A. <u>Cobordisms</u>

our main goal will be to study cobordisms a cobordism W" is an oriented (n+1) dimensional manifold and a splitting of its boundary $\partial w = (-\partial_{-}w) \circ (\partial_{+}w)$ into disjoint components during orientation lower boundary we say W is a cobordism from 2-W to 2+ W 5 W^2 $W^2 = \partial_- W$ <u>denote:</u> J.W. ---> J.W <u>Remarks</u>: 1) a cobordism with $\partial = \emptyset$, is just a manitold 2) a cobordism with 2=0, is just a manifold " boundary 3) can consider cobordisms 1/0 orientation too, then ignor the - before 2.W 4) notice W is also a cobordism from - 7+ W to - 7- W and -W is a cobordism from - d-W to - d+W we will also consider generalizations to cobordisms of manifolds with boundary a cobordism of manifolds with boundary is an oriented (nei) manifold wⁿ⁺¹ whose boundary is written technically, a mtd with corners $\partial W = (-\partial_{-}W) u (-\partial_{-}W) u (\partial_{+}W)$

where
$$i$$
) $\partial_{-}W \cap \partial_{+}W = \emptyset$
2) $\partial_{v}W$ is a cobordism from $\partial_{-}(\partial_{v}W)$ to $\partial_{+}(\partial_{v}W)$
3) $\partial_{-}(\partial_{+}W) = \partial_{+}(\partial_{v}W)$ and $\partial_{-}(\partial_{-}W) = \partial_{-}(\partial_{v}W)$

<u>examples:</u>

let f: W→R be a smooth function a <u>critical point</u> of f is a point p ∈ W such that df; Tp W→T R is not surjective in this case that means dfp=0 mape of

In this case that means $dt_p = 0$ image of intersects the zero section Z at p notice $df: W \rightarrow T^*W$ is a section of the cotongent bundle $\int \mathcal{P}_{proo}^{max}$ and p is a critical point (=) df intersects the zero section Z at p

exercise:

2) let
$$p$$
 be a critical point of f
Show p is non-degenerate
 $\Rightarrow \qquad B^n \qquad v$
 $\exists \ bcal \ coordinates \ \phi: V \rightarrow V \ (can \ assume \ \phi(o) = p)$
such that the matrix $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)$ is non-singular

(i) 3) note of a point
$$(AO) \in \mathbb{Z} \subset T^*W$$
 we have
 $T_{(p,0)}(T^*W) = T_{(p,0)} \mathbb{Z} \oplus \ker(d\pi)_{(RO)}$ where $\pi:T^*W \gg W$
is projection
 $T_p^{**}M$
So we have a map $C_p: T_{(P,0)}(T^*W) \to T_p^*W$ only well-defined
along $\mathbb{P}:O$
if p is O critical point of f then define
($d^2f_p: T_p W \times T_p W \to R$
(v, w) $\mapsto C_p(d_p(df(v)))(w)$
convections b define
 $(v, w) \mapsto C_p(d_p(df(v)))(w)$
 $d_f: W \to T^*W$
 $d_p(df): T_p W \to T_{(P,0)} T^*W$
 $d_p(df(v))) \in T_p^*M$
 $d_p(df(v))) \in T_p^*M$
is a critical point is a symmetric bilinear form and
 p is a non-degenerate critical point
 (d^2f_p) is non-degenerate

(df), is called the Hessian also written Hess f since it is symmetric and bilinear, we may choose a basis in which (df), is represented by a diagonal matrix with entries on diagonal ±1 we define the index of p to be the number of -1's <u>examples</u>: i) $W = 5^2$ unit sphere in \mathbb{R}^3 $f: 5^2 \rightarrow \mathbb{R}: (x, y, z) \mapsto z$ we have the coordinate chart $\phi_{u}: D^{2} \rightarrow S^{2}: (x, y) \longmapsto (x, y, \sqrt{1-x^{2}-y^{2}})$ and $\phi_{\boldsymbol{\mu}}: D^2 \longrightarrow S^2: (\mathbf{x}, \mathbf{y}) \longmapsto (\mathbf{x}, \mathbf{y}, -\sqrt{1-\mathbf{x}^2-\mathbf{y}^2})$ note: $f \circ \phi_{L}(x,y) = \sqrt{1-x^{2}-y^{2}}$ so $d(f \circ \phi_{L}) = \frac{1}{(1-x^{2}-y^{2})^{1/2}} \begin{pmatrix} -x \\ -y \end{pmatrix}$ critical point at (0,0) so (0,0,1) crit. pt. of f $\left(\frac{\partial^2 f \cdot \phi_u}{\partial x_i \partial x_i}\right) = \frac{1}{(1 - x^2 - y^2)^{3/2}} \begin{pmatrix} x^2 - 1 & -xy \\ -xy & y^2 - 1 \end{pmatrix}$ at (0,0) get $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ so index 2 similarly (0.0,-1) critical point of indus O exercise: show no critical points along equator 2) Recall RP² = R³- {(0,0,0)}/~ here (X,Y,Z)~(tX,tY,tZ) for t=0 $\widetilde{f}(x,y,z) = \frac{x^2 + 2y^2}{x^2 + y^2 + z^2} \quad induces a function f on RP^2$ exercise: Show f has 3 critical points, they are non-degenerate, and have indicies 0,1,2.

