Morse lemma
we will show
lemma:
given a critical point $p \in W^{n}$ of $f: W^{n} \rightarrow \mathbb{R}$ of index k, \exists coordinates $\phi^{\prime}: U \rightarrow V$ about p st $\phi(0)=p$ and

$$
f \circ \phi\left(x_{1}, \ldots, x_{n}\right)=f(\rho)-x_{1}^{2}-\ldots-x_{k}^{2}+x_{k=1}^{2}+\ldots+x_{n}^{2}
$$

so upto change of coordinates, functions with such critical points all look the same
warmup ID:
If $f: \mathbb{R} \rightarrow \mathbb{R}$ has a critical point at 0 , and ℓ is first pos integer sit. $\frac{\partial f}{\partial x^{\ell}}(0) \neq 0$, then \exists "coordinates" $\phi: U \rightarrow V$ for 0 in \mathbb{R}
st. $\phi(0)=0$ and $f_{0} \phi(y)=f(0) \pm y^{l}$
so in ID "all"criticial points have "normal form"
Proof:
note

$$
\begin{aligned}
f(x)-f(0)= & \int_{0}^{1} \frac{d f}{\partial t_{1}}\left(x t_{1}\right) d t_{1} \\
= & \int_{0}^{1} \frac{d f}{d x}\left(x t_{1}\right) x d t_{1}=x \int_{0}^{1} \frac{d f}{d x}\left(x t_{1}\right)-\frac{d f}{d x}(0) d t_{1} \\
= & x \int_{0}^{1} \int_{0}^{1} \frac{d^{2} f}{d t_{2} d x}\left(x t_{1} t_{2}\right) d t_{2} d t_{1} \\
= & x^{2} \int_{0}^{1} \int_{0}^{1} \frac{d^{2} f}{d x^{2}}\left(x t_{1} t_{2}\right) d t_{2} d t_{1} \\
& \vdots \\
= & x^{l} \int_{0}^{1} \cdots \int_{0}^{1} \frac{d^{l}}{d x^{l}} f\left(x t_{l} \ldots t_{1}\right) d t_{l} \cdots d t_{1} \\
= & x^{l} g(x) \\
& \text { and } g(0)=\frac{1}{l!} f^{(l)}(0) \neq 0
\end{aligned}
$$

let ε be sign of $g(0)$
so $\varepsilon g(x)>0$ for small x
\therefore define $\psi(x)=\varepsilon x(g(x))^{1 / 2}$
now: 1) $\psi^{\prime}(0)=\left.\left(\varepsilon(g(x))^{1 / l}+\varepsilon \times \frac{1}{l}(g(x))^{1-l} g^{\prime}(x)\right)\right|_{x=0}$

$$
=\varepsilon g(0)^{1 / l}>0
$$

$\therefore \Psi$ is a local differ from, say, $V \rightarrow Y$
2) $\psi(0)=0$
3) $\psi(x)^{l}=\varepsilon^{l} x^{l} g(x)=\varepsilon^{l}(f(x)-f(0))$

30 set $\phi=\psi^{-1}$ and notice that

$$
\begin{aligned}
f \circ \phi(y) & =\varepsilon^{l} \psi(\phi(y))^{l}+f(0) \\
& =f(0)+\varepsilon^{l} y^{l}
\end{aligned}
$$

exercise: Prove that for a non-criticial point p of $f: W \rightarrow$ R \exists a coordinate chart ϕ : U$\rightarrow 4$ around ρ st.

$$
f \circ \phi\left(x_{1}, \ldots, x_{n}\right)=x,
$$

In general, higher order critical points cont (?) always be put in normal form, but for non-degenerate ones we can!

Proof of Morse lemma 1:
take any coordinate chart 4 sending 0 to p, writing f in these coordinants (ie. fo 4 but we just write f)

$$
\left(\frac{\partial^{2}}{\partial x_{1} \partial x_{j}} f l_{0}\right)
$$

can be diagonalized by an appropriate choice of basis.

