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SUMMARY

We study braided embeddings, which is a natural generalization of closed braids

in three dimensions. Braided embeddings give us an explicit way to construct lots

of higher dimensional embeddings; and may turn out to be as instrumental in

understanding higher dimensional embeddings as closed braids have been in un-

derstanding three and four dimensional topology. We study two natural questions

related to braided embeddings, the isotopy and lifting problem.

The isotopy problem is the exact analogue of a classical theorem of Alexander,

which lets us study knots and links in three dimensions using the theory of braids.

This theorem was generalized in ambient dimension four by Viro and Kamada,

and we extend this result in ambient dimension five in the piecewise linear cate-

gory.

The lifting problem can be thought of as a generalization of the classical Borsuk-

Ulam theorem, where we look at the problem of lifting general branched covers

instead of two fold covers. In fact, Hansen and Petersen studied this problem

for honest branched covers. In this thesis, we develop general criterion to ex-

tend braided embeddings over a branch locus; and use it to systematically study

branched covers over low dimensional spheres. In fact, we were able to affirma-

tively answer an open question of lifting honest covers over orientable surfaces

using the theory of lifting branched covers.

Finally, we briefly discuss on interactions of braided embeddings and contact

geometry, following the work of Etnyre and Furukawa, and show non-existence of

certain branched covers.

xiii



CHAPTER 1

INTRODUCTION TO BRAIDING

1.1 Closed Braids

A braid1 is a collection of strands in three space going from left to right which are

allowed to pass under or over each other.

Figure 1.1: A braid

Closing up the ends of a braid gives us a link (as illustrated), which we call a

closed braid.

Figure 1.2: Closure of a braid

One might wonder if these closed braids form a proper subset of all links in R3,

or is it always possible to isotope any link to be a closed braid. Remarkably the

1We will give a more formal definition in Chapter 3.

1



latter turns out to be true, by a classical theorem in knot theory due to Alexander.

This result (and Markov’s theorem) gives us a way of studying knot theory using

braids, essentially reducing geometric data to combinatorial (or algebraic) data of

braids. This perspective has been useful in the study of knot theory, for instance,

the Jones polynomial [42] is a very useful knot invariant originally defined using

braids.

The purpose of this thesis is to study higher dimensional braids, with the hope

that they will be similarly useful in the study of higher dimensional knots. In this

chapter, we will discuss with two examples of how to braid a knot in three space,

and a torus in four space.

1.2 An example of braiding in dimension three

A knot in three space is a piecewise linear (or smooth) embedding of S1 in R3.

To aid in visualization, traditionally we draw project in on the plane, and at each

crossing we rememebr the over or under crossing information, and we call this a

knot diagram, see for example Figure 1.3. Sometimes we consider oriented knots,

by which we mean a choice of direction along which to traverse the knot, and we

denote the orientation by an arrow on the knot diagram. We denote the origin in

the plane by the green dot in Figure 1.3.

We would like to illustrate a classical theorem of Alexander [3], stating that

every knot in three space is isotopic to a closed braid, by showing how to carry out

this braiding process in the example of Figure 1.3. Recall that for a closed braid all

the strands must go in the same direction without turning back. This turns out to

be equivalent to requiring that all the simplices are counterclockwise, when seen

from the origin of the knot diagram. In the example of Figure 1.3, there are five

edges, exactly three of them are counterclockwise (the ones with the arrows on

them) and the other two are clockwise.

2



Figure 1.3: A knot diagram in the plane, where the green dot represents the origin.

We note that for the two clockwise edges, all the crossings are of the same type,

i.e. all crossings are overcrossings for one of the clockwise edges, and all cross-

ings are undercrossings for the other clockwise edge. Given this information, we

can find an embedded triangle in three space, only meeting the knot in a single

clockwise edge, and going over (or under) the rest of the knot diagram, so that its

projection in the knot diagram contains the origin. We can then push a clockwise

edge across this triangle and we see that the clockwise edge is replaced by two

other edges, which turns out to be counterclockwise. In Figure 1.4, this is done in

a few steps (some intermediate steps show the triangle we are picking), first we

select the clockwise edge with only overcrossings, find a triangle going over the

rest of the picture, and use this triangle to isotope the clockwise edge to two other

edges. We then repeat the process with the clockwise edge with only undercross-

ings, this time choosing a triangle which goes under the rest of the knot diagram.

The final step shows a planar isotopy so that the resulting knot looks like a

closed braid, and we elaborate this step in Figure 1.5.

We have seen so far is doing this triangle move replaces a clockwise edge with

two counterclockwise edges as long as the triangle contains the origin. This is true

more generally, and we will defer the proof to a later chapter (see Lemma 5.3.2),

where we carry out a similar braiding process in slightly higher ambient dimen-

3



Figure 1.4: An example illustrating how to isotope a knot to a closed braid.

sion.

We would also like to point out that this process is illustrative of a method

which isotopes a given knot into a closed braid, and does not tell anything about

the minimal number of triangle moves required or what the minimal number of

strands is required to express the given knot as a closed braid. The reader may

note that by a global translation, we may bring the origin to the center of the knot

diagram as shown in Figure 1.6, and then all the simplices are counterclockwise.

1.3 Braiding the standard unknotted torus

As a warm-up to a more general general braiding process, in this section we will

describe, by pictures, a process to braid the standard unknotted torus. Each pic-

ture in this section will consist of several sub-figures, which are different projec-

4



Figure 1.5: An example illustrating how to isotope a knot with only cunterclock-
wise edges to a closed braid.

Figure 1.6: Translate of knot diagram in Figure 1.3, so that all the edges are coun-
terclockwise.

tions of the same object in three space. An interested reader may find an interactive

demonstration at people.math.gatech.edu/ skolay3/braidtorus.html,

and the Mathematica code to generate these images in the appendix.

We will begin with an piecewise linear embedded torus in three space, with a

cell structure outlined, as shown in Figure 1.7. We explain below how the cells are

5
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colored. The black dot represents the origin, and we will determine if a cell of the

torus is positive (generalization of counterclockwise) or negative (generalization

of clockwise), and color it yellow (respectively blue). We will use the following

working definition of positive and negative cells: if we look at a ray starting at

the origin, if it intersects a cell on the inside (respectively outside), then the cell is

called positive (respectively negative).

Note that in order to talk about outside and inside of the torus we need to

choose an orientation on it, just like we had to pick an orientation on the knot for

the example of braiding we saw in dimension three. Also, just like in that example

in dimension three, in the braiding process of the torus, all the cells will be either

positive or negative (the degenerate cases can be avoided).

In Figure 1.7, we see the four cells nearest to the origin are negative, while the

remaining twelve cells are positive. We would like to do the equivalent of the

triangle move we did in Section 1.2. There is a nice generalization of this move in

all dimensions, called cellular move (see [RS]), where we find an embedded n-cell

∆ intersecting a submanifold in a (n − 1)-ball B in ∂∆, and we may use the n-cell

to isotope B with its complementary (n− 1)-ball ∂∆ \ B̊.

For our example, the negative region is an annulus comprising four cells, and

we cannot use a single cellular move to make the all the cells positive. To begin

with, we would like to isotope one of the four negative cells across the origin. An

easy way to visualize this is to translate the entire torus so that the origin passes

through one of the negative cells. The result of this operation is shown in Fig-

ure 1.8. We note that only one previously negative cell became positive, the cell

through which the origin passes. The rest of the cells have the same orientation as

before.

Note that after doing the translation, the negative region is a disc comprising

three 2-cells. We can now use a single cellular move to push the negative region

6



Figure 1.7: The Standard Torus in R3.
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Figure 1.8: Translate the origin.
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Figure 1.9: The cell along which we will push negative region (in blue) accross to
make it positive (in green). 9



over the origin. To do this we will simply choose a point near the origin inside the

torus, and cone the negative region over this point, so as to obtain a 3-ball which

contains the origin in its interior. This is illustrated in Figure 1.9.

We observe that this 3-ball intersects the torus in places other than the negative

cells. Here is where we will use the fourth dimension. We may choose the fourth

coordinate of the cone point to be so large so that the intersection of this 3-ball

with the torus is precisely the three negative cells. After performing the cellular

move, the three blue cells are replaced by new positive cells, which are shown in

green in Figure 1.10, so that it is easy to distinguish with the cells that remained

unchanged. The reader will note that any ray starting from the origin hits the torus

in at most two points. In fact, with the exception of four such rays, every ray hits

the torus on the inside at exactly two points. The four exceptional rays come hit the

torus at the four vertices of the yellow cell, which became positive from positive

after translation. These four points corresponds to branched points of a branched

covering2 obtained by radial projection in the unit sphere. Any braided embedding

of the torus must necessarily have such branch points, as the torus cannot be an

honest cover over the two sphere.

2We will define coverings and branched coverings in Chapters 2.
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Figure 1.10: Projection of braided torus in R3.
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1.4 Outline of strategy for a more general braiding result

Now that we have discussed examples how to braid a knot in three space, and

braid an unknotted torus in four space, let us discuss the points we have to address

in order to prove a general braiding result for knotted surfaces in four space.

1. Generalize the notions of positive and negative cells in higher dimensions,

when we may not be able to visualize clockwise/ counterclockwise (like we

did in Section 1.2) or inside and outside of a cell (like we did in Section 1.3).

2. Show that being a closed braid is equivalent to all cells being positive.

3. We have to address the issue that in general, a negative cell will have cross-

ings in the projection. In our example in Section 1.2 all the crossings on a

negative cell were of the same type (i.e. all overcrossings or all undercross-

ings), and in our discussion in Section 1.3, we did not have any crossings at

all.

In general, we should expect a cell to have both over and undercrossings,

and possibly higher order crossings (like triple points, quadruple points etc),

depending on the (co)-dimension. The strategy will be to break up negative

cells into smaller pieces where there is only one type of crossings, and deal

with these crossings individually.

We will discuss how to solve these issues in the Chapter 5.
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CHAPTER 2

COVERINGS AND BRANCHED COVERINGS

In this chapter we will discuss covering and branched covering maps, and their

monodromies. While we will refer the reader to standard texts in algebraic topol-

ogy (say for example [33] and [61]) for relations with the fundamental groups and

Galois correspondence of covering maps, we will focus on monodromy maps of

(branched) coverings and discuss some examples.

2.1 Definition of a covering map

Definition 2.1.1. We say that a continuous map p : X → Y is a covering map if for

any y ∈ Y has an open neighbourhood U which is evenly covered by p, i.e. p−1(U)

is a possibly disconnected open set in X , and p maps each connected component

of p−1(U) homeomorphically onto U .

We can also define it more succinctly using the language of fiber bundles.

Definition 2.1.2. A covering map is a fiber bundle where the fiber is discrete.

Example 2.1.3. The exponential map exp : R → S1 is a covering map, where we

think of R and S1 as the imaginary axis and the unit circle in the complex plane.

Alternately, one can think of this as the quotient map R→ R/Z, and this relates

to the fact that the fundamental group of the circle is isomorphic to Z, the integers.

Example 2.1.4. For any integer n 6= 0, the n-th power map pn : S1 → S1 defined by

z 7→ zn

is a covering map, where we think of S1 as the unit circle in the complex plane.
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Example 2.1.5. For any n ≥ q, the quotient map qk : Sk → RPk obtained by quoti-

enting out by the antipodal action is a two fold covering map.

For the purposes of this chapter we will assume all our topological spaces are

connected, locally path connected and semi-locally simply connected (these spaces

have universal covers). In the rest of the thesis, we will assume all our spaces are

manifolds, so this hypothesis will be satisfied.

2.2 Basic propositions about covering maps

It is not hard to check that products of evenly covered neighbourhoods are evenly

covered; and hence it follows that:

Proposition 2.2.1. Products of covering maps are covering maps.

It follows from the above proposition and Examples 2.1.3 and 2.1.4 that the

following are also covering maps.

Example 2.2.2. The Cartesian product of exponential map expd : Rd → Td is a cov-

ering map to the d-torus, and we can also think of this map as the quotient map

Rd → Rd/Zd.

Example 2.2.3. For any sequence of non-zero integers n1, ..., nd; the Cartesian prod-

uct

pn1 × ...× pnd : Td → Td

is a covering map of the d-torus over itself.

Of course we may combine the above two examples and get the following cov-

ering map

Example 2.2.4. For any sequence of non-zero integers n1, ..., nd; the Cartesian prod-

uct

pn1 × ...× pnd × expe : Td × Re → Td+e
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is a covering map over the (d+ e)-torus.

In fact, the two above examples completely characterize connected covering

spaces over a torus.

Proposition 2.2.5. Any covering map p : X → Td, with X connected, is of the form in

Example 2.2.4. Moreover if p is finite sheeted, then it is of the form of Example 2.2.3.

Proof. We note that p∗(π1X) is a subgroup of π1Td ∼= Zd. We can choose a basis

(as a free module over Z) u1, · · · , uc of π1Td; and a basis v1, · · · , vc, wc+1, · · · , wd

of π1Td; so that each ui is an integer multiple of vi; and no linear combination of

wj’s gives us any ui. If we use the simple closed curves corresponding to the basis

v1, · · · , vc, wc+1, · · · , wd to write the torus as a product of circles, we see that we are

in the situation of Example 2.2.4. Moreover, in case the covering is finite sheeted it

is clear that c = d (as the covering of R over S1 is not finite sheeted), and so we are

in the situation of Example 2.2.3.

We will mostly be concerned with finite sheeted covering maps, as general cov-

ering maps may not behave well under composition [61, Chapter 9].

Proposition 2.2.6. Composition of finite sheeted covering maps is a covering map.

We refer the reader to [61, Chapter 9] for a proof.

Claim 2.2.7. Pull-backs of covering maps are covering maps.

Proof. Covering maps are fiber bundles where the fiber is a discrete collection of

points. Pull-backs correspond to a base change, and the fibers remain unchanged.

So the result follows.

Alternately, it can be checked that the pull back of an evenly covered neighborhood

is also evenly covered.
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Proposition 2.2.8. [33, Proposition 1.33] Given any covering map p : (X ′, x′0)→ (X, x0),

and a continuous map f : (Y, y0) → (X, x0), then f lifts to f ′ : (Y, y0) → (X ′, x′0) iff

f∗(π1(Y, y0)) ⊆ p∗(π1(X ′, x′0)).

A special case, known as path lifting property, happens when Y is an inter-

val, and in this case the condition f∗(π1(Y, y0)) → p∗(π1(X ′, x′0)) is always true as

π1(Y, y0) is trivial.

We thank Carlo Petronio for outlining the following result to us.

Proposition 2.2.9. Any branched covering of an orientable manifold over a non orientable

manifold must factor through the orientation double cover.

Proof. Suppose p : (Y, y0) → (X, x0) with Y orientable, and X non-orientable. Let

q : (Z, z0) → (X, x0) be the orientation double cover. Consider an arbitrary point

y ∈ Y and some path γ joining y0 to y. Then we can path lift p(γ) with respect to

the covering map q, and we set r(y) to be the second endpoint of this lift (the first

endpoint being z0). To see r : Y → Z is well defined, note that if we had another

path δ from y0 to y, then the concatenation γ ∗ δ̄ is loop on Y which is orientation

preserving (as Y oriented). Since p is a local homeomorphism, p(γ ∗ δ̄ is orientation

preserving in X , and so it lifts to a loop in Z. Thus, the second endpoint of the

path lifts of p(γ) and p(δ) coincide, so the map r : Y → Z is well-defined. Now one

can check that p = q ◦ r, and the result follows.

2.3 Monodromy of a Covering map

Suppose we have a covering map p : (X, x1) → (Y, y1) with n sheets. Then

the covering map is determined (up to conjugation) by the monodromy map φ :

π1(Y, y1) → Sn, described below. Let us suppose the points in the pre-image of y1

are x1, ..., xn (in other words we are labelling the pre-image points with 1, ..., n, and

different such choices give rise to conjugate representations), then for any loop γ in
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π1(Y, y1), if we lift it we get a permutation of {1, ..., n} by seeing what the endpoint

of the lift starting at mi is. This defines a group homomorphism φ : π1(Y, y1)→ Sn

which we will refer to as permutation monodromy.

To go from a monodromy representation φ : π1(N, n1)→ Sn to a covering map,

we fix some j ∈ {1, ..., n}, and look at the subgroup H := {γ ∈ π1(N, n1)|φ(γ)(j) =

j}. By the correspondence between subgroups of the fundamental group and cov-

ering spaces, H gives us a covering space with the required properties.

Let us now discuss the monodromy maps for some of the examples of coverings

that we saw in the last section.

1. The monodromy map of the n-th power map pn : S1 → S1 is given by

π1(S1) ∼= Z→ Sn defined by 1 7→ (12...n).

2. The monodromy map of the double cover pn : Sk → RPk is the unique non-

trivial map π1(RPk) → S2, i.e. it is the identity map when we identify both

π1(RPk) and S2 with Z/2Z.

Let us now discuss how monodromy maps behave for pull-backs of coverings

and composition of coverings.

Claim 2.3.1. If f : (Y, y1)→ (X, x1) is a continuous map, and p : X ′ → X is a covering

map with monodromy φ : π1(X, x1) → Sn, then the pullback covering f ∗p : f ∗X ′ → Y

has monodromy φ ◦ f∗ : π1(Y, y1) → Sn, where it is assumed that the ordering on the

pre-image points over the respective base-points is consistent with the pullback diagram1.

Proof. If γ is any closed curve in Y based at y1, then f ◦ γ is a closed curve in X

based at x0. If we pick any arc β covering γ (i.e. f ∗p ◦ β = γ), then the arc p∗f ◦ β

covers f ◦ γ. The result now follows from the consistent choice of numbering the

pre-image points over y1 and x1.
1 otherwise the monodromy map will differ by a conjugation.
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2.3.1 Monodromy under composition

Now we will discuss how monodromy map of a composition of finite sheeted cov-

erings looks like in terms of the individual monodromy maps. Suppose we have

two covering maps q : (Y, y1) → (X, x1) and p : (Z, z1) → (Y, y1), with associ-

ated monodromy maps φ : π1(X, x1) → Sn and χ : π1(Y, y1) → Sm. Suppose the

pre-images of the basepoint x0 under p are y1, ..., yn (i.e. we are fixing some order-

ing among them), and let us choose some paths α1, α2, ...αn joining y1 to y1, ..., yn

respectively (we may choose α1 to be the constant path).

Consider the composite covering r = q ◦ p : (Z, z1)→ (X, x1). Suppose the pre-

image points of yi under q are zi,1, ..., zi,m , and thus we choose the lexicographic

ordering for the pre-images of x1 under r, i.e. we will enumerate these points as

z1,1, ..., z1,m, ..., zn,1, ..., zn,m.

For any based loop γ in (X, x1), let us call the path lift of γ starting at yi to be γi,

for 1 ≤ i ≤ n. We know that that γi ends at yφ(γ)(i), by definition of the monodromy.

Then the monodromy ψ for r is determined by:

ψ(γ)(i, j) = (φ(γ)(i), χ(αi ∗ γi ∗ ᾱφ(γ)(i))(j)). (2.1)

Let us make a few observations about the choices we made:

• If we had chosen some other collection of paths βi joining x1 to xi, then the

resulting monodromy using the β curves will be conjugate to the one coming

from the α curves, the conjugating permutation is given by the permutation

built out of blocks χ(αi ∗ βi).

• If we chose some other ordering of the pre-image points of the basepoint x1

under p, or their pre-images under q, then the monodromy of r the compo-
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sition will also change by a conjugation, and the conjugating permutation is

the one coming from the changing of the labeling.

2.4 Branched Coverings

By a branched covering in the piecewise linear category we will mean a map p :

M → N so that there is a codimension two subcomplex B in M so that if we set

B̃ = p−1(B), then the restriction p|M\B̃ : M \ B̃ → N \B is a honest covering map.

For a smooth branched cover we will put more restrictions, we want B to be

a smooth codimension two submanifold with trivial normal bundle, and for any

point b̃ ∈ B̃, there product neighbourhoods around b̃ and b so that the map p looks

like (c, z)→ (c, zn) for some n ∈ N. This restriction forces the map p : B̃ → B to be

a covering map.

2.5 Monodromy of a branched covering

Given a branched covering space p : M → N , then if we remove the branch locus

B from N , and its pre-image B̃ from M , then the restriction p|M\B̃ : M \ B̃ → N \B

is a covering map, which completely determines the branched covering, by a result

of Fox [25]. So by monodromy map of a branched covering map, we will mean the

monodromy map of the associated covering map.

2.6 Cut and paste way to construct a branched covering from the monodromy

data

Let us consider a disc branched over two points, with the monodromy map φ :

F 〈a, b〉 ∼= π1(D2 \ {p, q})→ S2 defined by a 7→ (12) and b 7→ (12), where a, b denote

the simple closed curves surrounding the punctures p, q in the fundamental group.

It is customary to encode the monodromy information by choosing a generating
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set of the fundamental group and labeling (or coloring) them by their correspond-

ing monodromy permutations, and this completely specifies the monodromy map.

For our example, we can simply label (or color) each of the two punctures with the

transposition (12), see Figure 2.1.

(12) (12)

Figure 2.1: A disc branched over two points.

As discussed in the last section this describes a branched covering over the disc,

but we will now describe an explicit cut and paste construction for surfaces, and

visualize it with the example we are discussing.

1. First we will introduce some additional arcs so that if we cut along these arcs

(called the branch cuts) we obtain a simply connected space. We will label

the new arcs by + and − in and alternating way.

