VII Almost Complex Geometry
A. Donaldson's Results

The first result we would like to prove is
Th -1 (Donald son):
If (M, ω) is a closed symplectic manifold with $\frac{1}{2 \pi}[\omega] \in H^{2}(\mu ; z)$
then for large k, there is a codimension 2 symplectic submanifold Σ st. $[\Sigma]=$ Poricaré dual of $\frac{k}{2 \pi}[\omega]$ Moreover, $M-\Sigma$ is a Weristein manifold

Remarks: This theorem gives a good way to try and see if a given manifold is symplectic or not.
More specifically, the says any symplertic $2 n$-manifold breaks into 2 pieces:
(1) a symplectic D^{2}-bundle over a (2n-2)-manifold
(2) a Weinstein manifold
non-existence:
egg. Does ΦP^{2} have an exotic smooth structure that supports
a symplectic structure ("Symplectic Poricaré conjecture")
If X homeamorphii to $\mathbb{C P}$ and X admits a symplectic structure ω, then $X=A \subset B$ where
$A=D^{2}$-bundle over a surface and
$B=$ Weinste in manifold
note: 1) ∂A concave $=\partial B$ convex
2) topdogy of B (egg. homology) is somewhat determined by genus of A and $\mathbb{C P}$
does S^{\prime}-bundle ∂A with given contact structure have an appropriate Weristein filling?
eg if A is D^{2}-bundle over a surface Σ st. [$\left.\Sigma\right]$ generator then one can use fact that $c_{1}(\omega)= \pm 3$ of $H_{2}\left(\Delta P^{2}\right)$ to see $\Sigma \cong S^{2}$ (use"adjunction formula") sect II F
in this case $\partial A=s^{3}$ and unique choice for B
so $X=\sigma P^{2}$
similarly if $[\Sigma]=2 \in H_{2}\left(\mathbb{C} P^{2}\right)$ then $\partial A=L(4,1) \leftarrow$ Lens space and only 2 choices for B and only one has right homology so $X \cong \mathbb{C} P^{2}$
m_{c} Duff
what about for other Σ ?
existence: Can you inductively prove $2 n$-manifold with almost symplectic structure has symplectic structure?

Th ${ }^{\text {M (Pancholi): }}$
in $\pi_{1}=1$ case previously If X^{n} a manifold of dimension ≥ 4
proven by Freedman and Kato-Mafumoto

$$
\alpha \in H^{2}(X ; z)
$$

then \exists an oriented submanifold M^{n-2}
st. 1) $[M]=$ Poricaré Dual of α
2) $X-M$ admits a Morse function with no critical points

$$
>\frac{n+1}{2}
$$

so if $X^{2 n}$ is a manifold with a non-degenerate 2 form ω_{0} and a class $h \in H^{2}(X)$ s.t. $h^{n} \neq 0$ then th $\frac{m}{}$ above gives M Pooricare dual to h st. $X-M$ has handles of codex $\leq n$
so if $n>2$, then ω_{0} can be deformed into a symplectic str on $X-M$ coming from a Stein str.
if $\omega_{0} /_{M}$ non-degenerate we could hope to inductively show M has a symplectic structure (note: h pulled back to M satisfies $h^{n-1} \neq 0$) now a abd A of M has a symplectic structure and $B=X-A$ has one (it is Stein)
so existence comes down to
(1) Enhance Pancholis result to get ω_{0} / μ non-degen
(2) show one can arrange contact structures on ∂A and ∂B to match up
(3) Find a base case!
(eeg say simply connected 6-manifolds then try for smiply connected 8-manifolds by euhansing Pancholi's th ${ }^{m}$ so M is simply connected if X is)

The 2 (Donaldson):
(M, ω) a symplectic manifold
suppose $[\omega] \in H_{D R}^{2}(M)$ is an integral class
For sufficiently large integers K there is a topological Lefschets pencil on M whose fibers are symplecti and homologous to the Poricare dual of $k[\omega]$

Remark: In sections IV E-F we already discussed using this theorem to study symplectic manifolds

Thm 3 (Aurous): \qquad
any compact symplectic 4 -manifold (M, ω) is a symplectic branched cover of ($\left.\sigma \rho_{1}^{2}, \omega_{F S}\right)$