If $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is this change of basis mop then replace ψ by $\psi_{\circ} B$ (still call it ψ), then f in these

$$
A=\left(\left.\frac{\partial^{2}}{\partial x_{2} \partial x_{j}} f\right|_{0}\right)=\left(\begin{array}{lll}
-1 & & \tag{words}\\
& \ddots-1+1 & \\
& & \\
& & \\
&
\end{array}\right)
$$

to further normalize fo ψ we write in is a special way

$$
\begin{aligned}
& f(x)-f(0)=\int_{0}^{1} \frac{d}{d t} f(t x) d t \\
&=\sum_{i=1}^{n} \int_{0}^{1} \frac{\partial f}{\partial x_{i}}(t x) x_{i} d t \\
&=\sum_{i, j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(s t x) d+d s x_{1} x_{j} \\
&=\sum_{i, j=1}^{n} b_{i j}(x) x_{1} x_{j}=x^{\top} B_{x} x \\
& \quad \text { where } B=\left(b_{i}\right.
\end{aligned}
$$

where $B_{x}=\left(b_{i j}(x)\right)$
by replacing $b_{i j}$ with $\frac{1}{2}\left(b_{i},+b_{i}\right)$ $x=\left[\begin{array}{l}x_{1} \\ i_{n}\end{array}\right]$
we can assume B_{x} is symmetric
note: $B_{0}=A$
Claim: we can find an invertable matrix Q_{x} depending on x such that $Q_{x}^{\top} B_{x} Q_{x}=A$
(egg. $Q_{0}=I$)
then set $\psi(x)=Q_{x}^{-1} x$ and note

$$
d \psi_{0}=Q_{0}^{-1}=I
$$

so ψ is a local differ (lord. chart!)

$$
\psi: V \rightarrow U
$$

and

$$
\begin{aligned}
f(x) & =f(0)+x^{t} B_{x} x=f(0)+x^{t}\left(Q_{x}^{-1}\right)^{t} Q_{x}^{t} B_{x} Q_{x} Q_{x}^{-1} x \\
& =f(0)+\left(Q_{x}^{-1} x\right)^{t} A\left(Q_{x}^{-1} x\right)=f(0)+\psi(x)^{t} A \psi(x)
\end{aligned}
$$

\therefore (f we set $\phi=\psi^{-1}$, then

$$
\begin{aligned}
f \circ \phi(y) & =f(0)+\psi(\phi(y))^{t} A \psi(\phi(y)) \\
& =f(y)+y^{t} A y \\
& =f(x)-y_{1}^{2}-\cdots-y_{n}^{2}+y_{n+1}^{2}+\ldots y_{n}
\end{aligned}
$$

Proof of Claim: We show, given $A=\left(\begin{array}{cc} \pm 1 & 0 \\ 0 & \ddots \\ 0 & \pm 1\end{array}\right)$ \exists a nbhd N of A in space of $n \times n$ matricies and a smooth map

$$
P: N \rightarrow G L(n, \mathbb{R})
$$

$$
\text { st. } P(A)=I \text { and } P(B)^{t} B P(B)=A \quad \forall B \in N
$$

to see this suppose B is close enough to A so that $b_{11} \neq 0$ and has the same sign as a_{11} consider the map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by

$$
T=\sqrt{\left\lvert\, \frac{\left|a_{11}\right|}{\left|b_{11}\right|}\right.}\left(\begin{array}{cccc}
1 & -b_{12} / b_{11} & \ldots & -b_{1 n} / b_{11} \\
0 & 1 & 0 \\
\vdots & & 0 \\
0 & 0 & 1
\end{array}\right)
$$

note:

$$
\begin{aligned}
T^{+} B T & =\sqrt{\left|b_{1}\right|} T^{t}\left(\begin{array}{cc}
b_{11} & 0 \\
b_{12} & \\
\vdots & B^{\prime} \\
b_{1 n} & 0
\end{array}\right) \\
& =\frac{\left|a_{11}\right|}{\left|b_{11}\right|}\left(\begin{array}{ccc}
b_{11} & 0 & \\
0 & B^{\prime \prime} \\
1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & B^{\prime \prime \prime} \\
1 &
\end{array}\right)
\end{aligned}
$$

and if $b_{11} \sim \pm 1, b_{i i} \sim 0$ then $B^{\prime \prime \prime}$ close to A_{11} so we can induct p
minor

