3 (Auroux):

any compact symplectic 4-manifold (M, ω) is a symplectic branched cover of (GP^2, ω_{FS})

All these theorems are proven by finding sections of line bundles, so we begin by studying complex line bundles. More specifically, given a line bundle $C \rightarrow L$ \int_{M}^{N}

> if o: M→L a section that is transverse to the Bero section Z, then of (Z) is a codimension 2 submanifold of M!

so to prove Th^m1 we just need to find the right line bundle and the right section similarly we will see for Th^m2 we just need to find 2 sections and for Th^m3, 3 sections

B Complex line bundles

We consider complex line bundles over a monifold $C \rightarrow L$ $L \rightarrow L$

from Section II. D we know that it $\{U_{\alpha}\}$ an open cover of M such that \exists bundle isomorphisms $\pi^{-1}(U_{\alpha}) \xrightarrow{\Psi_{\alpha}} U_{\alpha} \times C$ $\pi^{-1}(U_{\alpha}) \xrightarrow{\Psi_{\alpha}} U_{\alpha} \times C$ then we have

$$\begin{split} \varphi_{k} \circ \varphi_{k}^{-1} : (U_{n}U_{k}) \times \mathcal{C} \rightarrow (U_{k} \wedge U_{k}) \times \mathcal{C} \\ (X, \nabla) \longmapsto (X, g_{k} \varphi_{k}(X) \nabla) \end{split}$$
where $g_{k} : U_{k} \wedge U_{k} \rightarrow \mathbb{C}^{*} = \mathbb{C} \cdot \{0\}$ are the transition
functions and they satisfy
 $g_{kk}(X) = 1$
 $g_{kk} = g_{kk}^{-1}$
 $g_{kk} = g_{kk}^{-1}$
 $g_{kk} \circ g_{kk}^{-1} = 1$
 $g_{kk} \circ g_{kk} \circ g_{kk}^{-1} = 1$
 $g_{kk} \circ g_{kk} \circ g_{k$

iff their trasistion functions are related by 🛞

now given Z line bundles L and L' given by transition functions {gap} and {gap} (note we can always assume cover {up} some for both L and L')

we define their <u>tensor product</u> $L\otimes L'$ to be the bundle with transition functions $\{g_{\alpha\beta}, g_{\alpha\beta}\}$ we also define the <u>inverse</u> of L, denoted L', to be the bundle associated to $\{g_{\alpha\beta}^{-'}\}$

<u>exercise</u>: the set Line(M) of isomorphism classes of complex line bundles is an abelian group with respect to the openation 8.

example: Consider CP'

$$\begin{split} & \mathcal{L}^{p'} = \mathbb{C} \cup \{ \mathcal{O} \} & \text{set } \mathcal{U}_{x} = \mathbb{C} \quad \text{and } \mathcal{U}_{p} = \mathcal{L}^{p'} - \{ \mathcal{O} \} \\ & \text{the map } \mathcal{G}_{\mathcal{B}\mathcal{R}}^{n} : \mathcal{U}_{q} \cap \mathcal{U}_{p} \to \mathbb{C}^{*} : \mathbb{Z} \longmapsto \mathbb{Z}^{n} \\ & \text{defines a line bundle } \mathbb{L}^{n} \\ & \text{let } \mathbb{L} = \mathbb{L}' \text{ note } \mathbb{L}^{n} = \mathbb{L} \otimes \mathbb{L} \dots \otimes \mathbb{L} = \mathbb{L}^{\otimes n} \\ & \text{n times} \end{split}$$

<u>exerus</u>e: Line(CP') ≅ Z

note: If
$$L \rightarrow M$$
 has local trivializations $\{ \frac{1}{4} : \pi^{-1}(U_{a}) \rightarrow U_{a} \times C \}$
with transition maps $\{ \frac{1}{4k} \}$ then a section $s : M \rightarrow L$
gives functions $U_{a} \xrightarrow{s} \pi^{-1}(U_{a}) \xrightarrow{\varphi_{a}} U_{a} \times C \xrightarrow{r} C$ and the
 $\{ \frac{1}{5} \\ \frac{1}{5}$

moreover any collection of functions
$$S_A: U_A \to C$$
 satisfying
this relation gives a section
re. "Sections are twisted functions on M "
in particular, if $S, t: M \to L$ are 2 sections then
if $s \neq 0$, $t_S: M \to C$ is a function.