(12)(12) + _ _
+

Figure 2.2: Disc branched over two points, before (left) and after (right) making
branch cuts.

For our example, this is done simply by drawing two arcs from the punctures
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straight to the boundary, see Figure 2.2. We note that cutting along these arcs

gives us a disc, which is simply connected.

2. We will take d (where the monodromy maps to Sd) disjoint copies of the space

obtained at the end of the first step (after branch cuts).

The point being that after the branch cuts were made, we get a simply con-

nected space, and we know any covering space over this space will simply

have to be a disjoint collection of the same space.

+ _ _
+

+ _ _
+

+

+

+

+

_

_

_

_

Figure 2.3: Left: Two disjoint copies (shaded in yellow and grey) of the disc ob-
tained after making the branch cuts. The picture is on the right is homemorphic,
in order to help visualize the next step.

In our running example, we simply take two copies of the disc, except we

use two different shades to indicate they correspond to different sheets of the

covering, see Figure 2.3.

3. We glue the branch cuts using the monodromy data, i.e. we take the i-th

branch cut in the j-th disjoint copy of the simply connected space decorated

with +. and glue it to the i-th branch cut in the φi(j)-th copy labelled with −.
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In our running example, we only have two sheets, and in this case we glue

the + branch cuts with the corresponding − branch cuts in the other sheet.

We end up with a two fold covering of a twice punctured annulus over the

twice punctured disc.

4. We have obtained the associated covering space coming from the monodromy;

and we can complete the construction by filling in the branch points and its

pre-image points.

In our example, we end up getting a branched covering of an annulus over

(12) (12)

Figure 2.4: The resulting branched cover by making the necessary identification,
and filling in the punctures.

the disc with two branch points, see Figure 2.4.
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Even though we described this procedure for branched cover over surfaces, it

is possible to do similar construction in higher dimensions, but they are harder

to visualize, as the branch cuts are hypersurfaces. However colorings are a very

convenient way of describing branched coverings, as popularized by Fox [26]. We

will discuss colorings in more generality in Section 9.1.

2.7 Manifolds branched over spheres

One can hope to understand all closed oriented manifolds of a given dimension

n coming from some sort of operation on a low-complexity n-manifold, like the

sphere Sn. Another classical theorem of Alexander shows this is indeed the case:

Theorem 2.7.1 (Alexander [2]). Every closed oriented piecewise linear n-manifold is a

piecewise linear branched cover over the n-sphere.

We remark here that in the above result there is no control over the number of

sheets of the covering, and the branch locus can be an arbitrary codimension two

subcomplex. Moreover, Bernstein and Edmonds [7] showed that in general the

theorem cannot be improved. In particular, they showed that:

• Any branched covering of the n-torus over the n-sphere must have at least

n-sheets (this result was shown first by Fox [27] in case n = 4).

• The quaternionic projective plane HP2 cannot be obtained as a branched

cover of the 8-sphere where the branch locus is a submanifold.

However, one can hope that in low dimensions, we can realize all closed ori-

ented n-manifolds as a branched over over the sphere, with the branch locus being

a submanifold and the degree of the covering being n. It is easy to see this in the

case n = 1, as S1 is the only closed connected 1-manifold. By the classification of

surfaces, we know that any closed oriented surface is determined by its genus g.
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Figure 2.5: Consider the surface of genus g sitting in R3 with an axis of rotational
symmetry. If we quotient out we get a sphere with as many branch points as the
number of times the axis intersects the surface.

We know that quotienting the surface of genus g by the hyperelleptic involution

gives us the 2-sphere with 2g + 2 branch points, see Figure 2.5.

When n = 3, we have the following theorem in both smooth and piecewise

linear categories:

Theorem 2.7.2 (Hilden [34]; Hirsch [38]; Montesinos [60]). Every closed oriented three

manifold is a three sheeted simple branched cover over S3, with the branch locus being a

knot.

Here by simple branched covering, we mean above any branch point only two

sheets can come together. There are similar results in dimension 4, but with some

restrictions.

Theorem 2.7.3 (Piergallini [63]). Every closed oriented piecewise linear four manifold

is a four sheeted simple branched cover over S4, with the branch locus being a transverse

immersed piecewise linear surface.
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CHAPTER 3

THE BRAID GROUP

In this chapter, we will study braids from a more algebraic viewpoint. We will

see several equivalent definitions of the braid group, and as we will see later on,

certain viewpoints are more convenient to work with in some situations. In the

later half of this chapter we will record several results about braid groups for future

use.

3.1 Equivalent definitions of the braid group

The braid groups were first defined (implicitly) by Hurwitz in [39], but was first

explicitly studied by Artin [4, 5]. The braid group on n strands has the following

equivalent descriptions:

3.1.1 Braids as loops in configuration spaces

Consider the ordered configuration space of n distinct points in the plane C (or

equivalently R2, or the open unit disc)

Confn(C) = {(z1, ..., zn) ∈ Cn|zi 6= zj for all i 6= j}.

This space is also described as the complement of the braid arrangement (i.e. the

hyperplane arrangement comprising of the various fat diagonals {zi = zj}). Since

all the points in the configuration space are distinct, we may quotient out by the

natural permutation action of the symmetric group Sn and obtain the unordered
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configuration space:

UConfn(C) = {[z1, ..., zn] ∈ Cn|zi 6= zj for all i 6= j},

where [z1, ..., zn] denotes the unordered tuple with elements z1, ..., zn. We note that

the quotient map is a regular covering map of degree n!.

Definition 3.1.1. The braid group Bn is the fundamental group of the ordered con-

figuration space Confn(C).

Definition 3.1.2. The pure braid group PBn is the fundamental group of the un-

ordered configuration space UConfn(C).

By covering space theory, we get an exact sequence:

1→ PBn → Bn → Sn → 1.

3.1.2 Braids as collection of strands

A geometric braid collection of properly embedded n-strands in C× I going from

left to right (along the I direction) so that the projection of their endpoints onto the

C factor are the same collection of points. A braid will be an isotopy class of such

geometric braid (where the isotopy is through braids).

We can concatenate two braids on the same number strands by stacking them

horizontally. Under this operation of concatenation, the collection of all n-braids,

form a group. Here the identity braid is n-parallel strands with no crossings, and

inverses are given by the reverse of the mirror of a braid.

3.1.3 Braids as mapping classes

The mapping class group of a surface S is defined to be the group of isotopy classes

of orientation preserving diffeomorphisms of the surface which restrict to the iden-
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tity on the boundary of S. The braid group on n-strands can be canonically identi-

fied with the mapping class group of the closed ball B2 with n marked points.

3.1.4 Braids as automorphisms of free groups

Let us denote by Fn the free group on n letters x1, · · · , xn, and its automorphism

group by Aut(Fn). The braid group on n-strands can be identified with the follow-

ing subgroup of the automorphism group:

{f ∈ Aut(Fn)| f(xi) is conjugate to some xj, f(x1 · · ·xn) = x1 · · ·xn}.

Remark 3.1.3. Our conventions (which are consistent with majority of the litera-

ture) for concatenating loops in the fundamental group (and concatenating geo-

metric braids) is left to right; whereas our conventions for composing mapping

classes (and more generally functions) is from right to left. Consequently, the iden-

tifications between one of our first two formulations of the braid group and and

one of the last two formulations will not be a group isomorphism but a group

anti-isomorphism, i.e. a bijective group anti-homomorphism. Of course this issue

could be fixed by defining the opposite group for two of these formulations, but

then one has to keep track of this whenever one tries to use a result from a source

using the opposite conventions.

Remark 3.1.4. These groups were first defined by Hurwitz (who called them Mon-

odromy Groups A and B, ”when translated”), however this viewpoint was forgot-

ten until it was rediscovered by Fox and Neuwirth [24].
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Figure 3.1: A three stranded braid

3.2 Outline of the equivalence of various definitions

3.2.1 From collections of strands to configuration spaces and back

Given any collection of strands in C × I , we can think of the intersection of the

strands with C × {t} for each t ∈ I . Since the geometric braid cannot go back-

wards we see that, for each t the intersection is a collection of n distinct points, or

an element of the configuration space. As t varies in I , we get a path in the config-

uration space, which is in fact a loop by our requirement that the projection along

the endpoint of I is the same collection of points.

Conversely, given an element of π1(UConfn(C)), we may choose a loop in the

configuration space which represents it. The trace of this loop in C × I gives us a

geometric braid.

Moreover, isotopy of a geometric braid (through braids) correspond precisely

to homotopy of based loops in the configuration space, which leads to the identifi-

cation between the first two viewpoints.

Figures 3.1 and 3.2 illustrate this equivalence in the case of a three stranded

braid.
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Figure 3.2: We can view three stranded braid in Figure 3.1 as a collection of three
points in C by sliding the sic (copy of C) from left to right and see where the strands
intersect

3.2.2 From mapping classes to collections of strands and back

The Alexander trick (see [64]) tells us that any homeomorphism of the closed ball

B2 which is pointwise fixed on the boundary is isotopic to the identity. Thus given

a mapping class ofB2 with nmarked points, we can look at the trace of this isotopy,

and the trace of the marked points in the interior of B2 × I gives us a geometric

closed braid.

Conversely, a geometric n-braid is an isotopy of n distinct points in B2 (note

that the interior of B2 is homeomorphic to C), and by the Isotopy extension theo-

rem, can be extended to an isotopy of B2. The time one map of this isotopy gives

rise to the required mapping class.
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3.2.3 From mapping classes to automorphisms

Given any mapping class of B2 with n marked points, this induces a homeomor-

phism of the n-times punctured disc onto itself (where we remove the branch

points). In turn, this homeomorphism induces an automorphism on the funda-

mental group of the n-times punctured ball, which is isomorphic to the free group

Fn, freely generated by loops {xi}1≤i≤n surrounding the punctures. Since any

homeomorphism of the punctured disc must send neighbourhood of a puncture

to neighbourhood of some other puncture, it follows that any automorphism of

the fundamental group must send a loop xi to some conjugate of xj for some j.

Moreover we see that this homeomorphsim has to preserve the homotopy class of

the loop parallel to the boundary, i.e. the element x1...xn in the fundamental group.

This gives us an automorphism with desired properties starting with any mapping

class. That all such automorphisms arise from mapping classes is harder to prove,

and we refer any interested reader to the original papers of Artin [4, 5].

3.3 Presentation of the braid group

3.3.1 Artin’s presentation

If we let σi denotes positive half twists between i-th and (i+ 1)-th strand, the braid

group Bn on n-strands has a presentation (due to Artin [4, 5])

Bn = {σ1, ..., σn−1|σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i < n−1, σiσj = σjσi if |i−j| > 1}

The relation σiσi+1σi = σi+1σiσi+1 is called the braid relation. The braid relation

can be reformulated as σ−1
i+1σiσi+1 = σiσi+1σ

−1
i , which is the second Reidemeister

move. The relation σiσj = σjσi if |i − j| > 1 is called the far commutation rela-

tion, which corresponds to moving crossings of non overlapping regions past one
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another.

Let us note some consequences that follow easily from Artin’s presentation:

1. All the Artin generators σi are conjugate, as seen directly from the alternative

formulation of the braid relation. Consequently, the braid group is normally

generated by a single element σ1; and thus the abelianization of the braid

group is the integers.

2. There is a group homomorphism exp : Bn → Z sending each generator σi 7→

1 (since both the braid and far commutation relations hold after applying

this map). This homomorphism keeps track of the sum of the exponents

when a braid is written as a word in the standard generators, and thus this

homomorphism is known as the exponent sum. Note that the exponent sum

coincides with the abelianization map.

3.3.2 Forgetful map from the braid group to the symmetric group

Looking at braids from the second viewpoint, if we forget all the crossing informa-

tion and just look at where the endpoints go, we get a permutation Forget: Bn →

Sn. Forgetting the crossing information corresponds to adding the relation σ2
i = 1

to Artin’s presentation of the braid group, and this gives us the classical presenta-

tion of the symmetric group Sn.

Sn = {σ1, ..., σn−1|σ2
i = 1 for all 1 ≤ i ≤ n−1, σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i < n,

σiσj = σjσi if |i− j| > 1}
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3.4 Center and centralizers

3.4.1 Center of the braid group

Proposition 3.4.1. The center of the braid group Bn is an infinite cyclic group generated

by the full-twist ∆2 = (σ1...σn−1)n.

3.4.2 Centralizers of elements in the braid group

For future use, let us record the a few facts about the structure of centralizers of

braids.

Proposition 3.4.2. (Kerékjártó [46, 18], Eilenberg [20]) For any m coprime to n, the

centralizer of the periodic braid (σ1...σn−1)m in Bn is the infinite cyclic group generated by

σ1...σn−1.

We refer the reader to [31, Section 5] for definitions of interior and tubular

braids of a reducible braid and details of the proof of the following result.

Theorem 3.4.3. [31, Theorem 1.1] (see also [51, Section 3]) The centralizer Z(β) of a non

periodic reducible braid β in regular form fits in a split exact sequence:

1→ Z(β[1])× ...× Z(β[t])→ Z(β)→ Z0(β̂)→ 1,

where β[1], ..., β[t] are the various interior braids and β̂ is the associated tubular braid; and

Z0(β̂) is the subgroup of the centralizer Z(β̂) of the tubular braid β̂ consisting of elements

whose permutation is consistent with β.
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CHAPTER 4

BRAIDED EMBEDDINGS

One can hope that higher dimensional braids will play a similar role in higher

dimensional knot theory. Braids have been generalized in higher dimensions in

several different ways, our point of view is a natural one in studying embeddings

of manifolds. In fact what we are calling braided embeddings have been studied

by various mathematicians, using slightly different names: polynomial coverings

by Hansen [32], d-fat covers by Petersen [62], folded embeddings by Carter and

Kamada [16], and sometimes without explicitly using a name such as in the work

of Hilden-Lozano-Montesinos [35]. Rudolph [66], Viro and Kamada [43, 44] stud-

ied braided surfaces in R4, obtaining analogues for Alexander’s braiding theorem

for surfaces. Carter and Kamada studied braided embeddings and immersions in

low dimensions, and talked about existence and lifting problems. Etnyre and Fu-

rukawa [21] studied braided embeddings in all dimensions, and focused on their

interplay with contact embeddings.

We work in both the smooth and piecewise linear category linear categories. We

will not mention the categories separately in case they behave similarly, however

when necessary we will deal with them separately.

4.1 Braided Embeddings

We say that an embedding f : M → N × Dl is a co-dimension l braided embedding

over N if the embedding composed with the projection to N , pr1 ◦ f : M → N is

a (oriented in case both base and covering spaces are oriented) branched covering

map.

Remark 4.1.1. If we do not specify the co-dimension, a braided embedding would
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be a co-dimension two embedding of M to N ×D2.

We will study two natural problems related to braided emdeddings, the lifting

problem and the isotopy problem.

Question 4.1.2. (Lifting Problem) Can every branched cover be lifted to a co-dimension

l braided embedding?

Since we are always working with compact manifolds, by Whitney embedding

theorem [70], they always embed in a sufficiently high dimensional disc, and hence

for sufficiently large l, any branched covering lifts to a codimension l braided em-

bedding (because it embeds in the disc factor). Hence it makes sense to ask the

following:

Question 4.1.3. What is the smallest l so that a given branched cover can be lifted

to a co-dimension l braided embedding?

Let us start begin by discussing the this question for some well known families

of honest covering maps.

Example 4.1.4. pn : S1 → S1 defined by z 7→ zn, for n ∈ N (similar result holds for

negative integers). For n = 1, the map p1 is the identity and hence an embedding,

so l = 0 in this case. For n > 1, we claim that the smallest such l is 2. It is clear that

there are codimension two lifts. That there is no codimension one lift, is illustrated

in Figure 4.1 for the case when n = 3.

Alternately, this statement also follows as a consequence of the intermediate

value theorem.

Example 4.1.5. an : Sn → RPn induced by quotienting out by the antipodal action.

In this case the smallest such l turns out to be n + 1. To see this note that since Sn

embeds in the discDn+1 (being the boundary of the closed disc), we have a braided

embedding defined by an × i : Sn → RPn × Dn+1 (where i is some embedding of

Sn in Dn+1). That l cannot be any less than n is precisely the content of the Borsuk

Ulam theorem [13].
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A

B
P Q

R S

Figure 4.1: Suppose n = 3, and we have a codimension 1 braided embedding of S1

over S1. Suppose we have drawn a part of the image starting at A and ending at
B, together with a transversal (constant slice of the annulus) meeting the image in
three points. Since the leftmost (PQ) and rightmost (RS) segment of the transversal
together with the segment along the curve from Q to R disconnects the annulus,
there is no way to join B to A without causing an intersection.

So the lifting problem is a generalization of the Borsuk Ulam theorem, where

instead of allowing two-fold covers, we allow arbitrary branched covers. The rea-

son for allowing branched coverings instead of just coverings is that typically we

will mostly be looking at (branched) coverings over the sphere, and since for n > 1,

the n-sphere is simply connected, in order to get interesting manifolds, we need to

allow branching. For this paper we are going to focus on co-dimension two liftings

of branched covers over spheres, because knots in codimension two turn out to be

most interesting.

Let us discuss some fundamental results about branched coverings and embed-

dings to motivate our discussion of lifting branched covers to braided embeddings.

4.2 Embeddings of manifolds

Let us now discuss results about embedding manifolds in Euclidean space (or

equivalently the sphere).
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Theorem 4.2.1 (Whitney [70] for smooth category, see [65] for piecewise linear cat-

egory). Every closed n-manifold embeds in R2n.

There are characteristic class obstructions for embedding an arbitrary n-manifold

in lower dimensional Euclidean space, for instance RPn does not embed in R2n−1

when n is a power of 2. However, just like the case of branched covers we have bet-

ter bounds for low dimensional manifold. Every closed oriented surface embeds in

R3, but as mentioned above, the real projective plane (or any of the non-orientable

surfaces) do not embed in R3. It is a theorem of Hirsch [37] that every closed ori-

ented three manifold embeds in R5, and this was extended to the non-orientable

case by Wall. Hilden-Lozano-Montesinos [35] gave an alternate proof of Hirsch’s

result, which in fact constructs a braided embedding1.

Theorem 4.2.2 (Hilden-Lozano-Montesinos). Every closed oriented three manifold has

a three fold simple branched cover over S3, which lifts to a braided embedding in S3 ×D2.

It is important to remark that their proof did not start with an arbitrary three

fold simple branched cover and lift it to an embedding, they had to alter the branch

locus (without changing the manifold upstairs) and bring it to a special form where

the branched covering did lift. As we shall see, there are branched coverings over

the three sphere which do not lift to a braided embedding.

Let us now go down in dimension and discuss if we can braided embed closed

oriented one and two dimensional manifolds in trivial disc bundle of the sphere

(and hence in Euclidean space). Every one-manifold (disjoint union of circles) ad-

mits a codimension one2 braided embedding in S1 ×D1. In Example 8.2.1, we see

that the two fold branched cover of the genus g surface over the sphere obtained by

quotienting by the hyperelleptic involution (see Figure 2.5) lifts to a co-dimension

1They used a slightly different terminology, but this is exactly what they proved.
2It admits a codimension zero embedding if and only if the manifold is connected
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two braided embedding, and consequently every surface of genus g braided em-

beds in S2 ×D2.

Let us now turn to the some of main results of this thesis, where we discuss the

lifting problem in codimension two:

Question 4.2.3. Which branched covers over the sphere Sn lift to co-dimension two

braided embedding in Sn ×D2?

The question is easy to answer for n = 1, as any branched cover over S1 must

in fact be a covering map, and if we restrict to each component it must be equiv-

alent to (in the notation of Example 4.1.4) pn for some n ∈ Z \ {0}, and thus any

such covering lifts (these are the classical closed braids). The situation becomes

interesting for branched coverings of surfaces over the two-sphere, where we get

different answers for the piecewise linear and smooth categories. We will study

the lifting problem in more detail in Chapters 8, 9 and 10. The other main problem

is the istotopy problem:

Question 4.2.4. (Istotopy Problem) Can we isotope any embedding in sphere Sn (or

equivalently Euclidean space Rn) to be a braided embedding?

Here we are taking about braiding about the standard Sn−2 (equatorial sphere

inside equatorial sphere in Sn), and we all such braided embeddings as closed

braid. We will study this problem in the next chapter in the piecewise linear cate-

gory.

4.3 Monodromy of a braided embedding

Just like a covering space is equivalently given by a monodromy representation

of the base to the symmetric group, a braided embedding projecting to a honest

covering map is given by a monodromy representation of the base to the braid

group. Suppose f : M → N ×D2 is a braided embedding, with the composition to
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the first factor pr1 ◦ f : M → N an n-sheeted covering map. Let us choose a base-

point x ∈ N . For any simple closed curve3 γ based at x, if we restrict the bundle

N × D2 → N to γ, we get a bundle γ × D2 → γ. For any point c ∈ γ the braided

embedding f maps the n pre-image points of c under pr1 ◦ f to n distinct points

in the disc {c} ×D2. Thus as we vary c along γ, we get a closed braid in the solid

torus γ×D2 (or equivalently a loop in the configuration space UConfn(D2)), which

gives rise to a well defined braid by cutting the solid torus γ × D2 at x × D2 (or

equivalently looking at the element of the fundamental group UConfn(D2) given

by that loop). This map gives rise to a group homomorphism ψ : π1(N) → Bn,

which we will refer to as braid monodromy.