All these theorems are proven by finding sections of line bundles, so we begin by studying complex line bundles. more specifically, given a line bundle

$$
\begin{aligned}
& \mathbb{C} \rightarrow L \\
& \downarrow^{n}
\end{aligned}
$$

if $\sigma: M \rightarrow L$ a section that is transverse to the zero section Z, then $\sigma^{-1}(Z)$ is a codimiension 2 submanifold of M !
so to prove $T_{h} \underline{m}_{1}$ we just need to find the right line bundle and the right section
similarly we will see for Th $^{\text {m }} 2$ we just need to find 2 sections and for $T^{\prime}{ }^{m} 3,3$ sections
B Complex line bundles
We consider complex lire bundles oven a manifold

from Section IV.D we know that if $\left\{U_{\alpha}\right\}$ an open cover of M such that \exists bundle isomorphisms

$$
\begin{gathered}
\pi^{-1}\left(U_{\alpha}\right) \xrightarrow{\phi_{\alpha}} U_{\alpha} \times C \\
\pi \searrow_{U_{\alpha}}\lfloor p r
\end{gathered}
$$

then we have

$$
\begin{aligned}
\phi_{\alpha} \circ \phi_{\beta}^{-1}:\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{C} & \longrightarrow\left(U_{\alpha} \wedge U_{\beta}\right) \times \mathbb{G} \\
(x, v) & \longmapsto\left(x, g_{\alpha \beta}(x) v\right)
\end{aligned}
$$

Where $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathbb{C}^{*}=\mathbb{C}-\{0\}$ are the transition functions and they satisfy

$$
\begin{aligned}
& g_{\alpha \alpha}(x)=1 \\
& g_{\alpha \beta}=g_{\beta \alpha}^{-1} \\
& g_{\alpha \beta} \circ g_{\beta \gamma}=g_{\alpha \gamma}
\end{aligned}
$$

moreover, given a cover $\left\{0_{\alpha}\right\}$ and $\left\{g_{\alpha \beta}\right\}$ satisfying the equations \exists a line bundle realizing this data
When are 2 bundles L, L the same?
we say L is isomorphic to L 'if \exists a bundle mop

$$
\underset{M}{i \underset{M}{\phi} L^{\prime}}
$$ that is an isomorphism on each fiber

if L and L 'given by transition functions $\left\{g_{\alpha \beta}\right\}$ and $\left\{g_{\alpha \beta}^{\prime}\right\}$ (note we can always assume cover $\left\{u_{d}\right\}$ same for both L and C^{\prime} ') then ϕ gives us

$$
\underbrace{\left.v_{\alpha} \times \mathbb{C} \stackrel{\phi_{\alpha}}{\leftrightarrows} \pi^{-1}\left(v_{\alpha}\right) \stackrel{\phi}{\longrightarrow}\left(\pi^{\prime}\right)^{-1}\left(v_{\alpha}\right) \stackrel{\phi_{\alpha}^{\prime}}{\longrightarrow} v_{\alpha}(v)\right)}_{(x, v) \longmapsto} \times \mathbb{C}
$$

where $\lambda_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}^{*}$
exercré: 1) Show $g_{\alpha \beta}^{\prime}=\lambda_{\alpha} g_{\alpha \beta} \lambda_{\beta}^{-1}$
2) Show 2 line bundles L, C' are isomorphic i