Proof of Morse lemma 2:
example of a "Moser trick" let critical point be 0 let $A=$ Hess f_{0} and $Q=\frac{1}{2} x^{t} A x$ (note Hess $Q_{0}=A$) consider $f_{t}=(1-t) Q+t f$
we want to find a family of diffeomorphisms ϕ_{t} (defined near 0) so that
$\phi_{0}=i d$ and

* $\phi_{t}^{*} f_{t}=Q$
if we hind the f_{t}, then f_{1} is the desired coordinate change we look for f_{t} as the flow of a vector field v_{t}

$$
\text { that is }\left\{\begin{array}{l}
\frac{d}{d t}\left(\phi_{t}(x)\right)=v_{t}\left(\phi_{t}(x)\right) \\
\phi_{t}=i d
\end{array}\right.
$$

differentiating (is writ. t gives

$$
0=\phi_{t}^{*}\left(\mathcal{L}_{v_{t}} f_{t}+\frac{\partial f_{t}}{\partial t}\right)=\phi_{t}^{*}\left(d f_{t}\left(v_{t}\right)+f-Q\right)
$$

so we want r_{t} to satisfy:

$$
d f_{t}\left(\sigma_{t}\right)=\overbrace{Q-f}^{d e n}
$$

(note: $Q, f, d f_{t}$ are given)
note $g(0)=Q(0)-f(0)=0$ and

$$
d g_{0}=d Q_{0}-d f_{0}=0
$$

as before we can write $g(x)$ as
$g(x)=x^{\top} G_{x} x \quad$ for some matrix G_{x} depending on x
note: $G_{0}=$ Hess f_{0} so G_{0} invertible as w G_{x} for small x
now consider

$$
\begin{aligned}
\left(d f_{t}\right)_{x}\left(v_{t}\right) & =\left(d f_{t}\right)_{x}\left(v_{t}\right)-\left(d f_{t}\right)_{0}\left(v_{t}\right) \\
& =\int_{0}^{1} \frac{d}{d s}\left(d f_{t}\right)_{s x}\left(v_{t}\right) d s \\
& =\int_{0}^{1} \frac{d}{d s}\left(\sum\left(v_{t}\right)_{i} \frac{\partial f_{t}}{\partial x_{i}}(s x)\right) d s \\
\text { as above } & =\sum_{i, j}\left(v_{t}\right)_{i} x_{j} \underbrace{\int_{0}^{1} \frac{\partial^{2} f_{t}}{\partial x_{i} \partial x_{j}}(s x) d s}_{0} \underbrace{}_{\left(B_{x}\right)_{i j}} \\
& =\sum_{i, j}\left(v_{t}\right)_{i} x_{j}\left(B_{x}\right)_{i j}
\end{aligned}
$$

so $\left(d f_{t}\right)_{x}\left(v_{t}\right)=x^{\top} B_{x} v_{t}$
note $B_{0}=\left(\frac{\partial^{2} f_{t}}{\partial x_{1} \partial x_{j}}(0)\right)$ so is invertable $\therefore B_{x}$ invariable near 0
now becomes

$$
x^{\top} B_{x} v_{t}=x^{\top} G_{x} x
$$

Set $v_{t}=B_{x}^{-1} G_{x} x$
and note v_{t} satisfies ** and hence the flow ϕ_{t} of v_{t} satisfies