To construct a braided embedding from such a braid monodromy, we recall that

Fadell, Fox and Neuwirth [23, 24] showed that the configuration spaceUConfn(D2)

is aspherical, or in other words it is a K(Bn, 1). Thus a map of spaces N →

UConfn(D2) is equivalent to a group homomorphism at the level of fundamen-

tal groups π1(N) → Bn. We note that a braided embedding f : M → N × D2 (so

that the associated covering map is n-sheeted) is equivalent to a choice of n-distinct

points in D2 for each point in N , i.e. a map N → UConfn(D2).

In case f : M → N × D2 is a braided embedding, with the projection to the

first factor pr1 ◦ f : M → N a branched covering map, it is similarly determined by

the associated braided embedding f |M\B̃ : M \ B̃ → (N \B)×D2 (or equivalently

its braid monodromy π1(N \ B) → Bn) where we delete the branch locus and

its pre-image. However, given a group homomorphism π1(N \ B) → Bn, one

gets a braided embedding of the complement of the branch locus, but we need

to be careful about extending over the branch locus (with appropriate restrictions,

locally flat piecewise linear or smooth). We will discuss this issue in Chapter 7.

3For self intersecting closed curves α : S1 → N , we can pullback the bundle N ×D2 by α and
get a solid torus over S1, and the same statement holds.
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4.4 Braid Monodromy under composition

Similar to Section 2.3.1, we can determine the braid monodromy for composition of

two braided embeddings. Let us suppose the braid monodromies of the braided

embeddings are given by Φ : π1(X, x1) → Bn and X : π1(Y, y1) → Sm lifting

φ : π1(X, x1)→ Sn and χ : π1(Y, y1)→ Sm, respectively.

We have Ψ(γ) is a reducible braid determined by the tubular braid Φ(γ), and

the interior braid corresponding to the i-th tubular braid is given by X(αi ∗ γi ∗ ᾱ).
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CHAPTER 5

BRAIDING IN THE PIECEWISE LINEAR CATEGORY IN AMBIENT

DIMENSION AT MOST 5

5.1 Introduction

In this chapter we study generalizations of Alexander’s theorem we saw in Chap-

ter 1 in higher ambient dimension. Braided surfaces were first introduced by

Rudolph [66] for surfaces with boundary, but the notion we will be using is due to

Viro. Viro defined the notion of a closed braid for a closed oriented surface in R4,

which can be thought of as the closure of a certain type (one with trivial bound-

ary) of braided surface in the sense of Rudolph. The notion of braided embedding

was defined in general by Etnyre and Furukawa [21], and they have been studied

previously by Carter and Kamada [16].

The first analogue of Alexander’s theorem for surfaces is due to Rudolph [66],

who showed that every oriented ribbon surface is smoothly isotopic to a closed

braid. Alexander’s theorem was generalized to closed, oriented surfaces in R4

by Viro and independently by Kamada. Viro announced his results in a lecture in

1990, but his proof was never published. Kamada gave an alternative proof [43, 44]

using the motion picture method to describe surfaces in R4.

The main result of this chapter is to show that, in the piecewise linear category,

Alexander’s theorem can be generalized to ambient dimension 5.

Theorem 5.1.1 (PL Generalized Alexander’s Theorem). Any closed, oriented, piece-

wise linear (n − 2)-link in Rn can be piecewise linearly isotoped to be a closed braid for

3 ≤ n ≤ 5.

Our approach is similar to Alexander’s original proof in [3] (see also [10, The-
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orem 2.1], or [44, Theorem 4.2]) in the classical case. We give an alternate proof of

Kamada’s generalization of Alexander’s Theorem in dimension 4. For complete-

ness, we also include the proof of the classical case of dimension 3. We also recover

another classical result of Alexander [2], that says that any closed oriented piece-

wise linear k-manifold is a piecewise linear branched cover over the sphere Sk, see

Remark 5.3.5.

One may wonder if there are analogues of Alexander’s theorem for higher co-

dimension links.

Question 5.1.2. Given a natural number k, is there a natural number n ≥ k + 2 so

that any closed, oriented k-manifold embeds in Rn, and any such embedding is

isotopic to a closed braid?

It is well known that the embedding problem (i.e. the first part of Question 9.5.3)

holds as long as n ≥ 2k, see [65, Theorem 5.5] for piecewise linear category and

[70] for smooth category. By Theorem 5.1.3 below, in the piecewise linear category,

when k ≥ 2 and n ≥ 2k, we have that any embedding is isotopic to a closed braid,

so the answer to Question 9.5.3 is affirmative. Moreover, we can ask whether a

given k-link in Rn is always isotopic to a closed braid? The following result gives

a partial answer to that question.

Theorem 5.1.3. Any closed, oriented, piecewise linear k-link in Rn can be piecewise lin-

early isotoped to be a closed braid for 2n ≥ 3k + 2.

In the Section 2, we define closed braids and positive links, and we show that

thse notions are equivalent, thereby reducing the braiding problem to the problem

of isotoping a link to be positive. In the Section 3, we describe cellular moves,

which will be used to replace a negative simplex with some positive simplices. In

Sections 4 and 5, we study co-dimension two and higher co-dimension embed-

dings repectively. We will show that under the hypotheses of Theorems 5.1.1 and
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5.1.3, any closed link can be isotoped to be positive, completing the respective

proofs.

5.2 Closed Braids and Positive Links

We assume that, unless otherwise stated, all spaces are piecewise linear, all embed-

dings are piecewise linear and locally flat, all isotopies are piecewise linear and am-

bient, and all other maps (radial projections, coverings, and branched coverings)

are topological1. By linear we will mean linear in the affine sense. By a branched

covering, we will mean a covering map in the complement of a co-dimension two

subcomplex (not necessarily a submanifold).

Let k and l be natural numbers with l ≥ 2. Let f : Mk → Rk+l be an embed-

ding of a closed oriented k-manifold (possibly disconnected); we call the image

a (co-dimension l) k-link. We will be mostly concerned with co-dimension two

embeddings, i.e. l = 2.

We say that f is a co-dimension l braided embedding if f(M) is contained in a

regular neighborhood N(Sk) = Sk × Dl of the standard sphere (unit sphere in

Rk+1 ⊂ Rk+l) such that the embedding composed with the projection to the sphere,

pr1◦f : M → Sk is an oriented branched covering map. Note that in case k = 1, we

have pr1 ◦ f is just an oriented covering map since the branch locus is empty, also

if further l = 2, then f(M) is a closed braid (in the classical sense). We generalize

this notion and call the image f(M) of a co-dimension l braided embedding f a

co-dimension l closed braid. We will just say f is a braided embedding, and f(M) is

a closed braid if co-dimension is clear from the context. By braiding we will mean

isotoping a link to be a closed braid. We will identify M with f(M), and think of f

as an inclusion. A simplex of M is understood to be in Rk+l.

Figure 5.1 shows a schematic of a closed braid in higher dimension.

1Radial projections need not be piecewise linear, see Chapter 1 in [65].

42



O

Figure 5.1: Schematic figure of closed braid Rk+2

Let us choose (and fix) a l − 1 dimensional subspace ` of Rk+l, which will play

the role of the braiding axis. Let π : Rk+l → Rk+1 denote orthogonal projection to

`⊥, and let O denote the origin of Rk+1.

We say that a k-simplex σ = [p0, ..., pk] in Rk+l is in general position with respect

to ` if any of the following equivalent conditions hold:

1. There is no hyperplane in Rk+l that contains both σ and `.

2. There is no hyperplane in Rk+1 that contains both π(σ) and O.

3. The vectors π(p0), ..., π(pk) are linearly independent.

4. The determinant of [π(p0)|π(p1)|...|π(pk)] is nonzero.

We can always assume each simplex is in general position (with respect to `), be-

cause if not, then by slightly perturbing the vertices, we can put it in general posi-

tion.

General Position. We will be needing several general position arguments, and

we will prove one of them. They all follow the same pattern: the degenerate case

happens if and only if a continuous function vanishes. So, if the system was non-

degenerate, then any slight perturbation does not change that fact, and if the sys-
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tem was degenerate, it would be possible to make it non-degenerate with a slight

perturbation.

We say that a simplex [p0, ..., pk] in Rk+l in general position (with respect to `)

is positive if the simplex [O, π(p0), ..., π(pk)] has the standard orientation of Rk+1

(i.e. [π(p0)|π(p1)|...|π(pk)] has positive determinant), otherwise we say it is negative.

We say that an embedded link f : Mk → Rk+l is a positive (with respect to `) if

the image of each simplex is in general position with respect to ` and positive.

Hereafter, the axis ` will be in the background; it will be understood that a simplex

is positive/negative/in general position means it is positive/negative/in general

position with respect to `.

Let p : Rk+1\O → Sk be the radial projection. For any piecewise linear manifold

Mk with a given cellular decomposition, let δM denote the union of all (k−2)-faces

of cells of M .

The following theorem shows that, to prove Theorem 5.1.1, it suffices to show

we can isotope any link to be positive.

Theorem 5.2.1. Let f : Mk → Rk+l \ ` be an embedding, then the composition h defined

by

Mk f−→ Rk+l \ ` π−→ Rk+1 \O p−→ Sk

is an oriented branched covering map if and only if all simplices of M are positive. In other

words, the notions of closed braid and positive link are equivalent.

Proof. If M is a closed braid, then the restriction of h to any particular simplex

σ must be orientation preserving, and it follows that all simplices of M must be

positive.

Let us now assume thatM is a positive link. Let Σ := h(δM). We will show that

h restricts to a covering map on M \ h−1(Σ). Now any point x of M \ h−1(Σ) could

either be an interior point of a k-simplex, or on the interior of a (k− 1)-face shared
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by two k-simplices. We will show that in both these cases, we can find a compact,

regular neighbourhood N of x such that h|N is injective.

Let x be in the interior of the k-simplex σ = [p0, ..., pk]. Then for any y in σ

we see that the ray passing through O and π(y) meets π(σ) exactly once, since

π(p0), ..., π(pk) form a basis for Rk+1. Thus in this case h|σ is injective.

Let us now suppose that x is in the interior of the intersection of the adjacent

simplices σ = [p0, ..., pk] and τ = [p1, q0, p2, ..., pk]. For σ and τ to be compatible, the

induced orientation on the (k − 1)-face ν = [p1, ..., pk] they share must be opposite,

i.e. the determinant of the matrix [π(p0)|π(p1)|...|π(pk)] is positive, and the determi-

nant of the matrix [π(q0)|π(p1)|...|π(pk)] is negative. Suppose y is in σ and the ray

passing through O and π(y) meets π(τ \ν), then we see that for some non-negative

scalars c0, ..., ck, d1, ..., dk and positive scalars d0, λ we have

c0π(p0) + c1π(p1) + ...+ ckπ(pk) = λ(d0π(q0) + d1π(p1) + ...+ dkπ(pk)).

So we have c0π(p0)− λd0π(q0) ∈ Span{π(p1), ..., π(pk)}, and hence

c0 det[π(p0)|π(p1)|...|π(pk)] = λd0 det[π(q0)|π(p1)|...|π(pk)]

which is a contradiction to our assumption that both σ and τ are positive. Thus in

this case h|σ∪τ is injective.

Thus in either case, for a compact neighborhood N of x, h|N is a continuous

bijection between compact Hausdorff spaces and hence a homeomorphism onto

its image. Thus h|M\h−1(Σ) : M \ h−1(Σ) → Sk \ Σ is a local homeomorphism, and

in fact a covering map since for any y ∈ Sk \ Σ, the fiber h−1(y) is compact and

discrete. Also we can check that h is orientation preserving. Thus h is an oriented

branched covering, as required.

Remark 5.2.2. The map h above is only continuous since the radial projection p is so.
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However, we can compose π ◦ f with the pseudo-radial projection2 instead of the

radial projection p, and then the resulting composition will be a piecewise linear

branched cover.

Let us choose (and fix) a unit vector v ∈ ` ⊂ Rk+l, let `v denote the line Rv , and

let πv : Rk+l → Rk+l−1 denote orthogonal projection to `⊥v . By the v-coordinate of a

point p ∈ Rk+l we will mean the scalar projection of p onto v. We say that a point p

on a k-simplex σ ofMk in Rk+l is an overcrossing (respectively undercrossing) if there

is another point q ∈M with π(p) = π(q) and difference of v-coordinate of p and the

v-coordinate of q is positive (respectively negative).

5.3 Cellular moves

In this section we describe cellular moves, which we will use repeatedly in the next

section to isotope any link to be positive.

Suppose we have a embedded oriented (k+1)-diskD in Rk+l such thatD meets

Mk in a k-disk σ in ∂D which is a union of simplices of both M and ∂D and the

induced orientations coming from M and ∂D are opposite. Let M ′ be the manifold

obtained from M by replacing σ with ∂D \ σ (with the orientation on the new sim-

plices coming from ∂D), Proposition 4.15 of [65] shows that M and M ′ are ambient

isotopic. We call such replacement a cellular move along D. Hereafter, we will keep

calling the manifold M even after applying cellular move.

Remark 5.3.1. We want the new manifold to be oriented, so we need the orienta-

tions (induced by σ) on the co-dimension one faces of σ, to agree with the induced

orientation coming from the new simplices. This forces the orientation on the new

simplices, which is why we require the orientations of the simplices common to M

and ∂D to be as above.
2Pseudo-radial projection is the linear extension of the restriction of the radial projection to the

vertices of the domain, see Chapter 2 in [65].
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We will use cellular moves for constructing all our isotopies; they will be of two

types:

1. Moving the vertices of M slightly for general position arguments.

2. Replacing a negative simplex with a union of positive simplices.

For the first type of isotopy, we note that for any vertex x of Mk, the union of

all k-simplices of M which contain x is a k-cell, and slightly moving x is a cellular

move. We note that after moving x slightly, a simplex will remain positive (re-

spectively negative) if it was initially positive (respectively negative). We will say

more about the second type of isotopy in Remark 5.3.3, after we make a general

observation.

The join of two subsets A and B of Rn is defined to be

A ∗B := {λa+ (1− λ)b : a ∈ A, b ∈ B, λ ∈ [0, 1]}.

We will only use a special case where A = {a} is a single point, and a ∗ B is called

a cone.

Lemma 5.3.2. Let σ = [p0, ..., pk] be a k-simplex of Mk in general position in Rk+l, and

suppose we can find a point q ∈ Rk+l such that D = −(q ∗ σ) (the minus sign indicates

thatD is oppositely orientated as compared to q∗σ) meetsM only in σ, and π(D̊) contains

O. Then the result of cellular move along D is that σ is replaced by the other simplices of

∂D, and all the new simplices are oppositely oriented compared to σ.

Proof. We see that the orientations of all the k-faces of [q, p0, p1, ..., pk] agree with the

orientations of σ, since when expressed in the basis π(p0), ..., π(pk), all coefficients

of π(q) are negative since O ∈ π(D̊). Thus all the new simplices are oppositely

oriented compared to σ since the induced orientations on new faces come from

−[q, p0, p1, ..., pk].
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Remark 5.3.3. In particular, if σ was a negative face to begin with, we can isotope σ

to a union of positive simplices, provided we can find a q as in Lemma 5.3.2.

Remark 5.3.4. If we choose q to be any point such that q ∗ σ meets M only in σ, and

all the coefficients of π(q) in the basis π(p0), ..., π(pk) are nonzero, then the result

of the cellular move along −(q ∗ σ) will be a k-link with each simplex in general

position (assuming each k-simplex of M was already in general position), and the

orientations of the new simplices can be read off from the sign of the corresponding

coefficient. In particular, if one chooses q such that all the coefficients are positive,

then the orientations of the new simplices after applying the cellular move would

be the same as that of σ.

Remark 5.3.5. We have obtained an alternate way to look at another classical theo-

rem of Alexander (see [2]), which states that every closed oriented piecewise linear

k-manifold is a branched cover over Sk. Any such manifold M embeds in RN for

some N > k, and as we saw above, for a generic orthogonal projection to Rk+1, all

the simplices will be non-degenerate. For any negative simplex σ of M in Rk+1, we

can choose a point q ∈ Rk+1 such that q ∗ σ contains O in its interior. Replacing3 σ

with the other simplices of −q ∗ σ gives us a new piecewise linear map from M to

Rk+1, with one fewer negative simplex. Thus by induction on the number of neg-

ative simplices, we can always construct a map from M to Rk+1 with all simplices

being positive, and by Remark 5.2.2, we get a piecewise linear branched cover of

M over Sk by composing with the pseudo-radial projection. It seems likely that

this approach will produce a branched cover with fewer number of sheets than

Alexander’s original construction.

The following lemma shows that it is always possible to find embedded disks

to do cellular moves if the crossings are only of one type.

3Right now, we are just constructing a new piecewise linear map, and not saying that this oper-
ation is an isotopy. However if N is sufficiently large, by Theorem 5.1.3 we can carry out the entire
construction by an isotopy.
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Lemma 5.3.6. Suppose f : M → Rk+l is a embedded closed oriented k-link, and let σ

be a k-simplex of M in general position in Rk+l that does not have both overcrossings and

undercrossings. Then there is a point q ∈ Rk+l such that O ∈ π(D̊) and D ∩M = σ,

where D = −(q ∗ σ).

Proof. Let us assume that all crossings are overcrossings (respectively undercross-

ings). Choose a point q ∈ Rk+l such that O ∈ π(D̊) and π(q) /∈ π(M). Note that

changing only the v-coordinate of q does not change the projection πv(D) (and

hence π(D)), and we will change the v-coordinate of q if necessary. Let x ∈ M \ σ

be such that there is a point yx ∈ D whose image under πv is the same (since πv|D

is injective, for any given x, there can be at most one yx) . If we can ensure that the

difference of the v-coordinate of x and the v-coordinate of yx is negative (respec-

tively positive), then we would have D∩M = σ. We can in fact reduce to checking

this condition for finitely many such points x, as follows: let τ be a simplex of M ,

then πv(τ)∩πv(D) will be a bounded polytope, hence by Proposition 2.7 of [65], the

convex hull of finitely many points. So as long as we ensure that the v-coordinates

of all points which map to these extreme points of πv(τ)∩πv(D) satisfy the required

inequality, we have that D ∩ τ = σ ∩ τ. Now, if this holds for all simplices τ of M

then we would have D ∩M = σ as required. Since M is compact, there are finitely

many simplices τ , and thus we only have to check the inequality for finitely many

points.

Now given a point x ∈ M \ σ with πv(x) ∈ πv(D) \ πv(σ)4, let z be the unique

point in σ whose projection under πv is the point of intersection of πv(σ) and the

line passing through πv(x) and πv(q). Then we will have that x is below (respec-

tively above) D as long as q is above (respectively below) the point where the line

πv(q) + `v (i.e. the translate of `v which projects to πv(q)) meets the line joining x

4Note that if πv(x) ∈ πv(σ), then we already know if the crossing at πv(x) is an overcrossing or
undercrossing, and this is independent of the v-coordinate of q. This is why we require the condi-
tion that σ does not have both overcrossings and undercrossings in the statement of the lemma.
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Figure 5.2: The figure in the left shows how τ intersects q ∗ σ under the projection
πv. the dashed line segment in dark blue is the line passing through πv(x) and
πv(q). The figure on the right shows the plane spanned by this line segment and v
projecting onto the line segment.
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and z. Thus we see that each such point x gives rise to a lower (respectively upper)

bound of v-coordinate of q, and we can simultaneously satisfy finitely many such

bounds. The result follows.

Remark 5.3.7. Sometimes we will not be able to find a q as in Lemma 5.3.6, but we

may be able to subdivide σ into cells so that the crossings in each subcell is only

of one type and then we have similar results as Lemmas 5.3.6 and 5.3.2. Suppose

f : M → Rk+2 is a embedded closed oriented link, and let τ be a k-dimensional

cell contained in a negative k-simplex σ of M in Rk+2. If τ does not have both

overcrossings and undercrossings, then there is a point q ∈ Rk+2 such that D =

−(q ∗ τ) meets M only in τ , and π(D̊) contains O. Moreover, the result of cellular

move along D is that τ is replaced by a union of positive simplices.

5.4 Co-dimension two braiding

In the first subsection, we will use the tools developed so far to complete the proof

of Theorem 5.1.1. We ask some questions about co-dimension two braidings in

other cases in the second subsection. We observe that since we have co-dimension

l = 2, then ` = `v and π = πv.

5.4.1 Isotoping a co-dimension two link to be positive

To prove our main result it remains to show the following.

Theorem 5.4.1. For 1 ≤ k ≤ 3 , each embedded closed oriented link f : Mk → Rk+2 is

isotopic to a positive link.

Strategy of proof. We will use induction on the number of “negative k-simplices”.

If all crossings are of one type then we can use cellular moves to replace (isotope)

a negative k-simplex with a number of positive k-simplices. Sometimes we will
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have to break up a negative k-simplex into smaller k-simplices (temporarily in-

creasing the number of negative k-simplices) and show that we can use cellular

moves to replace each of the subsimplices, thereby reducing the number of nega-

tive k-simplices.

Notation. Let S be a subset of M . We say that a point x ∈ S is a double point

of S if |π|−1
S (π(x))| ≥ 2, a triple point of S if |π|−1

S (π(x))| ≥ 3, a quadruple point if

|π|−1
S (π(x))| ≥ 4, and a quintuple point of S if |π|−1

S (π(x))| ≥ 5. We call the collection

of all double (respectively triple) points of a subset S of M the double (respectively

triple) point set of S and denote it by DS (respectively TS), and we call their closure

in S the double (respectively triple) point complex of S and denote it by DS (respec-

tively TS). If S is not mentioned explicitly, it is understood that S is M . For any

k-simplex σ of M , let Tσ denote the closure in σ of σ ∩ TM .