a function f: W-> R is called Morse of all its critical points are non-degenerate (1.e. df TZ) and on interior of W

one may apply Thom's jet transversality theorem to establish Might talk about this later

Thm: _ let W be any manifold then the set of Morse functions is dense in C⁶⁰(WIR) Moreover, if C is a closed set on which f is already Morse then I a Morse function F: W>R that is E-close to f and f = f on an open set containing C

there are simpler ways to show any manifold has a Morse function but this result makes it easier to find Morse functions that respect aspects of the monifold.

Example 1:
If W is a monotoid with compact boundary, then
$$\exists a$$
 Marse function
 $f: W \rightarrow \mathbb{R}$
Such that $f(W) \in \{0, \infty\}$,
 0 is a regular value of f , and
 $f^{-1}(0) = \partial M$
Proof: It is a standard fact that \exists an embedding
 $e:(\{ac\} \times \partial W\} \rightarrow W$
Such that $e(\{0\} \times \partial W\} \rightarrow W$
Such that $e(\{0\} \times \partial W\} = \partial W$ and
 $(in(e))$ is a nebod of ∂W in W
define $f = T \circ e$ on $e(\{0, 1, 1\} \times \partial W\}$ where
 $T:[o, c) \times \partial W \rightarrow [o, c)$
and extend f by U_{z}
 $ven the vest of M$

$$\begin{array}{l} \widehat{f} \text{ that is smooth and agrees with f} \\ \text{on } e(\{0, 433 \times \partial W\} \text{ and is close enough} \\ \text{to f so that } \widehat{f}(p) > 4 & \forall p \notin e(\{0, 43\} \times \partial W\} \\ \text{now } \widehat{f} \text{ Morse on } e(\{0, 43\} \times \partial W\} \text{ (no crotical pts)} \\ \text{so we may approximate } \widehat{f} \text{ by a Morse function} \\ \widehat{f} \text{ that agrees with } \widehat{f} \text{ on a nbhd of} \\ e(\{0, 43\} \times \partial W\} \text{ and is } > 44 & \text{else where} \\ \text{so 0 is a regular value of } \widehat{f} \text{ and} \\ \widehat{f}^{-1}(0) = \partial W \end{array}$$

Example 2:

a cobordism W admits a Morse function
$$f$$
 with
 $f(w) \in [0, 1],$
 $0,1$ regular values, and
 $f^{-1}(0) = \partial_{-}W$ and $f^{-1}(1) = \partial_{+}W$
Proof is similar to above (exercise)

Example 3:

a cobordism W of manifolds with boundary where
$$\partial_{i} W \approx [0, i] \times \partial_{i} W$$

admits a Morse function f with
 $f(W) \in [0, i],$
 $0, i$ regular values,
 $f^{-1}(0) = \partial_{-} W, f^{-1}(i) = \partial_{+} W, and$
 $f) : [0, i] \times \partial_{-} W \rightarrow [0, i]$ is projection
 $\partial_{v} W$
Proof similar to above (everyse)

<u>Example 4</u>: If Σ is a submanifold of W, then \exists a Morse function $f: W \rightarrow \mathbb{R}$ st. flz is morse, the critical points of flz are critical points of f, and they have the same index. Proof: let f: I > R be any Morse function let $N \xrightarrow{\pi} \Sigma$ be a tubular neighborhood of Σ in Wextend \tilde{f} to $\hat{f}: \mathcal{N} \to \mathcal{R}$ by $\hat{f}(p) = \tilde{f}(\pi(p)) + |r(x)|^2$ where r: N-> [0,00) x H) distance x to E ≈ use some metric on W now arbitrarily extend if to a smooth function on W and then approximate by a Morse turction t agreeing with F on N now just compute the critical points in N and Their index (exercise)

<u>Remark</u>: One may also use jet transvensality to show that for a generic Morse function all the critical points have distinct values

> Fact: On a compact manifold W, a function $f: W \rightarrow R$ is "stable" \Leftrightarrow f is a Morse function with critical points having distinct values a function $f: W \rightarrow R$ is "stable" if "functions near f are "the same" as f (up to diffeomorphism)" ne. I an open set U around f in $C^{\infty}(W, R)$ st. $\forall g \in U$, I diffeomorphisms $\phi: W \rightarrow W$ and $\psi: R \rightarrow R$ such that $g = \psi \circ f \circ \phi$