Af their trasistion functions are related by \otimes
now given 2 line bundles L and L^{\prime} given by transition functions $\left\{g_{\alpha \beta}\right\}$ and $\left\{g_{\alpha \beta}^{\prime}\right\}$ (note we can always assume cover $\left\{0_{j}\right\}$ same for both L and L^{\prime})
we define their tensor product $\angle \otimes L$ 'to be the bundle with transition functions $\left\{g_{\alpha \beta} \cdot g_{\alpha \beta}^{\prime}\right\}$ we also define the inverse of L, denoted L_{1}^{\prime} to be the bundle associated to $\left\{g_{\alpha \beta}^{-1}\right\}$
exercise: the set Line (M) of isomorphism classes of complex line bundles is an abelian group with respect to the operation \otimes.
example: Consider $\mathbb{E} P^{\prime}$
$\mathbb{C} P^{\prime}=\mathbb{C} \cup\{\infty\}$ set $U_{\alpha}=\mathbb{C}$ and $U_{\beta}=\mathbb{C} P^{\prime}-\{0\}$
the map $g_{\beta \alpha}^{n}: V_{\alpha} \cap U_{\beta} \rightarrow \mathbb{C}^{*}: z \mapsto z^{n}$
defines a line bundle L^{n}
let $L=L^{\prime}$ note $L^{n}=\underbrace{\angle \otimes L \ldots \otimes L}_{\text {n times }}=L^{\otimes n}$
exercise: $\operatorname{Line}\left(\mathbb{C} P^{\prime}\right) \cong \nVdash$
note: If $L \rightarrow M$ has local trivializations $\left\{\phi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{C}\right\}$ with transition maps $\left\{q_{\alpha}\right\}$ then a section $s: M \rightarrow L$
 $\left\{s_{\alpha}\right\}$ satisfy $g_{\alpha \beta} s_{\beta}=s_{\alpha}^{s_{\alpha}}$ on $U_{\alpha} \cap U_{\beta}$
moreover any collection of functions $s_{d}: U_{d} \rightarrow \mathbb{C}$ satisfying this relation gives a section
1.e. "sections are twisted functions on M " in particular, if $s, t: M \rightarrow L$ are 2 sections then if $s \neq 0, t / s: M \rightarrow C$ is a function.

We now want to talk about differentiating sections of a line bundle, for this we introduce connections
a connection on a line bundle Lover M is a linear map

$$
\nabla: \Gamma(L) \rightarrow \Gamma\left(T^{*} \mu \otimes L\right)
$$

satisfying

$$
\nabla(f \otimes s)=d f \otimes s+f \nabla s \quad \forall f \in C^{\infty}(M), s \in \Gamma(L)
$$

so given $v \in \mathcal{H}(\mu)$ we write $\nabla_{v}: \Gamma(L) \rightarrow \Gamma(L): S \mapsto(\nabla s)(r)$ and think of this as a directional derivative
example: if $L=M \times \mathbb{C}$ so $\Gamma(L)=C^{\infty}(\mu)$ then for any $\beta \in \Omega^{\prime}(M)$

$$
\begin{aligned}
\Gamma(L) & \longrightarrow \Gamma\left(\tau^{*} M \otimes L\right)=\Gamma\left(\tau^{*} \mu\right) \\
f & \longmapsto d f+f \beta
\end{aligned}
$$

is a connection (later we with see this is all connections on $M \times \mathbb{C}$)
lemma 4:
If s, t are sections of L that agree near $x \in M$ then $\nabla s(x)=\nabla t(x)$
"connections are local operators"

Proof: if $s=0$ near x, then let f be a bump function st. $f=1$ outside support of 5 an $=0$ near x.
then $\nabla s(x)=(\nabla f s)(x)=(d f \otimes s+f \nabla s)(x)=0$
\therefore if $s=t$ in a unbid of x, then $\nabla s(x)=\nabla t(x)$
note: lemma \Rightarrow given any connection ∇ on L and open set UCM \exists ! wnnection ∇^{\prime} on L / v sit. $\left.(\nabla s)\right|_{v}=\nabla_{u}(s / v)$ and ∇ is determined by its restrictions to open sets
lemmas:
every line bundle $L \rightarrow M$ has a connection and the set of connections on L is

$$
A(c)=\left\{\nabla^{0}+\beta: \beta \in \Omega^{\prime}(\mu)\right\}
$$

where ∇° is any one connection on L.
Proof: to construct a connection let $\left\{\phi_{\alpha}: U_{\alpha} \rightarrow M\right\}$ be a collection of local trivializations
let $s_{2}: v_{\alpha} \rightarrow L$ be local frames (is nonzero sections)
now given any section $s: M \rightarrow L$ note that
$f_{\alpha}=s / s_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}$ are functions and