We now want to talk about differentiating sections of a line
bundle, for this we introduce connections

a connection on a line bundle
$$L$$
 over M is a linear map
 $\nabla: \Gamma(L) \to \Gamma(T^*M \otimes L)$
satisfying $\nabla(f \otimes s) = df \otimes s + f \nabla s \quad \forall f \in C^{\infty}(M), s \in \Gamma(L)$
so given $v \in \mathcal{H}(M)$ we write $\nabla_v: \Gamma(L) \to \Gamma(L) : s \mapsto (\nabla s)^{(n)}$
and think of this as a directional derivative

example: if $L = M \times C$ so $\Gamma(L) = C^{\infty}(M)$ then for any $\beta \in \Omega^{L}(M)$
 $\Gamma(L) \to \Gamma(T^*M \otimes L) = \Gamma(T^*M)$
 $f \longmapsto df + f \beta$
is a connection (later we will see this is all connections
on $M \times C$)

Proof: if
$$s = 0$$
 near x, then let f be a bump function
st. $f = 1$ outside support of s an $= 0$ near x.
then $\nabla s(x) = (\nabla f s)(x) = (df \otimes s + f \nabla s)(x) = 0$
 $\therefore if s = t$ in a normal of x , then $\nabla s(x) = \nabla t(x)$

note: lemma
$$\Rightarrow$$
 given any connection ∇ on L and open set UCM
 $\exists !$ connection ∇' on $L|_U$ st. $(\nabla s)|_U = \nabla_u(s|_U)$
and ∇ is determined by its restrictions to open sets

Proof: to construct a connection let
$$\{t_{x}: U_{x} \to M\}$$
 be a
collection of local trivializations
let $s_{1}: U_{x} \to L$ be local trames (i.e. non zero sections)
now given any section $s: M \to L$ note that
 $f_{a} = s_{l}s_{x}: U_{x} \to C$ are functions and
 $s = t_{x}s_{x}$ on U_{x}
let $\{t_{y}\}$ be a partition of unity subordinate to $\{U_{x}\}$
set $\nabla s = \sum_{x} \Psi_{x}(df_{x} \otimes s_{x})$
enercise: Check this is a connection.
now if \mathcal{P}° and \mathcal{P} are two connections on L
then note $(\nabla - \nabla^{\circ})(f_{s}) = f(\mathcal{P} - \mathcal{P}^{\circ})s$
for any $f \in (\mathcal{O}(M)$ and $s \in \mathcal{P}(L)$
enercise: Show this $\Rightarrow (\nabla - \mathcal{P}^{\circ})(s)(x)$ only depends on $s(x)$
and this $\Rightarrow \exists a l form & g st. (\nabla - \mathcal{P}^{\circ})s = g \otimes s$

now
$$if S: U_{x} \rightarrow L$$
 is a local non zero section
then $\nabla s \in \Gamma(T^{*}M \otimes L)$
enercise: $\exists I - form A_{x} \in \mathcal{L}^{1}(U_{x}) st. \nabla s = A_{x} \otimes s$
 $(1 \in A_{x} = \nabla s'_{x})$
so for any $t: U_{x} \rightarrow L$, there is some function
 $f: U_{x} \rightarrow C$ st $t = fs$ so
 $\nabla t = \nabla fs = df \otimes s + fA_{x} \otimes s$
 \therefore in the frame s , the connection is $(d + A_{x})$
if $s': U_{x} \rightarrow L$ is another nonzero section then \exists non-zero
 $f: U_{x} \rightarrow G$ st. $s' = fs$
if in the frame s we have $\nabla = d + A_{x}$ and
 \therefore $s' = S' = \nabla fs = df \otimes s + f\nabla s$
 $= df \otimes \sharp s' + fA_{x} \otimes \ddagger s' = (\ddagger df + A_{x}) \otimes s'$
 $\therefore A_{x}' = A_{x}' + \ddagger df$
note this is different so closed
so given a cover of M by local trividitations
 $\{ d_{x}: T^{-1}U_{x}\} \rightarrow U_{x} \times C \}$

let S_{α} be the section $U_{\alpha} \rightarrow L$ given by $\phi_{\alpha}^{-1}(1)$ is section when a connection ∇ gives $A_{\alpha} \in \mathcal{SL}^{1}(U_{\alpha})$ st. $\nabla S_{\alpha} = A_{\alpha} \otimes S_{\alpha}$ and they are related by

