since
$$n \ge 5$$
, f con be assumed to be on eucloodding
(emboddings are dense in $(\mathcal{O}(M, X^{n}) if m^{2}n)$)
moreoven, if codum $A, B > 2$, then unit digionst from $A \cup B$
if codum $B = 2$, need to assume disk is digionst from B
now one use D^{2} to guide an isotopy of A
 $A \longrightarrow B$
 $A \longrightarrow B$

EXErcise: 1) Show an oriented 3-mfd M is a handle body of genus
$$g \in \mathcal{F}$$

 $\exists g \text{ disjoint embedded disky } D_1, \dots, D_n$
 $s.t. M \cup D_i \equiv B^3$
2) If Σ is an oriented surface $\forall 2 \pm g$, then $\Sigma \times [a,i]$ is
a handle body.
Given a closed oriented 3-manifold M^3 , it has a handle
decomposition with one 0-handle and one 3-handle
decomposition with one 0-handles come before 2-handles
can assume all the 1-handles come before 2-handles
 $\exists e^{T} M = Me^{T} M$, is a handle body.
 $d = 1 - handles come before 2-handles$
 $d = 1 - handles come before 2-handles
 $d = 1 - handles come before 3 - handle body.$
 $d = 1 - handles come before 3 - handle body.
 $d = 1 - handles come before 3 - handle body.$
 $d = 1 - handles come before 3 - handle body.
 $d = 1 - handles come before 3 - handle body.$
 $d = 1 - handles come before 3 - handle body.$
 $d = 1 - handles come before 3 - handle body.$
 $d = 1 - handles come before 3 - handle body.$
 $d = 1 - handles come before 3 - handle body.$
 $d = 1 - handles come before 3 - handle body.$
 $d = 1 - handles body.$
 $d = 1 - handles body.$
 $d = 1 - handle body.$
 $d = 1 - ha$$$$

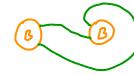
!

 $M \cong H_g' \cup H_g' / \rho_{\epsilon} \partial H_g' \sim \phi(g) \in \partial H_g^2$ so any 3-mild obtained by gluing 2 handle bodies ~ really simple together ! so all 3-mfds described by diffeos of surfaces another way to describe 3D handle decompositions "Kirby pictures" A.K.A. "Heegaard Diagrams" just as for surfaces two 3-manifolds M, Mz are diffeomorphic (M, M2 are diffeomorphic where $\hat{M}_{1} = M_{1} - B^{3}$ so can understand a 3-mild M by looking at M²= (O-handle) u k (I-handles) u k (Z-handles) handles attached to 210-handle) = 52 and attaching regions of handles can be assumed to be disjoint from a pt in 5², ie in R² = 5⁻{pt} example: attaching region of 1-handle is 5°xDZ

attaching sphere of 2-handle is 5' (and attaching region uniquely determined by this TT, (O(1)) = {e}, just thicken 5') <u>example:</u> 1) <u>exercise</u>: this is RP³: IRP3 = 5/identify antipodo just like for surface we have concelling 1, 2-pairs = D³ D^{3} and trandle slides for <u>1-handles</u> 6 2/2(0-4) Heegaard Sigram \Rightarrow A B A AI can wotop back to A R B B

to push k, over K2 for Z-handles: Kr K, take a "push off of Kz Kr choose are Ki to push off Kr "band" K, to push off along arc Kr K, . K example: handle slide = ⇒ Isotop 3

cancel. 1,2-pair



ever(ises: Draw pictures of
$$5' \times 5^{2}$$
, $L(p,q)$, $E_{g} \times [\circ, i]$,
 $T^{3} = 5' \times 5' \times 5'$
given a Heegoard surface $\Sigma \subset M^{3}$
let α be an arc embedded in Σ
let β be the route of isotoping interior of α of Σ
so $\alpha \cup \beta = \partial D^{2} + 5$. $D^{2} \cap \Sigma = \infty$
note $\beta \subset$ one component, say V_{i} , of $M \setminus \Sigma = V_{0} \cup V_{i}$
let $N = nbhd \beta$ in $V_{i} = D^{3} \times [\circ, i]$
let $V_{i} = V_{i} - N$, $V_{0}' = V_{0} \cup N$
clami: $\Sigma' = \partial V_{0}' \circ new$ Heegoard splitting of M
indeed V_{i}
 V_{0}
 $0, chandler$
so we add a 1-hondle to V_{0}
 $so we add a 1-hondle to V_{0}
 $so V_{0}' + sill handle body$
then attach whild $\rho \to V_{0}'$
(re $Z = handle) and now
add other Z -handles
is called a stabilization so handle body
note on handle decomposition level we just addecd
a cancelling pair of handles
 $Th^{\frac{1}{2}}$ (Reidemeister - Singer):
Ony Z Heegoard surfaces for M are isotopic ofter
possibly stabilizing each surface$$

to prove this (from our perspective) we need something new. G. <u>Cert and Smale theory</u> first (ert theory addresses how to get between 2 Morse tunctions recall a critical point p of f:M-> IR is non-degenerate if df: M-> T*M is The service of p it dt not it at p what's the next closest thing? "order 1 tangency, in one direction" we say p is <u>embryonic</u> if ker Hess, f is 1 dimensional and, in local coords, 3^{cd} derivative we call functions f with non-degen. of f in direction of ker Hesspt and embryonic critical is non-zero points generalized points junctions re in dif 1 geno section = line and in that Morse functions re in dif 1 geno section = line and in that direction $\frac{34}{3x^3} \pm 0''$ similar to Morse lemma we have lemma If p is an embryonic critical point of f, then 3 local words about p in which f takes the form $f(x_{i},...,x_{n}) = f(\rho) - x_{i}^{2} - ... - x_{k}^{2} + x_{k+i}^{2} + ... + x_{n-i}^{2} + x_{n}^{3}$ h is inder of p Similar to Mm about the existence of Morse functions we have Tho(Cerf) H fo, f. : M → R are Morse functions, then for generic paths $f_t: M \rightarrow \mathbb{R}$ connecting f_o, f_r we can assume $\exists a$ finite numbers of $t_r < ... < t_k$ such that