Jet Spaces

Jet spaces keep troch of derivatives of functions
we say 2 functions
$$f,g: W \rightarrow M$$
 have k^{th} order
contact at $p \in X$ if
i) $f(p) = f(p)$ (call this q)
i) in any coordinate chart
 $\phi: U \rightarrow V$ about $p \in V$
 $SR^{m} S_{W}$
 $4: U' \rightarrow V' s$ about $q \in M$
 $CR^{m} M$
all partial derivatives of order $\leq k$
of $\Psi'' \circ f \circ p$ and $\Psi'' \circ g \circ \phi$ agree at p
Note: $f,g: R^{m} \rightarrow R^{m}$ ore k -cquivelent at $p \Leftrightarrow h^{\text{th}}$ order
Taylor Polynomicles at p agree
exercise: this is an equivalence rcl^{m}
denote the equiv. relation by \mathcal{T}_{n} and the equivalence
 $class of f by J_{pq}^{k}(f)$
set $J_{pq}^{k}(W, M) = \{j_{pq}^{k}(f) \mid f: W \rightarrow M, f(p) = q\}$
and $J^{k}(W, M) = U J_{pq}^{k}(W, M)$ this is the jet space
 $gen O \in J^{k}(W, M) = 3$ some $p.q$ st. $\mathcal{T} \in J_{pq}^{k}(V, M)$
 $We define w(O) = p$ and call it the source
and $\beta(\sigma) = q$ and call it the target

so we have 2 maps
$$J_{k}^{\dagger}(w, m)$$

 $a_{d}^{\dagger} \qquad M^{\dagger}$
 $J_{w}^{\dagger} \qquad M^{\dagger}$
 $J_{w}^{\dagger} \qquad M^{\dagger}$
 $J_{w}^{\dagger} \qquad M^{\dagger}$
 $J_{w}^{\dagger} \qquad J_{k}^{\dagger}(f): W \rightarrow J_{k}^{\dagger}(w, m)$
 $p \mapsto J_{k}^{\dagger}(g)(f)$
 y_{ou} should tank of $J^{k}(f)$ as its h^{\pm} order
 $Taylor polynomial at p$
 $Mamples: 1) J^{\circ}(W, M) \equiv W \times M$
 $and J^{\circ}(f): W \rightarrow W \times M$ graph!
 $p \mapsto (p, f(p))$
 $p \mapsto (p, f(p))$
 $j_{r+1}^{\bullet}(f) \qquad Hom(TW, TM)$
 $g^{\bullet} \mapsto df$ S builds over WM
 $J_{r+1}^{*}(f) \qquad Hom(TW, TM)$
 $f W \rightarrow T_{q}M$
 $b) J^{\dagger}(W, R) \cong T^{*}V \times R$
 $J^{\dagger}(f) = (df, f)$
 $Facts: 1) J^{h}(W^{*}, M^{*})$ is a smooth manifold of dimension
 $n + m + dim(B_{n,m}^{h})$
 S space of m -webs of
 $polynomials of degree \leq k$
 $in n variables$
 $eg dim J^{-1}(W^{*}, M^{*}) = n + m + mn$
 $enercise: work out dim(B_{n,m}^{k})$
 $2) \alpha: J^{*}(W, M) \rightarrow W, \beta: J^{*}(W, M) \rightarrow M, \alpha \in fiber bundles$

	3) if $h: M \rightarrow N$ is smooth then $h_*: \mathcal{J}^h(W, M) \rightarrow \mathcal{J}^h(W, N)$ $\mathcal{O}: \stackrel{h \rightarrow}{\longrightarrow} j_{p,h(q)}^k (\phi \cdot f)$ is well-defined and smooth
	4) if $g: W \to M$ smooth, then so is $j^h g: X \to J^h(w, M)$
The (Thom Transversality):	
	let Wand M be smooth manifolds and Za submanifold
	of $J^{h}(W, M)$. The set of maps $f \in C^{\infty}(W, M)$ st.
	1k(f) 市 I
intersection	is risidual in Coo(W, M)
of wuntably many open	moreover, if f is such that infit w on a closed
lense sets	set (in W, then can find approximation f st.
=) dense here	F=f on open ubid of C and jh(F) IT I
f Wapt then open & dense	
Proof of Morse Theory Thm:	
recall $\mathcal{J}'(W, \mathbb{R}) \cong \mathcal{T}^* W \times \mathbb{R}$	
	let $Z = tero section in T^*W$ and $\Sigma = pr_i^{-1}(\Sigma) \subset J'(W,R)$
	where $pr_i: \mathcal{J}'(w, R) \to \mathcal{T}^* w$
from earlier we know f is Morse @ df # Z	
this is equivalent to j'(f) TI I	
now done! by Thom	