A = A + Jus on Ux nUg

also the {A_{d}} determine
$$\nabla$$

moreover any collection of 1-forms { $A_{d} \in \mathfrak{sl}(\mathcal{U}_{d})$ }
satisfying (*) gives a connection on L .
now given ∇ on L , let {A_{d}} be the associated 1-forms
note: $dA_{d} = dA_{\beta}$ on $\mathcal{U}_{d} \cap \mathcal{U}_{\beta}$
so dA_{d} give a global closed 2-form $F_{\nabla} \in \mathfrak{sl}^{2}(M)$!
 F_{∇} is called the curvature of ∇
given $\nabla: \Gamma(L) \rightarrow \Gamma(T^{*}M \otimes L)$ we can extend ∇ to
 $\nabla: \Gamma(\Lambda^{k}T^{*}M \otimes L) \rightarrow \Gamma(\Lambda^{k+1}T^{*}M \otimes L)$
by defining $\nabla(\beta \otimes S) = d\beta \otimes S + (1)^{k} \beta \wedge \nabla S$
[curva 6:
1) $\nabla^{2}: \Gamma(L) \rightarrow \Gamma(\Lambda^{2}T^{*}M \otimes L)$ is tensor with F_{∇}
2) $F_{\nabla A} = F_{\nabla} + dd$ (recell any other connection on L
is $\nabla H \times some \times (\mathfrak{sl}(A))$

Proof:

1) In a local chart with non-zero sections

$$\nabla s = A \otimes s$$

and for any section $t = fs$ we have
 $\nabla^2 t = \nabla(df \otimes s + fA \otimes s)$
 $= d(af) \otimes s - dfA \nabla s + d(fA) \otimes s - fA \wedge \nabla s$
 $= -df \wedge A \otimes s + (dfAA + fdA) \otimes s + fA \wedge A \otimes s$
 $= dA \otimes fs = dA \otimes t$
2) locally $F_{\nabla} = dA$ and since for ∇tA the associated therm
is $A + \alpha$ we see $F_{A+\alpha} = d(A+\alpha) = F_A + d\alpha$

$$\frac{The 7(chern-Weil)}{|et L be a Hermitian line bundle over M witha Hermitian connection ∇
$$|et S: M \rightarrow L be a section transverse to thezero section Z
$$set S = s^{-1}(Z)$$
$$Then \qquad C_1(L) = Poincaré dual [5]and for any 2-cycle C transverse to S
$$S \cdot C = \frac{i}{2TT} \int_C F_{\nabla} = \langle C_1(L), C \rangle$$$$$$$$

Proof:
for the first part recall G for complex line bundles
over a surface Z
given L over Z, let
$$\Sigma = \Sigma' \cup D^2$$

we can take the structure group of L
to be $U(1) = S'$ (All complex bundles have thermitian
 $L|_{\Sigma'} = \Sigma' \times C$
when we attach the 2-cell D^2 to Σ we must
glue $\partial \Sigma' \times C \rightarrow \partial D' \times C$
by an element n of $T_i(U(1)) = Z$
this element is precisely $C_i(L)$ evaluated on
 D^2 , which can be taken to be the generator
of the chain group $C_2(\Sigma) = Z$
so $\langle C_i(L), [\Sigma] \rangle = n$
the above gluing map can be taken to be

$$S_{i}^{i} \times L \longrightarrow S_{i}^{i} \times L$$

$$(e^{i0}, v) \longmapsto (e^{i0}, e^{in0}v)$$
so if we take the section $s: \Sigma' \rightarrow L_{i} = \Sigma' \times L$

$$x \longmapsto int, D$$
then on $\Im D^{2}$ we have the section
$$\Im D^{2} = S^{i} \rightarrow S' \times L \equiv D^{2} \times L$$

$$e^{i0} \longmapsto (e^{i0}, e^{in0})$$
We can extend 5 oven D^{2} by $2 \longmapsto (2, 3^{n})$

$$\underbrace{Oreccese}_{i} \text{ Show S can be perturbed to be transverse}_{i0} \text{ to the } 2vo Section and intersect it n times}_{i0}$$
into the sign.
$$(\zeta_{i}(L), [\Sigma]) = \# S^{-i}(0)$$
now for a general $\stackrel{L}{\downarrow}$ if $\Sigma \subset M$ a surface let
$$i: \Sigma \rightarrow M \text{ be inclusion, then}_{i} \langle \zeta_{i}(L), [\Sigma] \rangle = \langle z_{i}(1^{n}L), [\Sigma] \rangle$$

$$= wherection \# n of a generic section
but if $signs a generic section of $t^{n}L$
and $n = \Sigma \cdot S^{-i}(2)$
so $\langle \zeta_{i}(L), [\Sigma] \rangle = \Sigma \cdot S^{-i}(2)$
i.e. $[S^{-i}(Z)]$ is fourcaré dual to $\zeta_{i}(L)$$$$