$$
s=f_{\alpha} s_{\alpha} \text { on } U_{\alpha}
$$

let $\left\{\psi_{\alpha}\right\}$ be a partition of unity subordinate to $\left\{U_{\alpha}\right\}$
set $\nabla_{s}=\sum_{\alpha} \psi_{\alpha}\left(d f_{\alpha} \otimes s_{\alpha}\right)$
exercise: Check this is a connection.
now if ∇^{0} and ∇ are two connections on L
then note $\left(\nabla-\nabla^{0}\right)(f s)=f\left(\nabla-\nabla^{0}\right) s$
for any $f \in C^{\infty}(M)$ and $s \in \Gamma(L)$
exercise: Show this $\Rightarrow\left(\nabla-\nabla^{0}\right)(s)(x)$ only depends on $s(x)$ and this $\Rightarrow \exists a$-form β st. $\left(\nabla-\nabla^{\circ}\right) s=\beta \otimes s$
now if $s: U_{\alpha} \rightarrow L$ is a local non zero section
then $\nabla_{s} \in \Gamma\left(T^{*} M \otimes L\right)$
exeruse: $\exists 1$-form $A_{\alpha} \in \Omega^{\prime}\left(U_{\alpha}\right)$ st. $\nabla s=A_{\alpha} \otimes S$

$$
\left(1 e A_{\alpha}=\nabla s / s\right)
$$

so for any $t: U_{\alpha} \rightarrow L$, there is some function $f: U_{\alpha} \rightarrow \mathbb{C}$ st $t=f_{s}$ so

$$
\nabla t=\nabla f s=d f \otimes s+f A_{\alpha} \otimes s
$$

\therefore in the frame s, the connection is $\left(d+A_{\alpha}\right)$
If $s^{\prime}: U_{\alpha} \rightarrow L$'s another nonzero section then \exists non-zero $f: v_{\alpha} \rightarrow \mathbb{C}$ st. $s^{\prime}=f s$
if in the frame s we have $\nabla=d+A_{\alpha}$ and " " $s^{\prime \prime " ~ " ~} \nabla=d+A_{\alpha}{ }^{\prime}$

$$
\begin{aligned}
\text { then } \quad \begin{aligned}
A_{\alpha}^{\prime} \otimes s=\nabla s^{\prime} & =\nabla f s=d f \otimes s+f \nabla s \\
& =d f \otimes \frac{1}{f} s^{\prime}+f A_{\alpha} \otimes \frac{1}{f} s^{\prime}=\left(\frac{1}{f} d f+A_{\alpha}\right) \otimes s^{\prime} \\
\therefore A_{\alpha}^{\prime} & =A_{\alpha}+\underbrace{\frac{1}{f} d f}_{\text {note the is }}
\end{aligned} \quad \text { (Inf) so closed }
\end{aligned}
$$

so given a cover of M by local trivializations

$$
\left\{\phi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times C\right\}
$$

let S_{α} be the section $U_{\alpha} \rightarrow L$ given by $\phi_{\alpha}^{-1}(1) \quad 1$ section in $V \times C$
then a connection ∇ gives $A_{\alpha} \in \Omega^{\prime}\left(U_{\alpha}\right)$ st. $\nabla S_{\alpha}=A_{\alpha} \cos s_{\alpha}$ and they are related by

* $\quad A_{\beta}=A_{\alpha}+\frac{1}{g_{\alpha \beta}} d g_{\alpha \beta}$ on $U_{\alpha} \cap U_{\beta}$
also the $\left\{A_{\alpha}\right\}$ determine ∇
moreover any collection of 1 -forms $\left\{A_{\alpha} \in \Omega^{\prime}\left(u_{\alpha}\right)\right\}$ satisfying * gives a connection on L.
now given ∇ on L_{1} let $\left\{A_{\alpha}\right\}$ be the associated 1 -forms
note: $d A_{\alpha}=d A_{\beta}$ on $U_{\alpha} \cap U_{\beta}$
so $d A_{\alpha}$ glue a global closed 2 -form $F_{\nabla} \in \Omega^{2}(M)$!
F_{∇} is called the curvature of ∇
given $\nabla: \Gamma(L) \rightarrow \Gamma\left(\tau^{*} \mu \otimes L\right)$ we can extend ∇ to

$$
\nabla: \Gamma\left(\Lambda^{k} T^{*} \mu \otimes L\right) \rightarrow \Gamma\left(\Lambda^{k+1} T^{*} \mu \otimes L\right)
$$

by defining $\nabla(\beta \otimes S)=d \beta \otimes S+(-1)^{k} \beta \wedge \nabla s$
Lemma 6:

1) $\nabla^{2}: \Gamma(L) \rightarrow \Gamma\left(\Lambda^{2} \tau^{*} \mu \otimes L\right)$ is tensor with F_{∇}
2) $F_{\nabla+\alpha}=F_{\nabla}+d \alpha \quad$ (recall any other connection on L is $\nabla+\alpha$ some $\alpha \in \Omega^{\prime}(M)$

Proof:

1) in a local chart with non-zero section s

$$
\nabla s=A \otimes S
$$

and for any section $t=f s$ we have

$$
\begin{aligned}
\nabla^{2} t & =\nabla(d f \otimes S+f A \otimes S) \\
& =d(d f)^{\circ} \otimes S-d f \wedge \nabla s+d(f A) \otimes S-f A \wedge \nabla s \\
& =-d f \wedge A \otimes S+(d f \wedge A+f d A) \otimes S+f A \wedge A \otimes S \\
& =d A \otimes f S=d A \otimes t
\end{aligned}
$$

2) locally $F_{\nabla}=d A$ and since for $\nabla+\alpha$ the associated 1-form is $A+\alpha$ we see $F_{A+\alpha}=d(A+\alpha)=F_{A}+d \alpha$
suppose $\underset{\sim}{\underset{\sim}{L}}$ is a Hermitian line bundle, recall this means
there is a fiberwise Hermitian inner product $\langle;\rangle: L_{x} x L_{x} \rightarrow \mathbb{C}$ and is equivalent to transition functions $g_{\alpha_{\beta}}: U_{\alpha} \cap U_{\beta} \rightarrow S_{\lambda}^{\prime}$ a connection ∇ on such a bundle is called Hermitian if for 2 sections s_{1}, s_{2} we have

$$
d\left\langle s_{1}, s_{2}\right\rangle=\left\langle\nabla s_{1}, s_{2}\right\rangle+\left\langle s_{1}, \nabla s_{2}\right\rangle
$$

now given such a connection, let s be a local section with length 1, then we have the 1-form A st. $\nabla s=A \otimes s$ and we see

$$
\begin{aligned}
& \langle S, S\rangle=1 \quad \text { so } \quad 0=d\langle s, s\rangle=\langle\nabla s, s\rangle+\langle s, \nabla s\rangle=\langle A \otimes s, s\rangle+\langle s, A \otimes s\rangle \\
& =\langle A \otimes S, S\rangle+\overline{\langle A \otimes S, S\rangle}=(A+\bar{A})\langle S, S\rangle \\
& =A+\bar{A}
\end{aligned}
$$

so the real part of A is 0 ie $A \in i \Omega^{\prime}(M)$
before we were thinking of A as a complex valued 1-fom now this means A is purely imaginary
exercise: given a Hermitian line bundle L and Hermitian connection ∇, let $U(L)$ be the unit norm bundle in L so $U(c)$ is an S^{\prime}-bundle
show \exists a 1 -form A on $U(L)$ st for any local trivialization $S_{\alpha}: U_{\alpha} \rightarrow L$ by a uni section of L
we have $d s=A_{\alpha}$ and $A_{\alpha}=s_{\alpha}^{*} A$

Th ${ }^{\bullet} 7$ (Chern-Weil):
let L be a Hermitian line bundle oven M with a Hermitian connection ∇
let $s: M \rightarrow L$ be a section transverse to the zero section Z
set $S=s^{-1}(Z)$
Then

$$
C_{1}(c)=\text { Poincaré dual }[5]
$$

and for any 2 -cycle C transuase to S

$$
S \cdot C=\frac{i}{2 \pi} \int_{C} F_{\nabla}=\left\langle c_{1}(c), c\right\rangle
$$