Figures. A note on the figures; in the cases k = 1, 2, when we are illustrating

special cases of crossings on negative k-simplices we will frequently show both an

immersed picture, where we will show all the simplices crossing, and a preimage

picture, where we indicate all the crossing points in the negative k-simplex. In the

case k = 3, we can only draw preimage pictures.

Proof of Theorem 5.4.1. We argue the 3 cases for k separately.

Case: k = 1 (Alexander, [3]). The proof is by induction on the number of

negative 1-simplices of the triangulation of M .

General Position. We can ensure that all the crossings are isolated double points,

and there are no triple points.

Special Case. If a negative 1-simplex does not have both overcrossings and un-

dercrossings, then we can use Lemma 5.3.6 to replace the 1-simplex with positive

1-simplices.

General Case. We can break up a negative 1-simplex into smaller 1-simplices

such that no part has both overcrossings and undercrossings, and we can apply
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Figure 5.3: Immersed Pictures of 1-simplices intersecting. Preimage picture of the
black 1-simplex, where the crossing points are shown.

Lemma 5.3.6 to each of the subsimplices. We note that applying such a cellular

move to one such subsimplex does not introduce any new crossings on the other

subsimplices of our original negative 1-simplex. Thus we can reduce the number

of negative 1-simplices, and we are done by induction for the case k = 1.

Digression. For k = 2, 3 we have to deal with the fact that if we break up a

k-simplex and apply cellular move to the various parts, the result will not be trian-

gulated any more. Of course we could subdivide the adjacent k-simplices so that

the result is in fact triangulated, but this may increase the number of negative k-

simplices, which we do not want to happen. We will need to modify the induction

hypothesis in cases k = 2, 3. For this reason, following Kamada (see Chapter 26 in

[44]), we will introduce the notion of a division of a piecewise linear manifold.

A division for a link Mk ⊆ Rk+2 is a collection of k-simplices {σ1, ..., σl} whose

union isM , and such that for distinct i and j, if σi∩σj is nonempty, it is contained in

faces of both σi and σj , and is a face of σi or σj . We say that the σi’s are k-simplices

of the division forM , and the notion of a positive/negative k-simplex is defined as

before. We say that a k-simplex σ is inner (respectively outer) if its intersection with

any other k-simplex τ is a face of σ (respectively τ ). If σ is inner, then we can break

σ up into smaller cells and apply cellular moves on each subcell, and the result

would be a division. We can only move a vertex x of a k-simplex σ of M slightly

without changing the number of k-simplices of the division if x is a vertex of every

k-simplex τ that contains x. In particular if σ is outer, we can slightly move any
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Figure 5.4: A part of a division, where the yellow simplex is both inner and outer,
the blue simplices are inner and not outer, the green simplex is outer and not inner,
and the red simplex is neither inner nor outer.

of its vertices slightly without changing the number of k-simplices of the division.

A division is a triangulation if and only if all k-simplices are both inner and outer.

We say a division is good if all the negative k-simplices are outer. Lemmas 5.3.2

and 5.3.6 still hold if we have a division of M .

Notation. For any k-simplex σ of Mk, let X(σ) denote the union of all the k-

simplices which are not adjacent to or equal to σ, let Y (σ) denote the complement

of σ in M , let Y (σ) denote the closure of Y (σ) in M , and let Z(σ) denote the union

of all the k-simplices of M whose intersection with σ has dimension at most k − 2.

We return to the proof of Theorem 5.4.1.

Case: k = 2. The proof is by induction on the number of negative 2-simplices

of the division of M .

General Position for the initial triangulation. We may assume that all the cross-

ings are double point lines and isolated triple points in the interior of respective

2-simplices, and there are no quadruple points.

Proof. We will make modifications to M in three steps, at each step assuming re-

sults from the previous steps hold. In the first step we can make sure that all
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2-simplices intersect “nicely” pairwise, and in the last step we will make sure that

all triples of 2-simplices intersect “nicely”, after which we get the required general

position statement. Step 2 is a special case of Step 3, where we make sure all non-

adjacent triples of 2-simplices intersect “nicely”. By slightly moving each vertex of

(the triangulation of) M , we may assume that:

1. The projection of a vertex x of (the initial triangulation of) M is not contained

in a hyperplane generated (=affinely spanned) by the projection a 2-simplex

τ of M , if x /∈ τ .

If y1, y2, y3 are vertices of a 2-simplex τ ofM with x /∈ τ . If π(x) is contained in

the hyperplane H defined by π(y1), π(y2), π(y2) then that means α(π(x)) = 0

where α is the dual (with respect to the standard inner product) linear func-

tional defined by choosing a unit normal to H in π(R4) = R3. By a slight per-

turbation of x one can ensure that α(π(x)) 6= 0, and moreover this is generic,

i.e. a small perturbation of x would not change the non-vanishing of α(π(x)).

We can keep on perturbing the vertices slightly until the above condition

holds.

This ensures that the projection of two 2-simplices can only intersect in a

line segment, that the projection of two 2-simplices that only share a vertex

cannot intersect along any edge of either 2-simplex, that the projection of two

2-simplices that share an edge do not intersect elsewhere. Consequently, DM

and π(DM) are graphs.

2. For any 2-simplex σ of M , we have that π(DX(σ)) meets π(σ) and π(∂σ) trans-

versely.

We will only perturb the vertices of σ, and so π(DX(σ)) will stay fixed. Let

[p1, p2] be an edge of π(DX(σ)). If we make sure that the points p1, p2 are not in

the hyperplane generated by π(σ), and the projections of vertices q1, q2 and
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q3 of σ are maximally affinely independent with p1, p2 (i.e. there is no hyper-

plane in R3 containing σ and [p1, p2], or equivalently p2 − p1, π(q2) − π(q1)

and π(q3) − π(q1) are linearly independent, or equivalently the determinant

of [p2 − p1|π(q2) − π(q1)|π(q3) − π(q1)] is nonzero), then [p, q] and σ have the

required property. If we move the vertices of σ slightly, this property still re-

mains true, hence we can make sure that the required property holds for each

edge of π(DX(σ)). Slightly perturbing the vertices of M would not change

this, and hence we can make sure the property holds for all 2-simplices of M .

3. For any 2-simplex σ of M , we have that π(DY (σ)) meets π(σ) and π(∂σ) trans-

versely, except at projection of points of ∂σ which are not triple points.

Given any vertex x of M , we can make sure that the set of normal vectors

(based at π(x)) in R3 to the hyperplane generated by projections of all the 2-

simplices that have x has a vertex are maximally affinely independent (i.e. if

we think of π(x) as the origin, any three of these normal vectors are linearly

independent) by perturbing other (i.e. except x) vertices of such 2-simplices.

This condition ensures that for any three 2-simplices that share the vertex

x, their projection can intersect in at most one point. We can make sure the

above condition holds for all vertices x of M . For any 2-simplex σ of M , we

can make sure that there is no triple point in any edge of σ by perturbing the

vertices of σ slightly, while fixing the hyperplane generated by the projection

of σ.

Thus, the projection of any triple of 2-simplices intersect at most one point, and

triple points occur in the interior of their respective simplices.

General Position for a division. For a negative simplex ν, when applying a cellu-

lar move along D = −(q ∗ ν), we may assume that the q and ν are chosen so that

π(DM\ν̊) meets π(∂D) and π(δD) transversely. Consequently, there are no quadru-
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ple points, and moreover all triple points are isolated and lie in the interior of their

respective 2-simplices.

Special Cases. Let us look at some special cases (which will contain previous

special cases) of crossings in a negative 2-simplex:

Figure 5.5: Immersed and Preimage Pictures: two non adjacent 2-simplices inter-
secting in a double point line, illustrating special case 1.

1. Suppose σ is a negative 2-simplex that does not have both overcrossings and

undercrossings, see Figures 5.5 and 5.6.

We can replace σ with a union of positive 2-simplices by Lemma 5.3.6.

2. Suppose σ is a negative 2-simplex such that there are no triple points, see

Figure 5.7.

In this case we can break σ up into smaller 2-simplices which are inner, and

moreover each of the subsimplices does not have both overcrossings and un-

dercrossings, and we can use Lemma 5.3.6 to replace each of them with pos-

itive 2-simplices. So we can reduce the number of negative 2-simplices by

one.
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Figure 5.6: Immersed and Preimage Pictures: two 2-simplices sharing a vertex
intersecting in a double point line, illustrating special case 1.

Figure 5.7: Preimage Picture: crossings without triple points, illustrating special
case 2.

3. Suppose σ is a negative 2-simplex with exactly one triple point p ∈ σ, see

Figure 5.8.

We know that the line segment [O, π(p)] can meet the projection of each of

the three 2-simplices giving rise to the triple point only in π(p) (since all

the 2-simplices are in general position), and we choose a point q ∈ R4 (the

v-coordinate will be changed later if necessary) such that O is in the line
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Figure 5.8: Immersed and Preimage Pictures: three non adjacent simplices inter-
secting in an isolated triple point, illustrating special case 3.

segment (π(q), π(p)). As in the proof of Lemma 5.3.6, by choosing the v-

coordinate of q to be sufficiently positive (or negative), we have [q, p] ∩M =

{p}.

Figure 5.9: Replacing a small neighborhood of an isolated triple point by cellular
move.

By compactness we have d([q, p], Y (σ)) > 0, and hence we can choose a small

2-simplex [p0, p1, p2] in σ containing p such that [q, p0, p1, p2] meets M only at

[p0, p1, p2], and we can use cellular move to replace [p0, p1, p2] by positive 2-

simplices, see Figure 5.9. The rest of σ can be broken up into smaller inner
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2-simplices each of which does not have both overcrossings and undercross-

ings, and by Lemma 5.3.6, we can replace them with positive 2-simplices and

hence we are done.

General Case. Suppose σ is any negative 2-simplex, see Figure 5.10.

Figure 5.10: Preimage Picture: crossings with triple points, illustrating the general
case.

We break σ up into smaller inner 2-simplices each of which has at most one

interior triple point and then use the above special cases. Thus we can reduce the

number of negative simplices, and we are done by induction for the case k = 2.

Case: k = 3. It suffices to prove the following claim, since the initial triangula-

tion is a good division.

Claim 5.4.2. Every embedded closed oriented linkM3 in R5 with a good division is isotopic

to a positive link.

The proof of the claim is by induction on the number of negative 3-simplices

on the good division.

Remark 5.4.3. After we prove the claim, it follows that the result holds for any

division, because we can subdivide any division further so that it becomes a good

division.
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General Position. We may assume that the double point complex is a 2-dimensional

CW-complex, the triple point complex is a graph, all quadruple points are isolated

and in the interior of respective 3-simplices, and there are no quintiple points.

Moreover we can also assume that all triple points are disjoint from 1-faces of 3-

simplices, and for any vertex x of TM , the set π|−1
M (π(x)) contains exactly one point

on the 2-faces of 3-simplices of M .

Remark 5.4.4. This can be proved in a similar way we proved the general posi-

tion statement in the case k = 2, and we outline an argument below. By slightly

moving each vertex of (the triangulation of) M , we may assume that for the initial

triangulation we have:

1. The projection of a vertex x of M is not contained in a hyperplane generated

by the projection a 3-simplex τ of M , if x /∈ τ . Consequently, DM and π(DM)

are 2-dimensional CW-complexes.

2. For any 3-simplex σ of M , π(DY (σ)) and the edges of π(DY (σ)) meets π(σ) and

π(∂σ) transversely, except at projection of points of ∂σ which are not triple

points. Hence, TM and π(TM) are graphs, and for any vertex x of TM , the set

π|−1
M (π(x)) contains exactly one point on the 2-faces of 3-simplices of M .

3. For any 3-simplex σ of M , π(TY (σ)) meets π(σ) and π(∂σ) transversely, except

at projection of points of ∂σ which are not quadruple points.

Now we have the required general position statement for the initial triangula-

tion. At each step of applying cellular move along D = −(q ∗ ν), we may assume

that ν is chosen so that there are no vertices of TM in the 2 faces of ν except the

case that such a point is in TM \ TM , q is chosen so that π(DM\ν̊) and π(TM\ν̊) meets

π(∂D) and π(δD) transversely. We will then have the required general position

statement.
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Special Cases. We will look at some special cases (which typically will contain

previous special cases) of crossings in a negative 3-simplex:

1. Suppose σ is a negative 3-simplex such that all crossings are overcrossing

(respectively undercrossing).

We can replace σ with a union of positive 3-simplices by Lemma 5.3.6.

2. Suppose σ is a negative 3-simplex such that there are no triple points.

In this case we can break σ up into smaller inner 3-simplices such that the

crossings are only overcrossing or undercrossing (but not both), and we can

use Lemma 5.3.6 to replace each of them with positive 3-simplices. So we can

reduce the number of negative 3-simplices by one.

3. Suppose σ is a negative 3-simplex with exactly one triple point line segment

[p0, p1] (with p0 and p1 not in a vertex or edge of σ) coming from 3-simplices

τ (above σ) and η (below σ) 5 which are not adjacent to σ, and such that

π(τ) ∩ π(η) contains the projection of [p0, p1] in its interior, and there are no

quadruple points in σ, see Figure 5.11.

Figure 5.11: Preimage Picture: a 3-simplex intersecting with two non adjacent 3-
simplices in a triple point line segment, illustrating special case 3.

5Note that if both τ and η are above (respectively below) σ, then the crossings in σ corresponding
to τ and η are both undercrossings (respectively overcrossings), and we are in special case 2.
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Since the 3-simplices τ and η are in general position the 2-simplex [O, π(p0), π(p1)]

meets π(τ) and π(η) only in [π(p0), π(p1)]. We choose a point q ∈ R5 (the

v-coordinate will be changed later if necessary) such that O is in the inte-

rior of [π(q), π(p0), π(p1)], and consequently the 2-simplex [π(q), π(p0), π(p1)]

meets π(τ) and π(η) only in [π(p0), π(p1)]. The hypotheses ensures that in

[π(q), π(p0), π(p1)] we do not see other (i.e. except [π(p0), π(p1)]) lines of over

or under crossings starting from the vertices π(p0), π(p1). Just like in the proof

of Lemma 5.3.6, we may choose the v-coordinate of q to be sufficiently posi-

tive (or negative) such that:

(a) If ρ is a 3-simplex whose intersection with σ is 2 dimensional, then the

cone D meets ρ only in σ ∩ ρ.

(b) [q, p0, p1] does not intersect Z(σ).

By compactness, the distance between [q, p0, p1] and Z(σ) is positive, and

hence we can choose a cell ν in σ containing [p0, p1] such that q ∗ ν meets

M only in ν. Using Remark 5.3.7, we can use a cellular move to replace ν

with a finite union of positive 3-simplices, and can break the rest of σ into

smaller inner 3-simplices and use Lemma 5.3.6 to replace them with positive

3-simplices. So we can reduce the number of negative 3-simplices by one.

4. Suppose σ is a negative 3-simplex such that Tσ is non empty but does not

meet σ in a vertex or an edge, see Figure 5.12.

There will be finitely many points p1, ..., pm in the interior of σ which are

either a quadruple point or a vertex of the triple point complex TM . We can

choose points q1, ...., qm such that O ∈ (π(qi), π(pi)) and each of these line

segments [qi, pi] are mutually disjoint. Like before, we can find 3-simplices Pi

containing pi in σ such that qi ∗ Pi are mutually disjoint, and then we can use

cellular moves to replace each Pi with union of positive 3-simplices. The rest
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Figure 5.12: Preimage Picture: a 3-simplex with triple point lines meeting at a
quadruple point, illustrating special case 4 (double points not indicated).

of σ can be broken up into smaller inner 3-simplices such that we are in the

previous special cases. The hypothesis and our general position statement

ensures that for all subsimplices which contain triple point line segments, we

are in the previous special case. As we have seen, we can replace each of these

3-simplices by positive 3-simplices, and hence we can reduce the number of

negative 3-simplices by one.

The special cases of crossings in negative 3-simplices we considered so far

are analougus to the ones we saw in the case k = 2. In next two special cases

we will consider the “new” type of crossings, when Tσ meets a vertex or an

edge of σ, and we will need a new idea.

5. Suppose σ is a negative 3-simplex, with the only crossings coming from 3-

simplices τ (above) and η (below) who share a vertex p0 with σ. Moreover,

there is triple point semiopen line segment (p0, p1] in σ, and π(τ) ∩ π(η) con-

tains π(p0, p1] in its interior, see Figure 5.13.

Let σ1, σ2 be the subcells of σ such that the hyperplane generated by π(τ)

breaks π(σ) into the two parts π(σ1) and π(σ2), and let us assume that π(σ1) is

in the same half-space as O. As in the proof of Lemma 5.3.6, we can choose a
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Figure 5.13: Preimage Picture: three adjacent 3-simplices sharing a vertex inter-
secting in a triple point semiopen line segment, illustrating special case 5.

point (by making the v-coordinate sufficiently positive) q such that the cone

q ∗ σ1 meets M only in σ1, and O is in the interior of π(q ∗ σ1). We use a

cellular move to replace σ1 by the other faces of this cone. If τ is negative,

it must be a outer 3-simplex (since we assumed that the division is good),

and hence we can move some of the other (except p0) vertices of τ a little (so

that the projection of the vertices lie in the half-space generated by the old

π(τ), containing O) so that σ2 does not have any triple point. If τ is positive,

we can apply a cellular move on a smaller subsimplex (so that all the new

3-simplices are positive) of τ containing the triple points, so that σ2 does not

have any triple point. By using the above special cases, we see that we can

replace σ2 with a union of positive 3-simplices, and we have reduced the

number of negative 3-simplices by one.

A similar argument works in the next special case:

6. Suppose σ is a negative 3-simplex, with the only crossings coming from 3-

simplices τ (above) and η (below), where only one of τ or η shares an edge

with σ. Moreover, there is triple point semiopen line segment (p0, p1] in σ,

where p0 lies in the common edge, and π(τ) ∩ π(η) contains π(p0, p1] in its
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interior, see Figure 5.14.

Figure 5.14: Preimage Picture: a 3-simplex intersecting with a non-adjacent 3-
simplex and one sharing an edge in a triple point semiopen line segment, illus-
trating special case 6.

General Case. Suppose σ is any negative 3-simplex.

Figure 5.15: Preimage Picture: a 3-simplex with triple points (some of whom con-
verge to a vertex or an edge) and quadruple points, illustrating the general case
(double points not indicated).

Let us first consider all the points where Tσ meets a vertex or an edge of σ, and

by special cases 5 and 6, we can find small inner 3-simplices containing these points

where we can apply cellular moves and replace them with positive 3-simplices. We

can break the rest σ up into small inner 3-simplices so that we are special case 4, and

as we have seen, we can replace each of the subsimplices with positive 3-simplices,
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thereby reducing the number of negative 3-simplices by one. This completes the

proof of Theorem 5.4.1 for the case k = 3.

5.5 Higher co-dimension braiding

In the first subsection, we will use the tools developed so far to complete the proof

of Theorem 5.1.3. We end with some questions about higher co-dimension braid-

ings in the second subsection.

5.5.1 Isotoping higher co-dimension link to be positive

To prove Theorem 5.1.3 it remains to show the following.

Theorem 5.5.1. Any closed oriented piecewise linear k-link f : M → Rk+l can be piece-

wise linearly isotoped to be a closed braid for 2l ≥ k + 2.

Remark 5.5.2. In case k = 1 or 2, then l = 2 satisfies the hypothesis of the above

theorem, and we know in this case the result follows from Theorem 5.4.1. In the

rest of the section, we will assume that l ≥ 3. We will also assume that l ≤ k +

1, since otherwise6 it is easy to see that the Theorem holds, as there will be no

crossings in the projection under πv. In fact one can show if l > k+ 1, then any two

embeddings of Mk in Rk+l are isotopic (see [65, Corollary 5.9]) .

The proof will be similar to the proof of case k = 2 of Theorem 5.4.1, and we

will not discuss special cases of negative simplices this time.

Proof. The proof will be by induction on the number of negative simplices in the

division of M . Let us consider the projection under πv : Rk+l → Rk+l−1, and see

what we can say about the crossings under the given hypothesis 2l ≥ k + 2.

For any two simplices σ and τ , we may assume that πv(σ) and πv(τ) intersect

transversely in πv(Rk+l) = Rk+l−1, and in that case the intersection of the affine
6The proof given still holds if l > k + 1, one just has to interpret statements (like negative

dimensional space) correctly.
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subspaces generated by them have dimension 2k − (k + l − 1) = k − l + 1. We

may assume that for any triple of simplices τ , σ and ν, that πv(σ ∩ τ) intersects

πv(σ ∩ ν) transversely in πv(σ), and in that case the intersection has dimension

k − 2(k − l + 1) = k − 2l + 2 ≤ 0. Consequently, all triple points are isolated and

can be assumed to be in the interior of their respective simplices.

General Position for the initial triangulation. We may assume that all the cross-

ings are double point complex is (k − l + 1)-dimensional CW-complex, all triple

points are isolated and in the interior of respective k-simplices, and there are no

quadruple points.