Sometimes need to look at jets of a function at many
points of
$$W$$
 ws
let $W^{(S)} = \{(p_1, \dots, p_s) \in W \times \dots \times W \mid P_r \neq p; if 2\neq j\} \leq W^{S}$
consider $(J^r(W, M)) \xrightarrow{a^S \in W} S$
and set $J_s^r(W_1, M) = (a^{s})^{-1}(W^{(s)})$
this is $s - tuples$ of $r - jets$ $w/distinct$ sources
given $f: W \rightarrow M$ we get the $s - multi r - jet$
 $J_s^r(f): W^{(S)} \rightarrow J_s^r(W, M)$
 $(p_1, \dots, p_s) \mapsto (j_{p_1}^r(f), \dots, j_{p_s}^r(f))$

The (Thom Multipet Transversality):
let W and M be smooth manifolds and
$$\Sigma$$
 a submanifold
of $J_s^h(W, M)$. The set of maps $f \in C^\infty(W, M)$ st.
 $J_s^h(f) \ The \Sigma$
is residual in $C^\infty(W, M)$
moreover, if f is such that $j_s^h f = T$ W on a dosed
set C in W, then can find approximation f st.
 $f = f$ on open ubbd of C and $J_s^h(f) \ The \Sigma$

The set of Morse functions f: W→R all of whose critical values are distinit is dense in C[∞](M, R)

<u>Proof</u>: $\dim J_2'(W,R) = 4n+1$, $\dim W^{(2)} = 2n$ ($\dim W = n$) let $\Delta R = \{ (x,y) \in \mathbb{R}^2 | x=y \} \subset \mathbb{R}^2$

let
$$Z = tero section in T^*W$$
 and $E = pr_i^{-1}(E) \subset J'(W,R)$
Where $pr_i: J'(W,R) \rightarrow T^*W$
(recall f is Morse $E \Rightarrow f = f = D$)
and $S = p^2(D) \cap (E \times E) \subset J_2'(W,R)$
exercise In local coords on W , check S
is a submonifold of codim = $2n + 1$
Thom \Rightarrow dense set of $f \in C^{\infty}(M, R)$ have
 $j_2'(f) = f = S$
domain $j_2'(f)$ is $W^{(2)}$ of dim $2n$
 $j_2'(f) \cap S = S$
given this if $p.q$ are critical points of f
then $(j_p'(A), j_q'(F)) \in Z \times Z$
 $since j_2'(f) \cap S = S$ this $\Rightarrow f(p) \neq f(q)$

$$\frac{Th^{\mu}(Whitney \ Cmbedding \ Th^{\mu})}{|et W_{i} M be mfds with dum M=m \ge 2 \dim W + 1}$$

$$It W_{i} M be mfds with dum M=m \ge 2 \dim W + 1$$

$$Then the set of 1-1 immensions of W \to M is$$

$$dense in C^{\infty}(W_{i} M)$$

$$If W is compact then so is the set of embeddings$$

$$Proof: f: W \to M is (-1) (ff + 1)^{\circ}(f) \cap (b^{2})^{-1}(\Delta_{m}) = 0$$

 $\frac{Proof}{\beta^2}: f: [W \rightarrow M \quad is \quad I-1 \quad cff \quad \int_2^{\circ} (f) \cap (\beta^2)^{-1} (\Delta_M) = \emptyset$ $\beta^2: J_2^{\circ}(W, M) \rightarrow M^{\circ}) \quad is \quad surjective \quad so \quad (\beta^{-1})^{-1}(S_M) \quad a \quad submitdel
of \quad codim = codim \quad (\Delta_M \subset M \times M) = dim \quad M > 2 dim \quad W$

domain $j_{1}^{\circ}(f)$ has dim=2 dimW $\therefore if j_{2}^{\circ}(f) \pi (g^{2})^{-1}(f_{M}), then j_{2}^{\circ}(f) n (g^{2})^{-1}(f_{M}) = 0$ Thom =) dense set of f with this property : such f are 1-1can in addition take f an immersion from previous th^{n} (really need immersions & 1-1 maps residual, not just dense, but they are <math>1)