Proof:
for the first part recall c_{1} for complex line bundles over a surface Σ
given L ores Σ, let $\Sigma=\Sigma^{\prime} \cup D^{2}$ we can take the structure group of L

to be $U(1)=5^{\prime}$ (All complex bundles have Hermiticin

$$
L I_{\Sigma^{\prime}}=\Sigma^{\prime} \times \sigma
$$ structure)

when we attach the 2-cell D^{2} to Σ we must glue $\partial \Sigma^{\prime} \times \mathbb{C} \rightarrow \partial D^{2} \times \mathbb{C}$
by an element n of $\pi_{1}(U(1)) \cong z$
this element is precisely $C_{1}(L)$ evaluated on D^{2}, which can be taken to be the generator of the chain group $C_{2}(\Sigma)=\mathbb{Z}$

$$
\text { so }\left\langle c_{1}(L),[\Sigma]\right\rangle=n
$$

the above gluing map can be taken to be

$$
\begin{aligned}
S^{\prime} \times \mathbb{C} & \longrightarrow S^{\prime} \times \mathbb{C} \\
\left(e^{+\theta}, v\right) & \longmapsto\left(e^{1 \theta}, e^{i n \theta} v\right)
\end{aligned}
$$

so $\mathbb{I f}^{\prime}$ we take the section $s:\left.\Sigma^{\prime} \rightarrow L\right|_{\Sigma^{\prime}}=\Sigma^{\prime} \times \mathbb{C}$

$$
x \longmapsto(x, 1)
$$

then on ∂D^{2} we have the section

$$
\begin{aligned}
\partial D^{2}=s^{1} & \rightarrow s^{1} \times \mathbb{C} \subseteq D^{2} \times \mathbb{C} \\
e^{2 \theta} & \mapsto\left(e^{1 \theta}, e^{i n \theta}\right)
\end{aligned}
$$

we can extend s oven D^{2} by $z \longmapsto\left(z, z^{n}\right)$
exercise: Show s can be perturbed to be transvense to the zero section and intersect it n times counted with sign.

$$
\therefore\left\langle c_{1}(L),[\Sigma]\right\rangle=\# S^{-1}(0)
$$

now for a general ${ }_{M}^{L}$ if $\Sigma \subset M$ a surface let
$i: \Sigma \rightarrow M$ be inclusion, then

$$
\begin{aligned}
\left\langle c_{1}(c),[\Sigma]\right\rangle= & \left\langle i^{*} c_{1}(L),[\Sigma]\right\rangle \\
= & \left\langle c_{1}\left(\imath^{*} L\right),[\Sigma]\right\rangle \\
= & \text { intersection \# } n \text { of a generic } \\
& \text { section al zero section }
\end{aligned}
$$

but if $s: M \rightarrow L$ a section transvers to Z then this gives a generic section of $i^{*} L$ and $n=\sum \cdot s^{-1}(z)$
so $\left\langle c_{1}(c),[\Sigma]\right\rangle=\tau \cdot s^{-1}(z)$
ie. $\left[s^{-1}(z)\right]$ is Poincare dual to $c_{1}(c)$
for the second part let

$$
M_{\varepsilon}=\{x \in M:|s(x)| \geq \varepsilon\}
$$

and $C_{\varepsilon}=M_{\varepsilon} \cap C$
on M_{ε} we have $\frac{\nabla s}{S}$ is a well-defined complex valued (-form and $d\left(\frac{P S}{S}\right)=F_{\nabla}$
so $\quad \int_{C} F_{\nabla}=\lim _{\varepsilon \rightarrow 0} \int_{C_{\varepsilon}} F_{\nabla}=\lim _{\varepsilon \rightarrow 0} \int_{C_{\varepsilon}} d\left(\frac{\nabla s}{s}\right)=\lim _{\varepsilon \rightarrow 0} \int_{\partial c_{\varepsilon}} \nabla s / s$
when $\varepsilon \rightarrow 0$ the last integral is supported in a small nth of CNS and each such point is in some local trivialization of L, let s_{α} be the trivializing section near one of these points
exercise: we can choose coordinates on nibhd U so that

$$
s=z s_{\alpha} \text { or } s=\bar{z} s_{\alpha}
$$

now $\nabla S=d z \otimes S_{\alpha}+z A_{\alpha} \otimes S_{\alpha}$ or $\quad V_{S}=d \bar{z} \otimes S_{\alpha}+\bar{z} A_{\alpha} \otimes S_{\alpha}$
and $\quad \nabla s / s=\frac{1}{z} d z+A_{\alpha}$ or $\nabla s / s=\frac{1}{z} d \bar{z}+A_{\alpha}$
we focus on this one