General Position for a division. When applying a cellular move alongD = −(q∗ν),

we may assume that the q and ν are chosen so that πv(DM\ν̊) meets πv(∂D) and

πv(δD) transversely. Consequently, there are no quadruple points, and moreover

all triple points are isolated and lie in the interior of their respective k-simplices.

Now given any negative simplex σ, it will contain finitely many triple points

p1, ..., pm in its interior. We can choose points q1, ...., qm such thatO ∈ (πv(qi), πv(pi))

and each of these line segments [qi, pi] are mutually disjoint, and do not intersect

the rest ofM . Using Remark 5.3.7 we can find k-simplices Pi containing pi in σ such

that qi ∗ Pi are mutually disjoint, and then we can use cellular moves to replace

each Pi by a union of positive k-simplices. The rest of σ can be broken up into

smaller inner k-simplices such that there are only crossings of one type, and then

by Lemmas 5.3.2 and 5.3.6, we can replace σ with a union of positive simplices.

We have reduced the number of negative simplices by one, and hence we are done

by induction.
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CHAPTER 6

LIFTING HONEST COVERINGS TO BRAIDED EMBEDDINGS

In this and subsequent chapters, we will study the lifting problem in various dif-

ferent scenarios. In this chapter we will discuss the lifting problem in the context

of honest covers. We will go over general results of Hansen and Peterson, and

discuss the lifting problem of coverings of surfaces in detail. Along the way, we

found an error in a thirty year old result, see Remark 6.3.6. We also give a affirma-

tive answer to the question of lifting all honest coverings over orientable surfaces,

although it will rely on results from later chapters.

6.1 Hansen’s criterion for lifting of covers

Given a honest covering map, we have the following criterion for lifting it to a

codimension two braided embedding.

Proposition 6.1.1. [32] A finite sheeted covering map p : M → N lifts to a braided

embedding f : M → N × D2 if and only if the associated permutation monodromy map

φ : π1(N)→ Sn lifts to a braid monodromy ψ : π1(N)→ Bn, so that Forget ◦ ψ = φ.

The key ingredient for the proof of the above proposition is Fadell, Fox, and

Neuwirth’s result that the configuration space is aspherical, and we already out-

lined the proof of the hard direction in Section 3.3. Again, given a branched cover-

ing map, we can delete the branch locus and see if the resulting covering lifts using

this criterion, and if it does we can try to extend it over the branch locus.

It follows from the above criterion that any covering over a space with free

fundamental group lifts to a braided embedding. Moreover, one has a complete

characterization when the fundamental group is finitely generated and abelian.
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Proposition 6.1.2. [62, Theorem 5.5] If π1(X) is finitely generated and abelian, then a

covering p : Y → X lifts to a braided embedding iff p∗(π1(Y )) contains all the torsion of

π1(X).

In particular, this implies:

Claim 6.1.3. All finite sheeted coverings over an n-torus lifts to a braided embedding.

This claim is also follows by combining Proposition 2.2.5 and Proposition 6.2.1.

Hansen’s criterion also gives us examples of non-liftable covers. Since the braid

groups Bn are known to be torsion free, we get the following immediate obstruc-

tion to lifting:

Claim 6.1.4. If α ∈ π1(N) is torsion, and the permutation monodromy of α is non-trivial,

then the permutation monodromy does not lift to a braid monodromy.

In particular, if we apply this claim for the monodromy of the cover a2 : S2 →

RP2, then we recover Borsuk Ulam theorem in this dimension.

6.2 Liftings of composition of branched coverings

Suppose we have two branched covering maps q : Y → X and p : Z → Y , so that

their composition r = q ◦ p is also a branched covering.

Proposition 6.2.1. If p : Y → X lifts to a codimension-l braided embedding with trivial

normal bundle, and q : Z → Y lifts to a codimension-l braided embedding; then so does

the composition r = q ◦ p.

Proof. We identify the normal bundle of the image braided embedding of Y in

X ×Dl with Y ×Dl, and then use the braided embedding of Z in Y ×Dl to obtain

a braided embedding lifting r.

Remark 6.2.2. We note that the trivial normal bundle condition is always satisfied in

case of honest coverings, and in that case this result is proved in [62, Theorem 4.1].
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We will see how the monodromy map of such a composite braided embedding

looks like in the next subsection. Let us now discuss a partial converse to the above

proposition.

Proposition 6.2.3. If r : Z → X lifts to a codimension-l braided embedding, then so does

q : Z → Y (possibly to a non-locally flat braided embedding).

Proof. Consider a braided embedding R : Z → X × Dl lifting r. By composing

with projection to the second factor, we obtain a separating map (i.e. which sends

different pre-images of a point in the base space to distinct points) s = pr2 ◦ R :

Z → Dl. We claim that s is also a separating map for p (i.e. p × s : Z → Y ×Dl is

a braided embedding lifting p). To see this, consider an arbitrary point y ∈ Y and

consider two pre-image points z1 and z2 under p. If it happens that s(z1) = s(z2),

then s cannot be a separating map for r since r(z1) = q(y) = r(z2). The result

follows.

Remark 6.2.4. In the setting of the above proposition, p need not lift to a braided

embedding, for instance see Remark 6.3.6.

Remark 6.2.5. The above proposition also generalizes to maps other than branched

coverings, like the ones considered by Melikhov [58].

6.3 Liftings of two fold coverings over the Klein bottle

Let us consider two 2-fold coverings over the Klein bottleK, which has fundamen-

tal group π1(K) = 〈a, b|a2b2〉.

Example 6.3.1. The first cover we will consider is the orientation double cover, that

unwraps both the one-handles so the resulting cover is a torus. In other words this

corresponds to the monodromy map:

a 7→ (12), b 7→ (12).
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Example 6.3.2. The second cover we will consider is the also two sheeted cover, but

one which unwraps only the first one-handle. In other words this corresponds to

the monodromy map:

a 7→ (12), b 7→ I.

The resulting cover is a connected non-orientable surface which has zero Euler

characteristic, i.e. it is the Klein bottle.

6.3.1 Liftability the above examples to braided embeddings

Let us now consider the problem about lifting of the two coverings over the Klein

bottle to braided embeddings, or equivalently if we can lift the permutation mon-

odromy maps to a braid monodromy.

Claim 6.3.3. The orientation double cover f : T → K of the torus over the Klein bottle

lifts to a braided embedding.

Proof. We have the braid monodromy π1(K)→ B2 sending

a 7→ σ1, b 7→ σ−1
1 ,

which lifts the permutation monodromy in Example 6.3.1.

Claim 6.3.4. The two sheeted cover g : K → K of the Klein bottle over itself described in

Example 6.3.2 does not lift to any braided embedding.

Proof. Suppose not, say there is a braid monodromy π1(K) → B2 lifting it which

sends

a 7→ σm1 , b 7→ σn1 for some integers m and n.

It must be the case that m is odd and n is even, as we obtain the symmetric group

S2 from the braid group B2 by adding the relation σ2
1 = 1. Then the image of a2b2
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is σ2(m+n)
1 , which cannot be the identity as 2(m+ n) is not divisible by 4.

Remark 6.3.5. Up to equivalence, there are only two connected two sheeted cover-

ing of the Klein bottle, the ones we discussed above. There is also a disconnected

covering, with permutation monodromy

a 7→ I, b 7→ I,

which lifts to the braid monodromy

a 7→ 1, b 7→ 1.

Remark 6.3.6. We obtain the following commuting diagram of covering maps by

using the two coverings and pull-backs.

T K

T K

g∗f

f∗g g

f

We see that by Claims 6.3.3 and 6.1.3 both the coverings f and f ∗g lift to braided

embeddings, and hence by Proposition 6.2.1, so does their composition f ∗g ◦ f =

g∗f ◦ g. However, by Claim 6.3.4, g does not lift to any braided embedding. This

gives a counterexample to one half of one direction of [62, Theorem 4.2]1. The gap

in the proof of [62, Theorem 4.2] arises from subtleties in continuous variation of

roots with respect to coefficients of polynomials.
1The other parts of this Theorem are essentially the same as the results mentioned in Section 6.2.

However the hypothesis and the proofs of statements vary slightly, as here we restrict to finite
sheeted coverings; and allow branched coverings.
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6.3.2 Liftability of covers over the Klein bottle

In this subsection we will explore some covers over Klein bottle which do (not) lift

to braided embeddings. For notational convenience, in this section we will change

our presentation of the fundamental group of the Klein bottle K by replacing the

generator with its inverse. Thus π1(K) = 〈x, y|x2 = y2〉. So the question about

liftability of covers can be rephrased as:

Question 6.3.7. Given two permutations a and b with a2 = b2, can we find braids α

and β lifting a and b respectively, and α2 = β2?

The answer, as we have seen is not always yes, and let us try to find what some

of the the obstructions are. The first one comes from the sign of the permutations

(and exponent sum of braids).

Claim 6.3.8. If the answer to Question 6.3.7 is affirmative, then permutations a and b

have to have the same sign, i.e. both are even or both are odd.

Proof. Suppose not, say a is even and b is odd. Then exp(α) is even and exp(β) is

odd, so exp(α2) is divisible by four while exp(β2) is not, contradicting α2 = β2.

The next question we may ask is if a and b satisfying a2 = b2 have the same

sign, then can we find lifts α and β with the required properties? The answer is

’No’ as the following claim and example shows.

Claim 6.3.9. If the answer to Question 6.3.7 is affirmative, then permutations a and b

have to be conjugate.

Proof. By [30], roots in the braid group are unique up to conjugation, and thus if

α2 = β2 in the braid group, the braids α and β are conjugate, whence the associated

permutations a and b have to be conjugate in the symmetric group.
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Example 6.3.10. Consider a = (123456) and b = (153)(164), then a2 = (135)(264) =

b2, and a and b are not conjugate since they have different cycle types. Thus by the

claim above, the corresponding cover does not lift.

Proposition 6.3.11. Any covering of a torus over the Klein bottle lifts to a braided embed-

ding.

Proof. If we have any covering of torus over the Klein bottle, then it must factors

through the orientation double cover by Proposition 2.2.9. We know that by claims

6.1.3 and 6.3.3, both these coverings lift to braided embedding, and hence so does

the composition by Proposition 6.2.1 (or by [62, Theorem 4.1]).

6.3.3 Lifting of coverings over general surfaces

Now that we have seen several non-liftable covers over a non-orientable surface

(and it is easy to generalize this to higher geneus non-orientable surfaces), we can

restrict our attention to orientable surfaces and ask if every covering lifts. The

answer turns out to be ’Yes’, but the only proof we have will use results about

lifting branched coverings, discussed in later chapters.

Theorem 6.3.12. Every covering of over an orientable surface lifts to a braided embedding.

Proof. Given any covering p : Σg → Σh, we can compose with the two sheeted

branched covering q of Σh over S2 obtained by quotienting by the hyperelleptic

involution. The resulting composition r = q ◦ p : Σg → S2 is a branched covering.

By Theorem 8.3.1, we know that any branched covering over the sphere lifts to a

braided embedding. The result now follows from Proposition 6.2.3.
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CHAPTER 7

EXTENDING BRAIDED EMBEDDINGS OVER THE BRANCH LOCUS

In the previous chapter we saw a criterion to lift honest covers to codimension two

braided edmbeddings. In this chapter, consider the scenario where the associated

covering of a branched cover lifts to a braided embedding, and we discuss when

we can extend it to obtain a braided embedding lifting the branch cover. It turns

out that the results vary between the smooth and piecewise linear categories. We

will begin by introducing some terminology in the first section; finding local mod-

els in dimension two in the second section, and extend it in higher dimensions in

the third section.

7.1 Completely split links

We will say that a link L in the solid torus S1 × D2 is a completely split link in

regular form there are disjoint sub-discs D1, ..., Dk so that each component of L lies

in a different solid tori S1 ×D2
i . We will say that a link in the solid torus S1 ×D2 is

a completely split link if it is isotopic in the solid torus to a completely split link in

regular form.

We will say a link in the solid torus S1 ×D2 is a completely split unlink if it is a

completely split link and each component is an unknot (i.e. bounds a ball in S3).

We define a closed braid β̂ to be a standard unknot in the solid torus if β ∈ Bn is

conjugate to σ1...σn−1 (all positive crossings) or σ−1
1 ...σ−1

n−1 (all negative crossings).

We define a closed braid to be a standard unlink in the solid torus if it a com-

pletely split link so that each component is a standard unknot.

Let us consider the following subsets of the braid group, as introduced by Ka-
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mada (see [44, Section 16.5] for details)

An := {b ∈ Bn| the closure b̂ of b is completely split unlink}

SAn := {b ∈ Bn|b is conjugate to σ±1
1 }

We observe that An consists of precisely all the elements of Bn such that coning

over b̂ ∈ D2
1 × S1, produces a locally flat disk in D2

1 ×D2
2, and SAn ⊂ An.

7.2 Local models near branch points in dimension two

In this section we will find necessary and sufficient conditions for extend a braided

embedding of a punctured two dimensional disc (the puncture being one branch

point removed) over the puncture. In the next section we will extend it to a more

general setup.

Suppose we have a braided embedding (in either piecewise linear or smooth

categories) over a disc D2
b with a single branch point O, f : tji=1D

2
i ↪→ D2

b × D2 ,

with pi := pr1 ◦ f |Di : D2
i → D2

b a branched covering map with at most one branch

point at O. Note that j equals the number of cycles (including the fixed elements)

in the permutation corresponding to a loop surroundingO in the monodromy rep-

resentation. Let us suppose the points above Oi is the unique point in D2
i mapping

to O under pi. We note that pr2 ◦ f maps the Oi to distinct points in D2, as all of

them project to the same point O under pr2 ◦ f and f is an embedding. Hence we

can choose a small closed disc Cε around O so that when we set Ci = p−1
i (Cε), the

images pr2 ◦ f(Ci) are disjoint for different i.

Let us look at the braid monodromy of braided embedding induced from f ,

once we remove O and Oi’s. Since the fundamental group of D2
b \ {O} is infinite

cyclic freely generated by any circle γr of radius r, where 0 < r < 1. Thus the braid

monodromy is completely determined by ψ(γr), and we will call this the braid sur-
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rounding the branch pointO. Note that if we pickCε to be the disc of radius ε centered

at the origin, then ψ(γε) = f(tji=1∂Ci) is the closure of the braid surrounding the

branch point in the solid torus γε ×D2. Let us now see what constraints we get on

the braids surrounding the branch point O.

7.2.1 Piecewise linear category

In case we are working in the piecewise linear category, we may assume that we

chose the disc Cε small enough so that f is defined on tji=1Ci by coning tji=1f(∂Ci)

over the points f(Oi), independently for each i. Since the images f(Ci) are disjoint,

we see that the braid surrounding the branch point must be reducible if j > 1.

Moreover since the embedding must be locally flat it must be locally flat near

the points Oi which means the image f(∂Ci) must be an unknot in the solid torus

γε ×D2. Thus we see that ψ(γε), the braid surrounding the branch point must be a

completely split unlink.

Conversely given any closed braid which completely split unlink (without loss

of generality, let us assume it is in regular form) and satisfies the appropriate per-

mutation restrictions (i.e. agrees with the permutation monodromy at O), we can

extend it to a (locally flat) piecewise linear braided embedding over the entire disc.

To see this let us assume the various components L1, .., Lj of the closed braid lie

in disjoint solid tori S1 × N1, ..., S1 × Nj . For each i ∈ {1, ..., j}, let us pick a point

ni ∈ Ni, and we can then set f(Oi) = (O, ni), and we can cone Li (in ∂Cε × D2) at

f(Oi), and get a well defined braided embedding over Cε. Note that since the pro-

jections under p2 of various coning operations are concentrated within the disjoint

discs Ni, we see that the above map is indeed injective. Therefore we obtain,

Lemma 7.2.1. A braided embedding of a disjoint union of circles (i.e. a closed braid), it

extends piecewise linearly to a braided embedding of a disjoint union of discs with one

branch point if and only if the closed braid is a completely split unlink.
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7.2.2 Smooth Category

Similarly to the piecewise linear category, we see that the braid surrounding the

branch point must be completely split, however there are more conditions to smoothly

extend it over a branch point. Let us restrict f (and call this restriction fi) to one of

the nontrivial (i.e. we have actual branching) components D2
i and see what braid

we get. The Jacobian matrix at theOi will look likeDfi = [0|A], as pr1◦f has a local

model z 7→ zn with n > 1. Since fi is an embedding Dfi must have rank 2, and

hence A is an invertible 2× 2 matrix. By inverse function theorem pr2 ◦ f is a local

diffeomorphism. So the circle {|z| = a} in D2 embeds in D2
2 via pr2 ◦ fi for small

a. By the Schoenflies theorem in the plane and isotopy extension theorems we see

that p2 ◦ fi is isotopic to either the identity or complex conjugation near Oi
1. Thus,

fi is locally equivalent (= isotopic in a sufficiently small neighborhood of Oi) to f+

or f−, where the maps f± : D2
a → D2

b ×D2 defined by z 7→ (zn, z) and z 7→ (zn, z̄). It

therefore suffices to understand what the braids surrounding the branch points in

the local models f± are. By choosing the n-th roots of unity as collection of n dis-

tinct points, it is clear geometrically that we get a positive (respectively negative)

partial twist for f+ (respectively f−); i.e. the braid surrounding the branch point is

(upto conjugation) σ1...σn−1 (respectively σ−1
1 ...σ−1

n−1). We can also argue this more

analytically as follows.

Let us say our convention is that for the discD2 we project out the second factor

to get a knot diagram. To be precise, for any 0 < a < 1 the circle γa = {|z| = a} in

D2
a maps to the circle γb in D2

b , where b = an, and f±(γa) gives rise to a closed braid

in the solid torus γb×D2, and ignoring the second coordinate ofD2, we get the knot

diagram, where crossings happen at the point where the first three coordinates of

f± agree. If zn1 = zn2 , it necessarily must be the case that the complex arguments

1An alternate way to think about this is the contractibility of the space of embeddings of disc to a
disc, see https://mathoverflow.net/questions/181424/contractibility-of-space-of-embeddings-of-
a-disc .
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of z1 and z2 differ by 2kπ
n

, where 0 < k < n is an integer. For the third coordinates

of f± to agree, we need to have the cosines of these arguments to agree. Now we

observe that for each integer k satisfying 0 < k < n, the equation

cos(θ) = cos(θ +
2kπ

n
) or equivalently − 2 sin(θ +

kπ

n
) sin(

kπ

n
) = 0

has exactly one solution in [0, π), namely θ = (n−k)π
n

. Thus we see there are exactly

n−1 crossing points, and by looking at the sines at these points we see that they are

positive crossings for f+ and negative crossings for f−, i.e. the braids surrounding

these branch points are standard unknots. The actual braids we get can be chosen

to be σ1...σn−1 and σ−1
1 ...σ−1

n−1 by choosing the base-point with complex argument

0.

Remark 7.2.2. We remark here that if τ is any permutation of {1, ..., n} then ση11 ...σ
ηn−1

n−1

is conjugate to σ
ητ(1)
τ(1) ...σ

ητ(n−1)

τ(n−1) . To see this note that we can go between the two

words by applying a sequence of far commutation relations and conjugations. In

particular, there is nothing special about the braid σ1...σn−1 we got for f+, we can

apply any permutation τ and we would get the same braid closures.

In other words, we have:

Lemma 7.2.3. A braided embedding of a disjoint union of circles (i.e. a closed braid), it

extends smoothly to a braided embedding of a disjoint union of discs with one branch point

if and only if the closed braid is a completely split standard unlink.

7.3 Extending in higher dimensions

In this section we address the question:

Question 7.3.1. Given a co-dimension 2 braided embedding on the complement of

the branch locus, when can we extend the braided embedding over the branch

locus (smoothly or in a locally flat p.l.)?
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We will answer this question completely when the branch locus is a submani-

fold with trivial normal bundle. We will mostly use this result for branched covers

over the sphere, and whenever the branch locus is embedded as a codimension

two submanifold, it has a Seifert hypersurface [52], which trivializes the normal

bundle.

As we saw in the last section, when we are looking at branched cover of sur-

faces (i.e. the branch locus is just a discrete set of points), we had conditions on the

braid surrounding the branch points for the braided embedding to extend over the

branch point. Of course, the same constraint is there for each braid corresponding

to meridian around the branch point, and as we see below, these are enough.

In case the branch locus is a manifold, the various meridians are conjugate

as long as the branch points belong to the same connected components. Conse-

quently, in the above case, one needs to verify that for each connected component,

the braid surrounding the branch points satisfy the appropriate conditions for us

to extend the braided embedding over the branch locus.

We will analyze the situation in the smooth and the piecewise linear categories

seriously below. We will use the local models discussed in the last section, to first

deal with the special case when the branch locus B and its pre-image B̃ are both

connected, and then show the general case reduces to the above special case by

using the structure of centralizers of reducible braids, see [31].

7.3.1 Smooth Category

Here we will answer Question 7.3.1 in the smooth category.

Proposition 7.3.2. Suppose we have a smooth branched cover p : M → N with branch

locus B ⊆ N being a submanifold with trivial normal bundle νB ∼= B ×D2. Suppose we

choose points b1, ..., bk, one for each connected component of B. If we are given a smooth

braided proper embedding g1 : M \ ν0B̃ ↪→ (N \ ν0B) × D2 lifting the honest covering
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p1 : M \ ν0B̃ ↪→ N \ ν0B induced from p, then g1 extends to a smooth braided embedding

g : M ↪→ N ×D2 lifting p if and only if each of the braids surrounding the branch points

bi are completely split standard unlinks.