for the second part let
$$M_{\varepsilon} = \{x \in M: |s(x)| \ge \varepsilon\}$$

and
$$C_{\xi} = M_{\xi} \wedge C$$

on M_{ξ} we have $\frac{PS}{S}$ is a well-defined complex valued (-form
and $d\left(\frac{PS}{S}\right) = F_{\varphi}$

$$50 \quad \int_{C} F_{P} = \lim_{\epsilon \to 0} \int_{C_{\epsilon}} F_{P} = \lim_{\epsilon \to 0} \int_{C_{\epsilon}} \frac{d(\frac{Ps}{s})}{\epsilon} = \lim_{\epsilon \to 0} \int_{C_{\epsilon}} \frac{\nabla s}{s}$$

$$\frac{exercise}{s} we can choose coordinates on abud U so that s= z s or s= z s cordinates on abud U so that s= z s or s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on abud U so that s= z s cordinates on s = z s cordinates on abud U so that s= z s cordinates on s = z s cordinates on abud U so that s= z s cordinates on s = z s cordinates on abud U so that s= z s cordinates on s = z s cordinates on abud U so that s= z s cordinates on s = z s cordinates o = z s cordinates o = z$$

now
$$\nabla S = d2 \otimes_{S_{d}} + 2A_{d} \otimes_{S_{d}}$$
 or $\nabla S = d\overline{2} \otimes_{S_{d}} + \overline{2}A_{d} \otimes_{S_{d}}$
and $\overline{P}_{S}^{s} = \frac{1}{2}d\overline{2} + A_{d}$ or $\overline{P}_{S}^{s} = \frac{1}{2}d\overline{2} + A_{d}$
we facus on this one
 $\overline{2} = re^{1\Theta}$ so $d\overline{2} = e^{1\Theta}dr + rie^{1\Theta}d\Theta$
and $\frac{1}{2}d\overline{2} = \frac{1}{r}dr + id\Theta$
 $= d(\ln r) + id\Theta$
since A_{d} is a well-defined l -torum on U , we see
 $\lim_{E \to 0} \int_{\partial \zeta_{e} \cap U} A_{d} = 0$
 $\therefore \lim_{E \to 0} \int_{\partial \zeta_{e} \cap U} A_{d} = 0$
 $\therefore \lim_{E \to 0} \int_{\partial \zeta_{e} \cap U} d(\ln r) + id\Theta = \lim_{E \to 0} \int_{\partial \zeta_{e} \cap U} d(\ln r) + id\Theta = \lim_{E \to 0} \int_{\partial \zeta_{e} \cap U} d\Theta$
 $= \lim_{E \to 0} -i2\overline{2\pi} = -i2\overline{2\pi}$
note as $\partial \zeta_{e}$ or $\frac{1}{2}$ is apposite as $\overline{2}$ disk

so for each positive intersection point of

$$C \land S we get a contribution of -i2\pi$$

to $\int_{C} F_{P}$
similarly for each negative intersection we get $i2\pi$
 $\therefore C \land S = \frac{i}{2\pi} \int_{C} F_{P}$
 $H =$
 $T_{I} = \frac{1}{2\pi} S = F_{P}$
 $F_{P} = F_{P}$
Given any 2-form ω such that $S \omega J \in H^{2}(M; Z)$
there is a complex line bundle $L \rightarrow M$ and
a Hermitian connection P on L such that
 $2\frac{i}{\pi}F_{P} = \omega$

1e.
$$C_{1}(L) = [\omega]$$

Proof: We give 2 proofs
1st Proof: enercise: Given $h \in H^{2}(M;\mathbb{Z})$, \exists codim 2-submanifold Ξ
such that $[\Sigma]$: Poincoré Dual to $h \in H_{n-2}(M)$
Huit: $H^{2}(M;\mathbb{Z}) \cong [M:\mathbb{C}P^{\infty}]$ homotopy classes of maps
Bran representation to M
tuke $f: M \to \mathbb{C}P^{\infty}$ representing h
can homotop f so un $f \subset \mathbb{C}P^{\lceil N_{2} \rceil}$ $\&$ f the $f^{\lceil N_{2} \rceil - 1}$
let $\Xi = f^{-1}(\mathbb{C}P^{\lceil N_{1} \rceil - 1})$
now a nobled N of Σ in M is a D^{2} -bundle over Σ and we
can asserve structure group $U^{(1)}$, ze . \exists a G -bundle