$$
\begin{aligned}
z=r e^{2 \theta} \quad \text { so } d z & =e^{1 \theta} d r+r i e^{1 \theta} d \theta \\
\text { and } \frac{1}{z} d z & =\frac{1}{r} d r+2 d \theta \\
& =d(\ln r)+1 d \theta
\end{aligned}
$$

since A_{α} is a well-defined 1 -form on U, we see

$$
\begin{aligned}
& \operatorname{limin}_{\varepsilon \rightarrow 0} \int_{\partial c_{\varepsilon} \cap U} A_{\alpha}=0 \\
& \therefore \lim _{\varepsilon \rightarrow 0} \int_{\partial c_{\varepsilon} \cap U} \nabla s / s= \lim _{\varepsilon \rightarrow 0} \int_{\partial c_{\varepsilon} \cap U} d(\ln r)+2 d \theta=\lim _{\varepsilon \rightarrow 0} \int_{\partial \varepsilon_{\varepsilon} \cap U} i d \theta \\
&= \lim _{\varepsilon \rightarrow 0}-22 \pi=-12 \pi \\
& \text { note as } \partial c_{\varepsilon} \text { or is opposite as } \partial \text { disk }
\end{aligned}
$$

so for each positive intersection point of $C \cap S$ we get a contribution of -22π to $\int_{C} F_{P}$
similarly for each negative intersection we get $i 2 \pi$

$$
\therefore C \cap S=\frac{i}{2 \pi} \int_{C} F_{\nabla}
$$

Th ${ }^{m} 8$:
Given any 2 -form ω such that $[\omega] \in H^{2}(M ; \mathbb{Z})$ there is a complex line bundle $L \rightarrow M$ and a Hermitian connection ∇ on L such that

$$
\begin{aligned}
& \frac{2}{2 \pi} F_{\nabla}=\omega \\
& \text { ie. } c_{1}(c)=[\omega]
\end{aligned}
$$

Proof: We give 2 proofs
1 ${ }^{\text {st }}$ Proof: exercise: Given $h \in H^{2}(\mu ; z), \exists$ codim 2 -submanifold Σ such that $[\Sigma]=$ Poricaré Dual to $h \in H_{n-2}(M)$
Hurt: $H^{2}(M ; \mathbb{Z}) \cong[M: \mathbb{C p \infty}]_{\text {E homotony classes of maps }}$
take $f: M \rightarrow \Delta P^{\infty}$ representing h
can homotop f so $\mathrm{cm} f \subset \mathbb{C} P^{[n / 2]}$ \& $f \pi \& P^{[1 / 2\rceil-1}$ let $\Sigma=f^{-1}\left(\varangle P^{\Gamma \alpha_{2} 1-1}\right)$
now a ubhd N of Σ in M is a D^{2}-bundle oven Σ and we can assume structure group $U(1)$, we. \exists a \mathbb{C}-bundle E
$\frac{\downarrow \pi}{2}$ such that $N=\{v \in E:\|\sigma\| \leq 1\}$
let $\tilde{\pi}=\pi / N$ and set $F=\tilde{\pi}^{*} E$ this is a complex line bundle over N
let $s: N \rightarrow F: v \longmapsto(v, v)$
note: s is a section of F and if we restrict s to any fiber $\widetilde{u}^{-1}(x)=D^{2}$ of N we get the section $z \mapsto(z, z)$ ie. $S \neq 0$ on ∂N, s Zero section, and $\Sigma=S^{-1}$ (zero section) so s trivializes $F l_{\partial N} \cong \partial N \times \mathbb{C}$
now glue $A \times \mathbb{C}$ to F along $\partial A \times \mathbb{C} \cong \partial N \times \mathbb{C}$ to get the complex line bundle $\mathbb{C} \rightarrow L$ and s extends to all of to be non-zero on A
$\therefore S \pi$ zen section and

$$
\left[s^{-1}(z \text { no section })\right]=[\Sigma]=\text { Pomincaré Dual }[\omega]
$$