We observe that if b̂i is another point is the same connected component as bi,

then the meridians surrounding bi and b̂i are conjugate in the fundamental group

of N \ ν0B, and consequently so are the braids surrounding bi and b̂i. Thus we

see that the condition stated in the the above proposition is independent of which

particular points from each connected components of B is chosen.

Proof. Suppose g1 does extend to a smooth braided embedding g. Then for any i, if

we restrict g to the slice {bi} ×D2 in νB, then we see that we get a smooth braided

embedding over a disc D2 with exactly one branch point. By the local model we

studied in the previous section we see that the braid surrounding the branch point

bi has to be a completely split standard unlink.

It remains to show the converse, so let us now suppose we have a braided

embedding g1 so that the braid surrounding the branch points are completely split

standard unlinks. It suffices to construct a braided embedding of h : νB̃ ↪→ νB ×

D2, so that the braided embedding on the boundary h1 : B̃ × S1 ↪→ (B × S1)×D2

coming from h agrees with that coming from g1. Observe that in the above case

we can isotope both the braided embeddings g1 and h in the above case, so the

braided embedding is invariant in a collar neighbourhoods of the boundary, and

then identify the collar neighbourhoods, and thereby obtaining a smooth braided

embedding g lifting p.

Recall that since we are considering a smooth branched covering p : M → N ,

then the restriction of p|B̃ : B̃ → B is a covering map. To define this map, we can

define the braided embedding on each connected component of B individually.

Without loss of generality, let us now assume B is connected. Suppose the funda-

mental group of B has the presentation 〈x1, ..., xs|r1, ..., rt〉 (recall we are assuming
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our manifolds are compact, and thus the branch locus being a closed submanifold

also has the same property. Consequently, its fundamental group is finitely gen-

erated. However, the reader can observe that the same argument given here also

works if π1B is not finitely presented).

Since B has trivial normal bundle, the boundary of νB is diffeomorphic to B ×

S1, and so has fundamental group

π1(∂νB) ∼= π1(B)× Z ∼= 〈x1, ..., xp, µ|r1, ..., rq, [xi, µ] for all 1 ≤ i ≤ s〉.

Here µ denotes the loop (meridian) corresponding to the S1 factor, and [xi, µ] de-

notes the commutator of xi and t. The braided embedding g1 induces a braided

embedding g2 : B̃ × S1 ↪→ (B × S1) × D2, which in turn gives rise to the braid

monodromy map ψ2 : π1(B × S1) ∼= π1(B) × Z → Bn, where the covering p2 (i.e.

restriction of p to B̃ × S1) is n-sheeted. To define the braided embedding h of νB̃,

we will first construct a braided embedding lifting p|B̃ : B̃ → B induced from the

braided embedding g2.

Recall from Subsection 3.4, we have a map Θ : Z(ψ2(µ)) → Z0(ψ2(µ)) sending

a braid commuting with ψ2(µ) to a braid commuting with the associated tubular

braid ψ2(µ). To this end, note that for each 1 ≤ i ≤ t of the braids ψ2(xi) commute

with ψ2(µ), and consequently the image ψ2(π1(B) × {0}) is contained in Z(ψ2(µ)).

Thus we get a well defined group homomorphism ψ3 : π1(B) → Bm defined on

the generators by sending xi 7→ Θ ◦ ψ2(xi). This braid monodromy induces a

braided embedding: g3 : B̃ → B × D2 ∼= νB. Taking products with a disc, we

obtain a proper braided embedding g4 : νB̃ → νB × D2 lifting p|νB̃ : νB̃ → νB,

and restricting g4 to the boundary of the normal bundles we obtain the braided

embedding g5 : B̃ × S1 → (B × S1) × D2, with braid monodromy defined by

ψ5 : π1(∂νB) → Bn, so that for any γ ∈ π1(∂νB) with the tubular braids under
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ψ2 and ψ5 agreeing, i.e. ψ2(γ) = ψ4(γ); although the interior braids (and hence

ψ2(γ) and ψ5(γ)) may differ in the following way. The interior braids of ψ5 are all

identity, since we uniformly took products with a disc. By hypothesis, we know

that the interior braids {αk} of α := ψ2(µ) is a standard positive or negative braid,

i.e. conjugate to (σ1...σk)
±1 for some k. We know that centralizer of the above braid

is the cyclic subgroup generated by itself. Thus for any i, the k-th interior braids of

ψ2(xi) has to be powers of αk.

The idea now is to twist the braided embedding g4 so that the induced braided

embedding g5 agrees with that of g2. Let us first consider the special case B is a

circle S1, with fundamental group 〈x〉 ∼= Z. B̃ will be a disjoint union of circles,

and each component of the normal bundle νB̃ will be a solid torus. In order to

construct a braided embedding h : νB̃ ↪→ νB×D2 so that the braid monodromy of

which agrees with that of ψ2, we will modify g4 by applying Dehn twists on those

components of νB̃ so that the interior braids match with that of ψ2(x).

Figure 7.1: WhenB is S1, the figure illustrates a braided embedding of νB̃ inB×D2

More formally, we will pre-compose the braided embedding g4 with a diffeo-

morphism of νB̃ which preserves each solid tori setwise, and induces a number

(this number is equal to the exponent of the corresponding interior braid of ψ2(x))
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of Dehn twist2 on the boundary of the solid torus. The braided embedding h so

constructed has the property that the induced braided embeddings on the bound-

ary h1 is isotopic to that of g5 (since the braid monodromies agree), and thus we

can patch up h and g1 to extend the braided embedding over the branch locus.

To make the above idea work in general we need to come up with an ana-

logue of Dehn twists in higher dimension, and ensure we can carry out a similar

construction as above even when the fundamental group of B is complicated. To

elaborate on the latter point, suppose we did some twisting of g4 so the interior

braid corresponding to x1 agrees with that of ψ2(x1), but now if we do some twist-

ing so that the interior braids of x2 agree, we need to make sure this does not alter

the interior braids of x1.

Let us begin with the analogues of Dehn twists, which we will call D-twists.

Definition 7.3.3. Suppose X is any smooth manifold, and Y is any hypersurface of

X with a tubular neighbourhood Y × [0, 2π]. Then we can define a diffeomorphism

of X × S1 as follows: we cut X × S1 along Y × S1, and define

Y × [0, 2π]× S1 → Y × [0, 2π]× S1,

by sending:

(y, θ, z) 7→ (y, θ, eiθz).

we see that this map agrees with the identity at the boundary Y ×{0, 2π}×S1, and

as such we can extend this to the rest of X×S1 by identity. We will call this D-twist

of X × S1 along Y × S1 and denote it by TY .

Also, we observe that this map TY extends to a diffeomorphism SY of X × D2

2Recall for any diffeomorphism of the boundary of a solid torus which preserves the meridian
can be extended to a diffeomorphism of the entire solid torus.
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by essentially the same formula: let us define

Y × [0, 2π]×D2 → Y × [0, 2π]×D2

by

(y, θ, z) 7→ (y, θ, eiθz),

and the identity map elsewhere.

Notice that when X is the unit circle and Y is a single point in X , the D-twist

TY is exactly the Dehn twist TY × S1 along a meridian, and SY is the extension of

this diffeomorphism to the entire solid torus.

Returning to the case X being a manifold, if γ is a simple closed curve in X

which intersects Y in some finite set of points y1, ..., yl, then we claim that the effect

of TY on the torus γ × S1 is the Dehn twist along the meridian {y1} × S1 to the

power 〈γ, Y 〉 times, where 〈γ, Y 〉 denotes the algebraic intersection number of γ

with Y . For, if there is one intersection it is easy to see that the only change happens

near that point and it is a positive or negative Dehn twist about the meridian,

depending on the sign of the intersection. If there are multiple such intersections,

we will get several meridional Dehn twists, with signs corresponding to that of the

intersection.

Special Case: Let us assume the map p : B̃ → B is a diffeomorphism. We

would like to realize the braided embedding g2 : B × S1 → (B × S1) × D2 as

the boundary of braided embedding h : νB → νB × D2. In this context, the clo-

sure of β = ψ2(µ) is a standard unknot, and we know that the centralizer of ψ2(µ)

is an infinite cyclic group generated by itself. Thus if we restrict the braid mon-

odromy map ψ2 : π1(∂νB) to the subgroup π1(B) (obtained by fixing a particular

point in S1), we see that the restriction maps from π1(B) to Z(β) ∼= Z. Thus it

must factor through the first homology H1(B), or in other words is an element
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of Hom(H1(B),Z). By the universal coefficient theorem for cohomology, this ele-

ment is the image of some cohomology class in H1(B) (there may be multiple pre-

images depending on if the corresponding Ext term is non-trivial). By Poincare

duality there is a homology class in HdimB−1(B) dual to it, which is represented by

an embedded [52] hypersurface Y . It follows that if we pre-compose the braided

embedding g4 : νB̃ ↪→ νB × D2 with the diffeomorphism SY : νB̃ → νB̃ (recall

B and B̃ are diffeomorphic), we obtain a braided embedding h with the required

properties.

General Case: Given the braided embedding g2 : B̃ × S1 ↪→ (B × S1)×D2, we

had its braid monodromy map ψ2 : π1(B×S1)→ Bn. LetC be one component of B̃,

by restricting g2 to the componentC×S1, we get a braided embedding g2|C×S1 : C×

S1 ↪→ (B×S1)×D2, and we claim that this braided embedding is the composition

of two braided embeddings:

s : C × S1 ↪→ (C × S1) × D2 (the associated cover id × p unwraps only the S1-

direction), and the braided embeddingC×S1 ↪→ (B×S1)×D2 (the associated cover

preserves the S1 direction, and we get a covering p|C : C → B in the orthogonal

direction). To see this note that if we restrict the braid monodromy ψ2 : π1(B ×

S1)→ Bn to the subgroup π1(C×S1) obtained from (corresponding to the covering

map p|C×id : C×S1 → B×S1), if we ignore the tubular braids not corresponding to

C, we see that the tubular braids are all identity (and the number of such strands of

the tubular braid is the number of sheets of the cover p|C : C → B), and the various

interior braids are conjugate (the number of strands in an interior braid equals the

number of times the S1 factor is unwrapped, say l). If we choose a particular base

point in C over the base point in B, the interior braids coming from that factor

gives us a braid monodromy ψ6 : π1(C × S1) → Bl. It suffices to show that we

can realize this braid monodromy by twisting, i.e. we will precompose each νC

with an appropriate D-twist realizing appropriate interior braids, and doing this
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for each component C of B̃ will give us a braided embedding h with the required

properties. Thus, we reduce to the special case considered above when p : B̃ → B

is a diffeomorphism, and the result follows.

7.3.2 Piecewise Linear Category

We have a similar result in the piecewise linear category, when the branch locus

is a submanifold. The reader will note that this results requires braids surround-

ing branch points to be completely split unlinks (as opposed to standard unlinks),

which is to be expected given our local model near a branch point in the last sec-

tion.

Proposition 7.3.4. Suppose we have a piecewise linear branched cover p : M → N

with branch locus B ⊆ N being a submanifold with trivial regular neighbourhood νB ∼=

B × D2, and p|B̃ : B̃ → B is a covering map. Suppose we choose points b1, ..., bk,

one for each connected component of B. If we are given a locally flat piecewise linear

braided proper embedding g1 : M \ ν0B̃ ↪→ (N \ ν0B) × D2 lifting the honest covering

p1 : M \ ν0B̃ ↪→ N \ ν0B induced from p, then g1 extends to a locally flat smooth braided

embedding g : M ↪→ N × D2 lifting p if and only if each of the braids surrounding the

branch points bi are completely split unlinks.

The proof will be similar to that of the smooth category, once again there will

be a special case, and a reduction from the general case to the special case. The

latter step is essentially the same as the proof in the smooth category, however we

will need to approach the special case differently, as the author does not know any

sort of classification which braids closures are unknots, let alone a precise under-

standing of their centralizers.

Proof. By our study of local models in the last section, it is clear that the hypothesis

(of braids surrounding branch points be completely split unlinks) is a necessary
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condition. It suffices to show it is a sufficient condition as well.

Special Case: let us assume the map p : B̃ → B is the identity map. We would

like to realize the braided embedding g2 : B×S1 → (B×S1)×D2 as the boundary

of braided embedding. We will obtain h simply by coning g2. Thinking of a slice

D2
ν of the normal bundle as the cone p ∗ S1, we see that B ×D2

ν ×D2 is nothing but

the parametric join B × S1 ×D2 along B × p.

Let us choose the originO in the discD2, we see that for each b ∈ B,the image of

g2 in {b}×S1×D2 is an unknot (because we are in the special case), we can cone this

at the point {b}×{p}×{O}, and obtain a locally flat braided disc in {b}×D2
ν ×D2.

By doing this coning operation for each b ∈ B, we obtain a locally flat piecewise

linear proper braided embedding h which induces the braided embedding g2 in

the boundary, and can be used to extend g1.

General Case: Without loss of generality we may assume B is connected (we

can run the same argument for each component of B), however B̃ may have mul-

tiple components. In this case we need to choose an appropriate number of points

Oi, and cone over them. However, we need to make sure that this procedure gives

us an embedding, we would like to vary the pointsOi inD2 (continuous) paramet-

rically inB so the result of the coning is injective. To do this formally, we will make

use of the tubular braids. Given braided embedding g2 : B̃ × S1 ↪→ (B × S1)×D2,

just like in the smooth category, we obtain a braided embedding g3 : B̃ ↪→ B ×D2

by looking at the tubular braids of the braid monodromy ψ2 of g2 (we have less

control over the interior braids in this case, but the tubular braids behave simi-

larly). By looking at a small neighbourhood of this braided embedding, we again

obtain a braided embedding g4 : νB̃ → νB × D2 lifting p|νB̃ : νB̃ → νB. We can

replace the braided embeddings on the boundary of this untwisted braided em-

bedding g4 with the one coming from g2, and use the small neighbourhoods in the

disc D2 (i.e, the points Oi is determined by the braided embedding g3) to do the
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coning operation. The result follows.
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CHAPTER 8

LIFTING BRANCHED COVERINGS OVER THE TWO-SPHERE

In this chapter we will study the lifting problem for branched covers over the two-

sphere. We will see that the answers differ in the smooth and piecewise linear

categories.

8.1 Braid Systems and Permutation Systems

Since the fundamental group of a sphere with m punctures has the presentation

〈x1, ..., xm|x1....xm〉 where the xi is the loop surrounding the i-th puncture, we can

store permutation and braid monodromies of the punctures sphere as tuples. Let

G be any group with any subset H , let us define

Pm
g (G,H) := {(h1, ..., hm)|hi ∈ H, h1...hm = g}

We omit H from the notation if H = G, and we omit g from the notation if g = e.

An element of Pm(Sn) will be called a permutation system.

An element of Pm(Bn, An) will be called a braid system.

An element of Pm(Bn, SAn) will be called a simple braid system.

8.2 Lifting simple branched covers

Let us begin by discussing liftings of two fold branched covers over the two sphere.

Example 8.2.1. The monodromy of the branched covering described in Figure 2.5

can be described by the permutation system ((12), (12), (12), (12), (12), (12), (12), (12)).

One possible lift is given by the braid system (σ1, σ1, σ1, σ1, σ
−1
1 , σ−1

1 , σ−1
1 , σ−1

1 ). We
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observe that this example generalizes to arbitrary genus, and any two fold branched

cover over the sphere lifts to a braided embedding.

For simple branched covers over the sphere, Carter and Kamada [16, Theo-

rem 3.8] answered Question 4.2.4 affirmatively, using the classification of simple

branched covers due to Lüroth [55] and Clebsch [17] (see [8, Section 4] for a proof

in English),

Proposition 8.2.2. Any transposition (=simple permutation) system can be brought to

the form

((12), ..., (12), (13), (13), (14), (14), ..., (1n), (1n))

(with an even number of (12)’s) using some sliding moves and conjugation.

Once a permutation system is brought to this standard form, it is easy to find a

braid system lifting it. If we recursively define α1 := σ1, and αk := σkαk−1σ
−1
k , we

see that αk−1 is a braid lifting (1k) which is conjugate to the standard generator σ1.

Then we see that the braid system (α1, α
−1
1 , ..., α1, α

−1
1 , α2, α

−1
2 , α3, α

−1
3 , ..., αn−1, α

−1
n−1)

lifts the permutation system

((12), (12), ..., (12), (12), (13), (13), (14), (14), ..., (1n), (1n)). After this one can apply

the sliding and conjugation moves in reverse to the braid system and finally get a

braid system lifting the original permutation system.

We will build on Lüroth and Clebsch’s method of proof to show that the an-

swer Question 4.2.4 is yes for any branched cover over the 2-sphere. Before doing

that, let us illustrate the idea of proof of Proposition 8.2.2 with an example, and

then show that we can then get a braid system lifting the permutation system by

applying the reverse process to the braid system.

Example 8.2.3. Let us consider a 4-fold simple branched cover with Hurwitz per-

mutation system ((12), (34), (13), (24), (14), (23)). We will perform sliding moves to
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get the permutation system to standard form

((12), (34), (13), (24), (14), (23))
s5−→ ((12), (34), (13), (24), (23), (14))

s−1
4−−→ ((12), (34), (13), (23), (34), (14))

s−1
2−−→ ((12), (13), (14), (23), (34), (14))

s3−→ ((12), (13), (23), (14), (34), (14))
s4−→ ((12), (13), (23), (13), (14), (14))

s2−→ ((12), (12), (13), (13), (14), (14))

Now it is easy to find a braid system that lifts the given permutation system

once it is in standard form.

The braids α1 = σ1, α2 = σ2σ1σ
−1
2 and α3 = σ3σ2σ1σ

−1
2 σ−1

3 lift (12), (13) and (14),

respectively. Clearly each αi ∈ SA4 being a conjugate of σ1. Now we see that the

braid system (α1, α
−1
1 , α2, α

−1
2 , α3, α

−1
3 ) lifts ((12), (12), (13), (13), (14), (14)). We can

apply the inverses of the sliding moves we applied earlier to (α1, α
−1
1 , α2, α

−1
2 , α3, α

−1
3 )

and get

(α1, α
−1
1 , α2, α

−1
2 , α3, α

−1
3 )

s−1
2−−→ (α1, α2, α

−1
2 α−1

1 α2, α
−1
2 , α3, α

−1
3 ) = (α1, α2, σ

−1
2 , α−1

2 , α3, α
−1
3 )

s−1
4−−→ (α1, α2, σ

−1
2 , α3, α

−1
3 α−1

2 α3, α
−1
3 ) = (α1, α2, σ

−1
2 , α3, σ

−1
3 , α−1

3 )

s3−→ (α1, α2, σ
−1
2 α3σ2, σ

−1
2 , σ−1

3 , α−1
3 ) = (α1, α2, α3, σ

−1
2 , σ−1

3 , α−1
3 )

s2−→ (α1, α2α3α
−1
2 , α2, σ

−1
2 , σ−1

3 , α−1
3 ) = (α1, σ3, α2, σ

−1
2 , σ−1

3 , α−1
3 )

s4−→ (α1, σ3, α2, σ
−1
2 σ−1

3 σ2, σ
−1
2 , α−1

3 )

s−1
5−−→ (α1, σ3, α2, σ

−1
2 σ−1

3 σ2, α
−1
3 , α3σ

−1
2 α−1

3 ) = (α1, σ3, α2, σ
−1
2 σ−1

3 σ2, α
−1
3 , σ−1

2 )

Thus we see that (α1, σ3, α2, σ
−1
2 σ−1

3 σ2, α
−1
3 , σ−1

2 ) lifts the given permutation sys-

tem
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((12), (34), (13), (24), (14), (23)).

For closed two braids, being a completely split unlink is equivalent to being a

completely split standard unlink, whence the lifting question for simple branched

covers are equivalent for the piecewise linear and smooth categories. However,

this does not hold more generally, so let us consider the two categories separately.

8.3 Lifting in the piecewise linear category

Theorem 8.3.1. Every branched cover of a surface over S2 can be lifted to a piecewise

linear braided embedding.

The proof will follow from the following slightly stronger Proposition 8.3.2 be-

low, which in particular shows that one can lift to a braided embedding which can

be perturbed to be simple.

Notation: For n < m, there are canonical inclusions ιn,m : Sn ↪→ Sm and in,m :

Bn ↪→ Bm, and for notational convenience, we will be implicitly using these maps

to make identifications. For example if ρ ∈ ιn,m(Sn) then we can think of ρ ∈ Sn,

and conversely any element of Sn can be thought to be an element of Sm (and

similarly for the braid groups).

Proposition 8.3.2. Every permutation system (ρ1, ..., ρm) in Sn lifts to a braid system

(α1, ..., αm) in Bn so that

1. If ρj ∈ Sk with smallest such k, αj has a braid word of the form βjσ
±1
k−1γj , where βj

and γj are in Bk−1.

2. Moreover if ρj ∈ Sk with smallest such k is a transposition, then αj has a braid word

of the form βjσ
±1
k−1β

−1
j , where βj is in Bk−1.

Proof. The proof will be by induction on n.

Base case: n = 2. Every permutation system in S2 looks like ((12), ..., (12)) with a
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even number of (12)’s. The braid system (σ1, σ
−1
1 , ..., σ1, σ

−1
1 ) lifts ((12), (12), ..., (12), (12))

satisfying the above conditions.