E LT such that $N = \{ v \in E : ||v|| \le 1 \}$ E let T = TIN and set F= T * E this is a complex line bundle over N

let S:
$$N \rightarrow F: \pi \mapsto (0, \pi)$$

note: S is a section of F and it we restrict s to any
fiber $\overline{W}^{-1}(\pi) = D^{2}$ of N we get the section $2\mapsto (2,2)$
 $\pi e = 5 \neq 0 \text{ on } \partial N$, s $\overline{\Pi}$ zero section, and $\overline{\Sigma} = 5^{-1}(2\pi n \operatorname{section})$
SO S trivializes $Fl_{\partial N} \cong \partial N \times C$
now give $A \times C$ to F olong $\partial A \times C \cong \partial N \times C$
to get the complex line bundle $C \rightarrow C$
and s extends to all of to be
non-zero on A
 \therefore S $\overline{\Pi}$ geno section and
 $[5^{-1}(2\pi n \operatorname{section})] = [\overline{L}] = low \operatorname{core} Duol[w]$
from $Th = 7$ we have $c_{1}(L) = [w]$
 $2^{\frac{2}{2}} \frac{P_{DO}f:}{1}$
let full be an open cover of M such that V_{A} and $V_{A} V_{A}$
contractible for all $*_{1}\beta$ (se good cover from diff. topology)
we want to construct transition functions $[3_{M}:V_{A}N_{A} \rightarrow C^{*}]$
 $defining a bundle L and $[A_{A} \in \mathcal{I}^{*}(W]]$ defining a
connection $\mathbb{P} \cap L = 5t$. $\frac{1}{2\pi}F_{P} = \infty$ then done by $Th^{\frac{1}{2}} = 7$
to thus end note $d \ll I_{M} = \sqrt{-\gamma}$
 $on V_{A}N_{A} N_{B}$ we see $d(4_{A} - \gamma_{B}) = \omega - \omega = 0$
 $so \exists f_{AB} = 4$. $f_{AB} = \frac{1}{2} - \frac{1}{2}$
 $so \exists constants a_{AB} = 5$. $\frac{1}{2}\pi F_{B} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$
 $f_{BV} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$

Every since
$$[\omega] \in H^{2}(M; d)$$
, we can choose f st.
all $q_{\mu\rho\gamma} \in \mathcal{E}$, $f_{\alpha\alpha} = 0$, and $f_{\alpha\rho} = -f_{\beta\alpha}$.
Hint: Not so bad with sheaves, but maybe bit-
challenging without.
now set $g_{\alpha\beta} = e^{2\pi i \frac{1}{M\rho}}$ and $A_{\alpha} = -2\pi i \frac{\eta}{M}$.
 $note: i) g_{\alpha\alpha}(\alpha) = 1$
 $g_{\alpha\beta}^{-1} = e^{-2\pi i \frac{1}{M\rho}} = e^{2\pi i \frac{1}{P}\rho} = g_{\beta\alpha}$.
 $g_{\alpha\beta}g_{\beta\alpha} = e^{2\pi i (\frac{1}{A}\rho + \frac{1}{P}\rho)} = e^{2\pi i \frac{1}{P}\sigma} = g_{\alpha\beta}$.
 $g_{\alpha\beta}g_{\beta\alpha} = e^{2\pi i (\frac{1}{A}\rho + \frac{1}{P}\rho)} = e^{2\pi i \frac{1}{P}\sigma} = g_{\alpha\beta}$.
 $g_{\alpha\beta}g_{\beta\alpha} = e^{2\pi i (\frac{1}{P}\rho - \frac{1}{P}\rho)} = e^{2\pi i \frac{1}{P}\sigma} f_{\alpha\beta}$
 $i: \exists a complex line bundle L over M realizing them
2) $A_{\beta} - A_{\alpha} = 2\pi i (\frac{1}{M}\alpha - \frac{\eta}{P}\rho) = 2\pi i \frac{1}{P}\sigma} \frac{1}{2\pi i e^{2\pi i \frac{1}{P}\sigma}} df_{\alpha\beta} = 2\pi i \frac{1}{P}\sigma} \frac{1}{P}\sigma}{g_{\alpha\beta}}$
 $i: \{A_{\alpha}\} satisfy conditions for a connection ∇ on L
 $and F_{\gamma}|_{V_{\alpha}} = dA_{\alpha} = 2\pi i \frac{1}{M}\sigma}$.$$