from $T h \stackrel{m}{7}$ we know $c_{1}(c)=[\omega]$
$2^{\text {nd }}$ Proof:
let $\left\{U_{\alpha}\right\}$ be an open coven of M such that U_{α} and $U_{\alpha} \wedge U_{\beta}$ contractible for all α, β (ie. good coven from diff. topology)
we want to construct transition functions $\left\{q_{\alpha_{\beta}}: U_{\alpha} \cap U_{\beta} \rightarrow \mathbb{C}^{*}\right\}$ defining a bundle L and $\left\{A_{\alpha} \in \Omega^{\prime}\left(U_{\alpha}\right)\right\}$ defining a connection ∇ on L st. $\frac{1}{2 \pi} F_{\nabla}=\omega$ then done by $T_{h} \underline{m}$
to this end note $d v /_{v_{\alpha}}=0 \Rightarrow \exists y_{\alpha} \in \Omega^{\prime}\left(v_{\alpha}\right)$ st. $d y_{\alpha}=v v_{v_{\alpha}}$ now on $V_{\alpha} \cap V_{\beta}$ we see $d\left(\eta_{\alpha}-\eta_{\beta}\right)=\omega-\omega=0$ so $\exists f_{\alpha \beta}$ ss. $\quad d f_{\alpha \beta}=\eta_{\alpha}-\eta_{\beta}$ on $U_{\alpha} \cap U_{\beta} \cap V_{\gamma}$ we have

$$
d\left(f_{\beta \gamma}-f_{\alpha \gamma}+f_{\alpha \beta}\right)=\eta_{\beta}-\eta_{\gamma}-\eta_{\alpha}+\eta_{\gamma}+\eta_{\alpha}-\eta_{\beta}=0
$$

so \exists constants $a_{\alpha \beta \gamma}$ such that

$$
f_{\beta \gamma}-f_{\alpha \gamma}+f_{\alpha \beta}=a_{\alpha \beta \gamma}
$$

exercise: Show, since $[\omega] \in H^{2}(\mu ; Z)$, we can choose f st. all $a_{\alpha \beta \gamma} \in \mathbb{Z}, f_{\alpha \alpha}=0$, and $f_{\alpha \beta}=-f_{\beta \alpha}$
Hint: Not so bad with sheaves, but maybe bit challenging without.
now set $g_{\alpha \beta}=e^{2 \pi i f_{\alpha \beta}}$ and $A_{\alpha}=-2 \pi i \eta_{\alpha}$
note: 1) $g_{\alpha \alpha}(x)=1$

$$
\begin{aligned}
& g_{\alpha \beta}^{-1}=e^{-2 \pi i f_{\alpha \beta}}=e^{2 \pi i f_{\rho \alpha}}=g_{\beta \alpha} \\
& g_{\alpha \beta} g_{\beta \sigma}=e^{2 \pi i\left(f_{\alpha \beta}+f_{\beta \gamma}\right)}=e^{2 \pi i f_{\alpha \gamma}}=g_{\alpha \gamma}
\end{aligned}
$$

so $\left\{q_{\beta}\right\}$ satisfy conditions for trasition functions \therefore Ia complex line bundle L over M realizing them
2) $A_{\beta}-A_{\alpha}=2 \pi i\left(\eta_{\alpha}-\eta_{\beta}\right)=2 \pi i d f_{\alpha \beta}$
now $\frac{1}{g_{\alpha \beta}} d g_{\alpha \beta}=e^{-2 \pi i f_{\alpha \beta}} 2 \pi i e^{2 \pi i f_{\beta}} d f_{\alpha \beta}=2 \pi i d f_{\alpha \beta}$
so $A_{\beta}=A_{\alpha}+\frac{1}{g_{\alpha \beta}} d g_{\alpha \beta}$
$\therefore\left\{A_{\alpha}\right\}$ sanity conditions for a connection ∇ on L and $\left.F_{\nabla}\right|_{V_{\alpha}}=d A_{\alpha}=-2 \pi i d \eta_{\alpha}=-2 \pi i \omega$
so $\frac{i}{2 \pi} F_{\nabla}=\omega$