Inductive step: Let us assume the statement holds for q = n−1. Suppose we have

the permutation system (ρ1, ..., ρm) in Sn. For each ρi, let us factorize ρi = %iτi so

that %i ∈ Sn−1, and τi is a transposition of the form (a, n), where a ∈ {1, 2, ..., n− 1}

(such a factorization is not unique, and certain %i or τi can be the identity, in which

case we can drop it from the permutation system). We will do fission to the original

permutation system to obtain (%1, τ1..., %m, τm). We will use inverse sliding moves

to bring all the %i’s to the left of all the τi, as follows:

(%1, τ1, ..., %m−1, τm−1, %m, τm)
s−1
2m−2−−−→ (%1, τ1..., %m−1, %m, τ̃m−1, τm)

s−1
2m−4s

−1
2m−3−−−−−−−→ ...

s−1
2 ...s−1

m−−−−−→ (%1, ..., %m−1, %m, τ̃1, ..., τ̃m−1, τ̃m)

where each τ̃i is a conjugate of τi and is of the form (a, n). Now we will break this

permutation system into permutation tuples Θ = (%1, ..., %m−1, %m), Φ = (τ̃1, ..., τ̃m−1, τ̃m),

and apply sliding moves and its inverses to modify Φ, as described below.

† Let r be the largest number smaller than n so that there is a transposition in Φ

so that (r, n) = τ̃i for some i. Let i1 < i2 < ... < ij be the indices so that τ̃i = (r, n).

We use sliding moves to bring τ̃i2k−1
to the i2k − 1’ th spot, i.e. bring it to the very

left of τ̃i2k . If j is even, we bring τ̃ij to the extreme right of the permutation tuple.

After applying this sequence of sliding moves to (τ̃1, ..., τ̃m−1, τ̃m), the permutation

system will now look like (we illustrate the case when j is odd, where there will

be a single (r, n) at the very right):

(µ1, ν1, (r, n), (r, n), µ2, ν2, (r, n), (r, n), µ3, ν3, ..., µk, νk, (r, n))

where µi’s are permutation tuples with each element of the form (a, n) for some
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a < n, and νi’s are permutation tuples not containing any n, so each element is of

the form (b, r) for some b < r. Now we consider the new permutation tuple which

is formed by deleting the sub-permutation systems ((r, n), (r, n))

↓ (µ1, ν1, µ2, ν2, µ3, ν3, ..., µk, νk, (r, n))

We can then use inverse sliding moves on this permutation tuple to bring the

νj’s to the left

→ (ν1, ν2, ν3, ..., νk, µ̃1, µ̃2, µ̃3, ..., µ̃k, (r, n))

Let us now append (ν1, ν2, ν3, ..., νk) to the right of Θ and set Φ = (µ̃1, µ̃2, µ̃3, ..., µ̃k, (r, n)),

and apply the same procedure (beginning in †) to it. At each step the length of this

permutation tuple reduces by at least 2, and in a finite number of steps Φ will be

empty. At that stage Θ will be a permutation system in Sn−1, and by the induction

hypothesis we can find a braid system lifting it with the stated properties.

Now we can apply to this braid system the reverse of the entire process we

applied to the permutation system, i.e.

• we will introduce the braid system (ηr, η
−1
r ) corresponding to the places we

deleted the permutation system ((r, n), (r, n)), where

ηr := (σr...σn−2)σn−1(σr...σn−2)−1 = σr...σn−2σn−1σ
−1
n−2...σ

−1
r

• we will apply s∓1
k to the braid system if we applied s±1

k to the permutation

system.
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After we apply all these moves we will be left with a braid system

(α1, δ1, ..., αm−1, δm−1, αm, δm)

lifting the permutation system

(%1, τ1, ..., %m−1, τm−1, %m, τm),

Claim 8.3.3. This braid system has properties 1 and 2 as in the statement.

Properties 1 and 2 for the αi’s will follow from the induction hypothesis. The

following observations will show that the δi’s have the properties 1 and 2 as in the

statement.

• The first time we introduce the braid ηr, it is of the form βσ±1
n−1β

−1 where β ∈

Bn−1, and when we apply sliding moves or their inverses to it, we conjugate

it by an element of Bn−1, and so it remains of that form.

• Note that the only times we applied the sliding moves of the form ((r, n), (s, n))→

((s, r), (r, n)), it was the case that s < r. Moreover, since (s, r) is a permuta-

tion in Sn−1, we ensured that we applied inverse sliding moves to it to bring

it to Θ, and then used the induction hypothesis to find a braid βσ±1
r−1β

−1 lift-

ing it, where β ∈ Br−1. While applying the reverse procedure this braid does

not change until it becomes adjacent to the braid η±1
r lifting (r, n), and then

we apply the inverse sliding move

(βσ±1
r−1β

−1, η±1
r )→ (η±1

r , η∓1
r βσ±1

r−1β
−1η±1

r )

Now we will show that η∓1
r βσ±1

r−1β
−1η±1

r is of the form γσ±1
n−1γ

−1, where γ ∈
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Bn−1, by repeatedly applying (equivalent form of) the braid relation

σ−1
i+1σ

±1
i σi+1 = σiσ

±1
i+1σ

−1
i .

We will consider the case that the exponent of ηr above is 1, the other case is

similar.

η−1
r βσ±1

r−1β
−1ηr = βη−1

r σ±1
r−1ηrβ

−1

= β(σrσr+1...σn−2σ
−1
n−1σ

−1
n−2...σ

−1
r+1σ

−1
r )σ±1

r−1(σrσr+1...σn−2σn−1σ
−1
n−2...σ

−1
r+1σ

−1
r )β−1

= βσrσr+1...σn−2σ
−1
n−1σ

−1
n−2...σ

−1
r+1(σ−1

r σ±1
r−1σr)σr+1...σn−2σn−1σ

−1
n−2...σ

−1
r β−1

= β(σrσr+1...σn−2)σ−1
n−1σ

−1
n−2...σ

−1
r+1σr−1σ

±1
r σ−1

r−1σr+1...σn−2σn−1(σ−1
n−2...σ

−1
r+1σ

−1
r )β−1

= β(σrσr+1...σn−2)σr−1σ
−1
n−1σ

−1
n−2...(σ

−1
r+1σ

±1
r σr+1)...σn−2σn−1σ

−1
r−1(σ−1

n−2...σ
−1
r+1σ

−1
r )β−1

= ... = β(σrσr+1...σn−2)(σr−1σr...σn−2)σ±1
n−1(σ−1

n−2...σ
−1
r σ−1

r−1)(σ−1
n−2...σ

−1
r+1σ

−1
r )β−1

Assuming the claim, we see that the braids αi ∈ Bn−1 and αiδi ∈ Bn have the

same closure since they are related by conjugation and stabilization,

αi + γ−1
i αiγi ↗ γ−1

i αiγiσ
±1
n−1 + αiγiσ

±1
n−1γ

−1
i = αiδi

Here, following Morton, we are denoting conjugation by + and stabilization by↗.

Thus the braid system

(α1δ1, ..., αm−1δm−1, αmδm)

lifts the permutation system (ρ1, ..., ρm−1, ρm) with all the required properties.

The above proof is notationally inconvenient, so let us work out some examples
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explicitly.

Example 8.3.4. Let us consider the permutation system ρ = ((123), (24), (14)(23), (34)).

We use fusion on each permutation to construct the new permutation system ρ =

((123), (24), (23), (14), (34)) Now we will use sliding moves to move each transpo-

sition containing 4 to the right.

((123), (24), (23), (14), (34))
s−1
2−−→ ((123), (23), (34), (14), (34))

Now we will just focus on the transpositions on the right containing 4 and use

sliding moves there.

((123), (23), (34), (14), (34))
s3−→ ((123), (23), (13), (34), (34))

We now observe that

(σ2σ1, σ
−1
2 , σ−1

1 σ−1
2 σ1, σ3, σ

−1
3 )

ia a braid system lifting

((123), (23), (13), (34), (34))

with the required properties as in statement. Now we apply s−1
3 to this braid sys-

tem.

(σ2σ1, σ
−1
2 , σ−1

1 σ−1
2 σ1, σ3, σ

−1
3 )

s−1
3−−→ (σ2σ1, σ

−1
2 , σ3, σ

−1
3 σ−1

1 σ−1
2 σ1σ3, σ

−1
3 )

Now observe that σ−1
3 σ−1

1 σ−1
2 σ1σ3 = σ−1

1 σ−1
3 σ−1

2 σ3σ1 = σ−1
1 σ2σ

−1
3 σ−1

2 σ1. Now we
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apply s2 to this braid system.

(σ2σ1, σ
−1
2 , σ3, σ

−1
1 σ2σ

−1
3 σ−1

2 σ1, σ
−1
3 )

s2−→ (σ2σ1, σ
−1
2 σ3σ2, σ

−1
2 , σ−1

1 σ2σ
−1
3 σ−1

2 σ1, σ
−1
3 )

We obtain a braid system (σ2σ1, σ
−1
2 σ3σ2, σ

−1
2 , σ−1

1 σ2σ
−1
3 σ−1

2 σ1, σ
−1
3 ) lifting the

permutation system ((123), (24), (14)(23), (34)) with the required properties.

Example 8.3.5. Let us consider the permutation system

ρ = ((143), (24), (34), (23), (13)).

We use fission on each permutation to construct the new permutation system % =

((13), (34), (24), (34), (23), (13)) We will now be using sliding moves and its inverse

to this system, (almost) as described before.

((13), (34), (24), (34), (23), (13))

s2−→ ((13), (23), (34), (34), (23), (13))

↓ ((13), (23), (23), (13))

↓ ((13), (13))

We see that the braid system (σ1σ2σ
−1
1 , σ1σ

−1
2 σ−1

1 ) Using the sliding moves in re-

verse to this braid system and introducing appropriate braid subsystems at places

we deleted permutation subsystems, we get a braid system lifting %.

(σ1σ2σ
−1
1 , σ1σ

−1
2 σ−1

1 )

↑ (σ1σ2σ
−1
1 , σ2, σ

−1
2 , σ1σ

−1
2 σ−1

1 )

↑ (σ1σ2σ
−1
1 , σ2, σ3, σ

−1
3 , σ−1

2 , σ1σ
−1
2 σ−1

1 )
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= (σ1σ2σ
−1
1 , σ2, σ3, σ

−1
3 , σ−1

2 , σ1σ
−1
2 σ−1

1 )

s−1
2−−→ (σ1σ2σ

−1
1 , σ3, σ

−1
3 σ2σ3, σ

−1
3 , σ−1

2 , σ1σ
−1
2 σ−1

1 )

= (σ1σ2σ
−1
1 , σ3, σ2σ3σ

−1
2 , σ−1

3 , σ−1
2 , σ1σ

−1
2 σ−1

1 )

By fusion we see that

(σ1σ2σ
−1
1 σ3, σ2σ3σ

−1
2 , σ−1

3 , σ−1
2 , σ1σ

−1
2 σ−1

1 )

is a braid system lifting ρ.

Example 8.3.6. Let us consider the permutation system

ρ = ((143), (15), (25), (45), (25), (35), (45), (25), (15)).

We will use sliding moves and destabilizations as earlier.

((143), (15), (25), (45), (25), (35), (45), (25), (15))

s4−→ ((143), (15), (25), (24), (45), (35), (45), (25), (15))

s5−→ ((143), (15), (25), (24), (34), (45), (45), (25), (15))

↘ ((143), (15), (25), (24), (34), (25), (15))

s−1
4 s−1

3−−−−→ ((143), (15), (24), (34), (35), (25), (15))

s−1
4 s−1

3−−−−→ ((143), (15), (24), (34), (35), (25), (15))

s−1
3 s−1

2−−−−→ ((143), (24), (34), (15), (35), (25), (15))

s6s5−−→ ((143), (24), (34), (15), (23), (13), (35))

s−1
5 s−1

4−−−−→ ((143), (24), (34), (23), (13), (35), (35))
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↘ ((143), (24), (34), (23), (13))

From the previous example we know that (σ1σ2σ
−1
1 σ3, σ2σ3σ

−1
2 , σ−1

3 , σ−1
2 , σ1σ

−1
2 σ−1

1 )

is a braid system lifting ((143), (24), (34), (23), (13))

We will get required braid system by following the above mentioned process.

Using the sliding moves in reverse to this braid system and introducing appropri-

ate braid subsystems at places we deleted permutation subsystems, we will get a

braid system lifting ρ.

8.4 Lifting branched covers in the smooth category

For any natural number n ≥ 2, consider the branched cover over the sphere with

permutation system (ρ, ..., ρ), where ρ = (12...n) is an n-cycle, which is repeated n

times.

Claim 8.4.1. For even n, the permutation system (ρ, ..., ρ) lifts to a smooth braided em-

bedding.

Proof. Note that if we take α = σn−1...σ1 and β = σ−1
n−1...σ

−1
1 , then both α and β

lift ρ, and both these braids give rise to valid smooth local models near branch

points (see Section 7.2). Note that α
n
2 is the Garside element ∆, see [29]. Recall, the

Garside element has the property that ∆σ±i = σ±n−i∆ for all i. Thus it follows that

∆β = ∆σ−1
n−1...σ

−1
1 = σ−1

1 ...σ−1
n−1∆ = α−1∆;

and hence ∆β
n
2 = α−

n
2 ∆ = ∆−1∆ = 1. Hence The braid system (α, ..., α, β, ..., β)

smoothly lifts the given permutation system, where both α and β appears n
2

times

in the braid system.

Claim 8.4.2. For odd n, the permutation system (ρ, ..., ρ) does not lift to a smooth braided

embedding.
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Proof. Recall from Section 7.2, that for any braid surrounding a branch point, it has

to be conjugate to either σn−1...σ1 or σ−1
n−1...σ

−1
1 , in particular the exponent sum has

to be ±(n− 1). However, there is no way of adding up an odd number of ±(n− 1)

and getting 0. Consequently, there cannot be any lift, as required.

Remark 8.4.3. The above claim shows that there are some differences between braided

embeddings in the piecewise linear and smooth categories. While all branched

covers over S2 lift in the former, there are infinitely many cyclic branched covers

in the smooth category which do not lift.

Remark 8.4.4. We see that we obtain the following algebraic obstruction to lifting

a branched cover over S2 smoothly, given the permutation system, we need to be

able to assign positive or negative signs to the various disjoint cycles appearing in

the permutation system, so that the total sum is zero. We also can refine this by

looking at connected components, for instance the permutation system

((123)(456), (123)(456), (123)(456))

cannot be lifted to a braid system smoothly, although if we assign positive signs to

(123) and negative signs to (456) the total sum is 0.
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CHAPTER 9

LIFTING BRANCHED COVERINGS OVER THE THREE-SPHERE

In this chapter, we will consider the case of branched covers over the three sphere

S3. We will see that there are algebraic obstructions (torsion) to lifting branched

covers over Sn, when n ≥ 4. There is no such easy obstructions in three dimension,

because knot groups are torsion free.

We would mostly restrict to the case of simple branched covers (actually only

simple three and four colorings) in this section, and contrast with the case one

dimension lower, where we saw every simple branch cover lifted to a braided

embedding, in both piecewise linear and smooth categories. In fact by our analysis

of local models earlier, we saw that in any dimension and over any manifold, a

simple branched cover lifts in the piecewise linear category if and only if it lifts in

the smooth category.

9.1 Colorings

Definition 9.1.1. For any group G, we define a G-coloring to be a homomorphism

(or anti-homomorphism) from the fundamental group of the link complement to

G. By the Wirtinger presentation of the link group, it is equivalent to color (or

label) each strand of any link diagram by elements of G such that at the crossings

the Wirtinger relations are satisfied.

For instance, a Fox-n coloring of a link is a homomorphism from link group1 to

the dihedral group Dn (which canonically is a subgroup of the symmetric group

Sn), so that meridians go to reflections. In particular, a tricoloring of a link is a

1By this we will mean the fundamental group of link complement.
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homomorphism from link group to D3
∼= S3. We will use the following colors to

indicate a simple S3 or B3 colorings, see Figure 9.1.

(12)

(23)

(13)

Tricolorings
Braid Colorings

Figure 9.1: We will use these colors to indicate the colorings on the strands. In the
right, σ1 and σ2 are the standard generators of B3, and τ = σ−1

2 σ1σ2 = σ1σ2σ
−1
1 , and

η = σ2σ1σ
−1
2 = σ−1

1 σ2σ1.

Remark 9.1.2. Our convention is that we read group elements from left to right

in fundamental groups (which includes braid groups) and symmetric group (the

elements of which we think about as a product of cycles), and from right to left

in mapping class groups (this is the standard convention for composing func-

tions). Consequently, the some of the colorings we will consider will be group

anti-homomorphisms (depending on the conventions of multiplication in the tar-

get group), which is why we included it in the definition of G-colorings. For any

given coloring, it will be clear from the context if we are talking about a homo-

morphism or anti-homomorphism. An alternate notational convention would be

to take the opposite group when necessary, so that a coloring is always a homo-

morphism.

It turns out that a branched covering is completely determined by its mon-

odromy data of the associated covering space, and following Fox, we will call such

homomorphisms colorings.
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9.2 Torus Knots

It is known that [14] a torus knot Tp,q (by symmetry, let us assume that p is odd)

tricolorable if and only if p is a multiple of 3, and q is even, and moreover in those

cases the tricoloring is conjugate to ”main tricoloring”, as illustrated by Figure 9.2

(the color pattern repeats both horizontally and vertically as p and q vary):

Figure 9.2: Main Tricoloring on the (9,2) torus knot

It follows that if we can show that this tricoloring lifts to a simple B3-coloring,

then all tricolorings on torus knots lift to simple braid coloring. Indeed, the follow-

ing braid coloring pattern shows that there indeed is a lift (observe that for the lift

of (1,3), we need to use both τ and η to obtain a valid coloring), see Figure 9.3.

Figure 9.3: Simple B3-coloring on the (9,2) torus knot
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Let us summarize the above discussion:

Proposition 9.2.1. A torus knot Tp,q is tricolorable if and only if one of p and q is an odd

multiple of 3, and the other is even. In this case, we moreover have that there is only one

tricoloring (up to conjugation), and the tricoloring lifts to a simple B3-coloring.

It turns out other sorts of colorings are possible for torus links, and there is no

known classification (to the best of the author’s knowledge) of tricolorings of torus

links. For example, consider the following tricoloring on T4,4 in Figure 9.4:

Figure 9.4: A tricoloring on the (4,4) torus link

While this tricoloring lifts to a simple braid coloring, as illustrated by Figure 9.5;

Figure 9.5: Simple B3-coloring on the (4,4) torus link

Etnyre and Furukawa [21] show that it is possible to modify the branch locus by

Montesinos 3- moves to obtain a branched cover over a knot, see Figure 9.6: which

Figure 9.6: A non-liftable tricoloring.
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does not lift to a braided embedding. In fact the above example is one of an infi-

nite family of Etnyre and Furukawa, which starts of with a liftable simple Sn col-

oring on a torus link, but after some Montesinos 3- moves one obtains a Sn colored

knot which do not lift. These examples suggest something subtle is going on with

changing the branch locus with 3-moves, while it does not change the branched

manifold upstairs, one frequently can go from a liftable branched covering to a

non-liftable one (and vice versa).

We now discuss lifts of non-simple branched covers of the Hopf link (the sim-

plest torus link after the unlink).

Example 9.2.2. The link group of the Hopf link is 〈x, y|xy = yx〉, where x and y

are meridians. It follows that we need two commuting elements to define a col-

oring. However, the lifting problem for branched coverings of the three sphere,

branched over the Hopf link is not the same as the problem of lifting a covering

over the torus, since we now have constraints on which braids the meridians can

go to, as we want the braided embedding to be smooth (or piecewise linear locally

flat). Recall, that the only braids lifting the n-cycle (12...n) to a smooth braided

embedding, must be conjugate (by a pure braid) to either αn = σn−1...σ2σ1, or to

βn = σ−1
n−1...σ

−1
2 σ−1

1 . The center of αn (respectively βn) is known to be generated by

αn (respectively βn). However, the only power of αn (respectively βn) which have

exponent sum ±n is α±1
n (respectively β±1

n ). Hence it follows that if we take a to be

the n-cycle (12...n), and b = ap for some p coprime to n so that b is different from

a and a−1, then the permutation coloring on the Hopf link determined by a, b does

not lift to a smooth braided embedding.

9.3 Two-bridge knots and links

Recall that two bridge links (see [28] for details) in S3 are parameterized by a ra-

tional number p
q
, and such a link always has a Wirtinger presentation of the form
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〈a, b|aw = wb〉 if it is a knot, and 〈a, b|aw = wa〉 if it is a link. Here a, b are meridians

and w is a word in a, b. If there is a homomorphism from the link group to braid

groupB3 sending the meridians to half twists, then those half twists have to satisfy

the relation ? of the link group (where ? denotes either aw = wb or aw = wa). We

can take double branched cover of the disc with three points (recall B3 is the map-

ping class group of the thrice punctured disc), and those half twists lift to Dehn

twist in the mapping class group of S1
1 , the once punctured torus. In general, the

study of mapping class group of a surface and some cover is called Birman-Hilden

theory [12], but in this particular cases it is fairly straightforward since the map-

ping class groups are isomorphic. Thus the original problem translates to: can we

find two Dehn twists which satisfies the relation ?. This problem of relations be-

tween two Dehn twists in an orientable has been studied by Thurston [68], who

showed that two Dehn twists either satisfy the braid relation (if and only if the

geometric intersection number of the corresponding curves is 1), or they commute

(if and only if the geometric intersection number of the corresponding curves is

0, however note that this cannot happen for two distinct simple closed curves in

once punctured torus), or they do not have any relation. For a non-trivial 2-bridge

link, the above relation ? is always non trivial, and thus the two Dehn twists have

to satisfy the braid relation. Consequently, we have:

Theorem 9.3.1. Given any two-bridge link, and any Wirtinger presentation of link group

〈a, b|r〉 . Suppose the link has a non-trivial tricoloring (i.e. the relation r holds when we

set a = (12) and b = (23) ), then the tricoloring lifts to a group homomorphism to B3 if

and only if the relation r holds when we set a = σ1 and b = σ2.

Remark 9.3.2. (Closures of two strand braids): The closure of the 2-braid σn1 is tri-

colorable if and only if n is a multiple of 3. If n is a multiple of 3, any non-constant

tricoloring on closure σ̂n1 , lifts to a unique braid coloring (up to conjugation in the

braid group B3), by repeating the following braid coloring, see Figure 9.7. When
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Figure 9.7: We indicate the various possibilities of colorings with three half twists,
if the initial colorings are σ1 and σ2.

n is even, the closure σ̂n1 is a link, and the above theorem implies that the tricol-

oring does not lift to a braid coloring if we want the induced orientation on each

component going the opposite way.

Since the word problem in braid groups is solvable [4], the above results give

a complete characterization of which tricolorings of two-bridge knots or links lift.

It would, however be interesting to find a characterization more directly in terms

of the rational number p
q

(maybe something involving continued fraction expan-

sion of p
q
, or the up-down graph [28]). Recall that a two-bridge knot can have at

most one (non-trivial) tricoloring, up to conjugation; and in fact it follows from the

above discussion that when a two-bridge knot admits a simple simple B3 coloring,

it is unique, up to conjugation.

Among the tricolorable two-bridge knots in Rolfsen’s knot table [64], the fol-

lowing admits a simple simple B3 coloring:

31, 91, 96, 923, 105, 109, 1032, 1040;

and the following do not:

61, 74, 77, 811, 92, 94, 910, 911, 915, 917, 104, 1010, 1019, 1021, 1029, 1031, 1036, 1042.
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9.4 Homomorphism of link groups

In this section, let us discuss some generalities about having homomorphisms from

a link group π1(S3 \ L) to some group G.

Let H be a subgroup of G contained in the center Z(G) of G. So given any

homomorphism φ : π1(S3 \ L) → G, we get a group homomorphism from ψ :

π1(S3 \ L) → G/H by composing with the natural projection G → G/H . We will

show that the converse is also true.

We know that π1(S3 \ L) has a Wirtinger presentation 〈x1, ..., xk|r1, ..., rk〉, so

given any group homomorphism ψ : π1(S3 \L)→ G/H , let us pick any element g1

in G which projects to ψ(x1). The Wirtinger relation xj = xix1x
−1
i will determine

where xj has to go, as follows. Pick any gi lifting ψ(xi), and we are forced to send xj

to gig1g
−1
i . The reader should note that if we picked another lift g′i then g′i = giz for

some central element z, and consequently gig1g
−1
i = g′ig1g

′−1
i . Hence, if we choose

meridians, one for each of the component of the link, and lift for the images under

ψ each of those meridians, the Wirtinger relations give us a lift φ of ψ, as required.

Let us focus on the case of G = B3 and H = Z(G), which is known to be gen-

erated by the square of the Garside element ∆2 = (σ1σ2σ1)2 . It is well known

that the quotient G/H is the modular group PSL(2,Z) ∼= Z2 ∗ Z3. The above re-

sult means given any homomorphism ψ : π1(S3 \ L) → PSL(2,Z) then it lifts to

a homomorphism φ : π1(S3 \ L) → B3, i.e. p ◦ φ = ψ, where p : B3 → PSL(2,Z)

denotes the quotient map2. Consequently, it follows that lifting an S3-coloring of

a link to a B3-coloring is equivalent to whether it lifts to an PSL(2,Z)-coloring (or

SL(2,Z)-coloring). The reader should note that the natural projection B3 → S3 fac-

tors through SL(2,Z) and PSL(2,Z), and so it makes sense to talk about the lifting

problem in that context. Also, we see that admissible B3-colorings correspond to

admissible PSL(2,Z)-coloring (or admissible SL(2,Z)-coloring).
2and of course we get similar statement if we replace PSL(2,Z) with SL(2,Z) .
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Now if we were considering an epimorphism (= surjective homomorphism)

ψ : π1(S3 \ L) → PSL(2,Z) sending meridians to standard generators (standard

transvections), then we see that we can lift it to an epimorphism φ : π1(S3\L)→ B3,

as follows. Observe that, up to conjugation, we can choose to send via φ a meridian

µ ∈ π1(S3 \ L) to σ1 (which the lift of a standard transvection), and since we know

ψ is surjective we know there is an element α ∈ π1(S3 \ L) so that ψ(α) = p(σ2).

Then for the lift φ we have φ(αµα−1) = σ2σ1σ
−1
2 . Since by the braid relation

σ2 = σ1σ2σ1σ
−1
2 σ−1

1 = φ(µαµα−1µ−1),

the image of φ contains both σ1 and σ2, an so φ is surjective.

If we have a homomorphism ψ : π1(S3 \ L) → PSL(2,Z), then the image of ψ

is a subgroup of PSL(2,Z); and by Kurosh subgroup theorem, will be abstractly

isomorphic to a free product of Z, Z2 and Z3’s.

9.5 Tricolorings of knots

If we are considering the image of a knot group, then we know that the abelian-

ization has to be cyclic, so the only possible images in PSL(2,Z) are isomorphic to

{1}, Z, Z2, Z3 and Z2 ∗Z3. If we are considering such a ψ coming from a non-trivial

simple B3-coloring, then the only possibility is Z2 ∗ Z3 because:

• The subgroup generated by the coset of half twist is isomorphic to the inte-

gers (rules out {1}, Z2, Z3)

• Two distinct half twists in B3 cannot commute (as one of the endpoints has

to be the same); and this continues to be true in the quotient, which rules out

Z2. In fact it is known that two half twists in B3 either satisfy no relations, or

satisfy the braid relation.
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Now the group PSL(2,Z) is not co-Hopfian, meaning there are proper subgroups

isomorphic to it, and thus cannot directly use our observation about lifting epi-

morphisms.

Suppose we have any epimorphism3 ψ : π1(S3 \ K) → PSL(2,Z), and we

will show that it has to lift to an epimorphism φ : π1(S3 \ K) → B3, as follows.

For any meridian µ ∈ π1(S3 \ K), if ψ(µ) has exponent sum in Z6 (exponent sum

from B3 is well defined to the integers, and since we get PSL(2,Z) by quotienting

by an element of exponent sum 6, we see that exponent sum descends to a well

defined homomorphism ε : PSL(2,Z)→ Z6, and by abuse of terminology we will

still call it exponent sum ) not equal to ±1, then the exponent sum is in {2, 3, 4},

which would imply the exponent sum of the entire image of ψ is a proper subset

of Z6, which contradicts the fact that ψ is surjective. Changing orientation of K if

necessary, let us assume that the exponent sum of ψ(µ) is 1 ∈ Z6.

Let us choose the lift τ ∈ B3 of ψ(µ), with exponent sum of τ being 1 (the

various choices for τ differ up to a central element, (σ1σ2σ1)2n where n is some

integer). As we saw earlier, there is a unique lift φ : π1(S3 \K)→ B3 of ψ sending

µ to τ . Moreover we see by using the surjectivity of ψ, that for i = 1, 2 there are

elements αi ∈ π1(S3 \K) so that ψ(αi) = p(σi) and α1 is conjugate to α2. We must

have φ(αi) = σi(∆
2)n where n is some integer.

If we write τ as a word in σ1 and σ2; and we write out the same word in α1 and

α2, we see that element will map under φ to τ(∆2)n. Thus (∆2)n is in the image of

φ, and hence so are σ1 and σ2 and consequently φ is surjective. Hence, we have

Theorem 9.5.1. If K is a knot which has a simple B3 coloring, then there is an epimor-

phism from the knot group π1(S3 \K) to B3.

The advantage of promoting the existence of a homomorphism to the existence

3we do not assume here it sends meridians to standard transvections, unlike the previous sub-
section
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an epimorphism is that there are known obstructions to such epimorphism. For

example, Fox [19] showed that if there is any epimorphism between knot groups

(or groups like knot groups, where Alexander polynomials are defined) then the

Alexander polynomial of the target space has to divide the Alexander polynomial

of the source space. This obstruction was upgraded to obstruction coming from

twisted Alexander polynomials [54], and these tools have been used to study par-

tial orders on the set of knots [53]. As a consequence, there are lots of tricolorable

knots, for which the tricoloring does not lift to a simple B3-coloring.

Theorem 9.5.2. Suppose K is any tricolorable knot so that 1 − t + t2 does not divide

the Alexander polynomial of K (or an analogous statement with the twisted Alexander

polynomials), then no tricoloring of K lifts to a simple B3-coloring.

This theorem let’s us answer for each knot in Rolfsen’s knot table, if a knot

admits a simple B3-coloring. In Rolfsen’s table the bridge index of each knot is at

most three, and we already know the answer for two-bridge knots, so it remains

to answer it for the three-bridge knots in the table. The three-bridge tricolorable

in Rolfsen’s knot table which have a simple braid coloring (see [53] for explicit

homomorphisms) are:

85, 810, 815, 818, 819, 820, 821, 916, 924, 928, 940, 1061, 1062, 1063, 1064, 1065, 1066,

1076, 1077, 1078, 1082, 1084, 1085, 1087, 1098, 1099, 10103, 10106, 10112, 10114,

10139, 10140, 10141, 10142, 10143, 10144, 10159, 10164;

and those knots which does not have a simple braid coloring are:

929, 934, 935, 937, 938, 946, 947, 948, 1059, 1067, 1068, 1069, 1074, 1075, 1089, 1096, 1097, 10107,

10108, 10113, 10120, 10122, 10136, 10145, 10146, 10147, 10158, 10160, 10163, 10165.
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The above statement is about existence of a simple B3-coloring on a knot, not

about whether a given tricoloring lifts. More precisely, we can ask:

Question 9.5.3. Is there a prime knot K with two tricolorings, one of which lifts to

a simple B3-coloring, and the other does not?

If we did not include the hypothesis that K is prime, then the answer is eas-

ily seen to be ”Yes”. For we can take a connect sum of a knot K1 which has a

non-trivial simple B3-coloring (for example the trefoil, 31), and a tricolorable knot

which does not have a non-trivial simpleB3-coloring (for example the 61 knot) and

consider two tricolorings of K1#K2, one which is non-trivial on K1 and trivial on

K2, and another which is non-trivial on both K1 and K2.

Let us digress for a moment and discuss of colorings for a connect sum of knots,

and we see that the lifting problem for a connect sum reduces to a lifting problem

for each of the components.

Proposition 9.5.4. Suppose K is a connect sum of two knots K1, K2 in S3. Then for any

G-coloring on K, the colors on the two strands on the boundary of the band correspond-

ing to the connect sum are the same (where we choose consistently oriented meridians for

each of the strands). Consequently, by cutting the two strands and joining them to each

component, we get G- colorings on K1 and K2 respectively.

Proof. Consider a splitting sphere S or for the connect sum which intersectsK1#K2

in exactly two points. Let us choose the basepoint for the knot complement on

S, and by choosing an orientation on K, we get oriented meridians for the two

strands of K1#K2 intersecting S. We can homotope the meridians to lie on the

sphere S punctured at two points (we remove from S the two points of intersec-

tion). We know see the meridians are the homotopic in the twice punctured sphere,

and hence in the knot complement. The result follows since any homomorphism

must preserve equalities in the domain.
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Remark 9.5.5. We note that the analogue of the above result also holds for analogues

of connect sum of links (by which we mean we can pick any two components of

either link and perform a band attachment). While the resulting link will depend

(in general) on the choice of the components and the band, anyG-coloring on it will

canonically give rise to G-colorings on each of the original links. We also remark

that similar result holds for codimension two links in higher dimensional spheres,

with exactly the same proof.

It follows from the above Proposition that a tricoloring on a connected sum of

knots lift if and only if the corresponding tricolorings on each of the individual

knots lift.

Returning to our example, we can conclude the first tricoloring on K1#K2 lifts

to a braid coloring and the second does not.

Note that for two-bridge knots there is only one tricoloring up to conjugation,

and so in this case whether a given tricoloring lifts is the same question as whether

the underlying knot has a simple B3 coloring. The answer to the above question is

still ”Yes”, and this means the question about lifting tricolorings is something per-

taining to a branched covering map (corresponding to permutation coloring), not

just about what the underlying branch set is (or the branched covering manifold

upstairs).

To answer Question 9.5.3, we need to gain a better understanding of types of

relations about more than two Dehn twists. The author was able to show (see [44])

subgroups inB3 generated by three half twists (equivalently subgroups in S1,1 gen-

erated by three Dehn twists) is either free (of rank at most 3), or the entire braid

group. This implies any simple braid coloring of a three bridge knot must actu-

ally be surjective. However this does not immediately answer the question about

whether a tricoloring on a 3-bridge knot lifts to a braid coloring, it still appears to

be an infinite check.
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However, by building upon ideas from there, we will answer the question for a

family of 3-strand pretzel knots. Let us first make the observation that the epimor-

phism π : B3 → S3 factors through SL2(Z), the mapping class group of the torus.

B3
∼= 〈a, b|aba = bab〉 is the mapping class group of the once holed torus, and from

there we can get the mapping class group of the torus by capping off the boundary

component, which corresponds to adding the relation (ab)6 = 1. Recall that we

get the presentation of the symmetric group S3 by adding the relations a2 = 1 and

b2 = 1. Note the relation (ab)6 = 1 holds in the symmetric group since:

(ab)6 = (ababab)2 = (abaaba)2 = (ab2a)2 = (a2)2 = 1.

Thus, we see that π factors through4 SL2(Z), i.e. there are homomorphisms

τ : B3 → SL2(Z) and ρ : SL2(Z) → S3 so that π = ρ ◦ τ . We observe that π1 sends

half twists in the braid group to Dehn twists in the mapping class group of the

torus (this is exactly the Dehn twist about the curve in the double branched cover

which is a lift of the arc corresponding to the half twist, except that we have capped

off the boundary component). Recall simple closed curves (and Dehn twists about

them) in the torus are in one to one correspondence of projectivised5 primitive

vectors in the first homology H1(T2) ∼= Z2. So given a primitive vector ~x =

 p

q

,

let us first discuss how to find the image of Tx under ρ.

Claim 9.5.6. The image under ρ of any Dehn twist Tx only depends on the congruence

class of ~x (with either orientation) modulo 2. More specifically,

• if ~x ≡

 1

0

 (mod 2), then ρ(Tx) = (12),

4In fact π factors also through PSL2(Z) as we actually showed (ab)3 = 1 in S3.
5up to a sign (for orientation)
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• if ~x ≡

 0

1

 (mod 2), then ρ(Tx) = (23),

• if ~x ≡

 1

1

 (mod 2), then ρ(Tx) = (13).

Proof. By definition (or by convention) we have that ρ(Tx) = (12), ρ(Ty) = (23), ρ(Tz) =

(13), where ~x =

 1

0

 , ~y =

 0

1

 , ~z =

 1

1

 respectively. By the proof of [44,

Remark 7.4], we see that given any primitive vector ~u, there is another primitive

vector ~v ∈ {±~x,±~y,±~z}, and a word w in T 2
x , T 2

y and T 2
z so that w~v = ~u. It follows

that Tu = wTvw
−1. Since ρ(T 2

x ) = ρ(T 2
y ) = ρ(T 2

z ) = 1, it follows that ρ(Tu) = ρ(Tv),

and hence the claim holds.

Let us record the following consequence of the above claim for future use.

Claim 9.5.7. If ~u and ~v are primitive vectors in Z2, then ρ(Tu) = ρ(Tv) if and only if the

algebraic intersection number 〈~u,~v〉 is even.

Proof. Recall the algebraic intersection number 〈~u,~v〉 is equal to the determinant of

the matrix with columns ~u and ~v (in that order). To find the parity of the determi-

nant (i.e. reduce the determinant modulo 2), we may equivalently reduce ~u and ~v

modulo 2, and then find the determinant. For a primitive vector modulo 2, there

are exactly three choices, and the result now follows from the previous claim.

9.6 Labellings in a twist region

Suppose we have a twist region with m half twists (m can be positive or negative)

both strands oriented bottom to top6. Let the bottom left and bottom right merid-
6Even if the natural orientation of the strands coming from the knot or link goes the other way,

we can take the inverse of the meridian and carry out the computations assuming the strands are
oriented from bottom to top in the twist region
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ians in the fundamental group be a and b, and we denote by A and B the inverses

of a and b respectively.

If m = 2n is even, by Wirtinger relations the top left and top right meridians

are a(ba)n and b(ba)n (which equals b(ab)n−1a) respectively. If m = 2n + 1 is odd, by

Wirtinger relations the top left and top right meridians are ba(ba)n and aa(ba)n (which

equals a(ba)n) respectively.

Figure 9.8 illustrates these formulas with twist regions with four positive and

negative crossings respectively.

Figure 9.8: Meridians in twist regions using the Wirtinger presentation, if we start
with meridians a, b in the bottom; and A and B denote their inverses.

Consider a braid coloring of the twist region with the meridians mapping to

half twists, and let us further send it to the corresponding Dehn twist in the double

branched cover, and call this coloring φ.

Note that for Dehn twists we have Tf(x) = f ◦ Tx ◦ f−1, so if φ(a) = Tx and

φ(b) = Ty, then by Wirtinger relation c = a−1ba (respectively c = aba−1) we have

φ(c) = Tx ◦ Ty (respectively φ(c) = T−1
x ◦ Ty).

We see that

φ(a(ba)n) = T(TxTy)n(x) φ(b(ba)n) = T(TxTy)n(y)
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φ(ba(ba)n) = T(TxTy)n(Tx(y)) φ(a(ba)n) = T(TxTy)n(x)

Instead of labeling the strands with a left or right handed Dehn twist, we could

just label by the vector in homology corresponding to the simple closed curve

(there is a sign ambiguity when we make initial choices for the bottom left and

bottom right) about which the Dehn twists are taking place. We make the follow-

ing observation:

Claim 9.6.1. A simpleB3 coloring on a link in S3 is equivalent to having a labelling on the

strands by projectivised primitive vectors in Z2 , such that at each crossing the associated

Dehn twists satisfy the Wirtinger relations.

Let us now rewrite the labellings on the strands in a twist region with m half

twists with this convention. Suppose the bottom left strand is labelled with ~x and

the bottom right strand is labelled with ~y. Ifm = 2n is even, the labelling on the top

left and top right strands are (TxTy)
n(~x) and (TxTy)

n(~y) respectively. If m = 2n + 1

is odd, the labelling on the top left and top right strands are (TxTy)
n(Tx(~y)) and

(TxTy)
n(~x) respectively. Let us try to understand how these experssions look as a

linear combination of ~x and ~y.

Let k = 〈~x, ~y〉, the by definition we have Ty(~x) = ~x− k~y, and hence we obtain

Tx ◦ Ty(~x) = Tx(Ty(~x)) = ~x− k~y + 〈~x, ~x− k~y〉~x = ~x− k~y − k〈~x, ~y〉~x = (1− k2)~x− k~y

More generally, we inductively have for any natural number n:

(Tx ◦ Ty)n(~x) = [1− k2An(k)]~x− kBn(k)~y,

as justified below for some integer valued functions An, Bn of k.
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We note that

Ty ◦ (Tx ◦ Ty)n(~x) = Ty((Tx ◦ Ty)n(~x)) = Tx ◦ Ty([1− k2An(k)]~x− kBn(k)~y)

= [1− k2An(k)][~x− k~y]− kBn(k)~y = [1− k2An(k)]~x− k[Bn(k) + 1− k2An(k)]~y

Hence we have

(Tx ◦ Ty)n+1(~x) = Tx([1− k2An(k)]~x− k[Bn(k) + 1− k2An(k)]~y)

= [1− k2An(k)]~x− k[Bn(k) + 1− k2An(k)][~y + k~x]

= [1− k2[(1− k2)An(k) +Bn(k) + 1]]~x− k[Bn(k) + 1− k2An(k)]~y

Hence we have the recursive formulas

An+1(k) = (1− k2)An(k) +Bn(k) + 1, and (9.1)

Bn+1(k) = Bn(k) + 1− k2An(k), (9.2)

with the initial conditions A1(k) = 1 = B1(k).

Since we only see quadratic terms in k, it follows that An(−k) = An(k) and

Bn(−k) = Bn(k). By interchanging the roles of x and y (and remembering that

〈~y, ~x〉 = −〈~x, ~y〉 = −k) we see that

(Ty ◦ Tx)n(~y) = kBn(k)~x+ (1− k2An(k))~y

Along the way we also have found formulas for the other labels appearing at

the end of the twist regions:
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Ty ◦ (Tx ◦ Ty)n(~x) = [1− k2An(k)]~x− kBn+1(k)~y

and (once again by interchanging x and y)

Tx ◦ (Ty ◦ Tx)n(~y) = [1− k2An(k)]~y + kBn+1(k)~x

In a similar fashion we may calculate

(T−1
x ◦ T−1

y )n(~x) = [1− k2An(k)]~x− kBn(k)~y,

T−1
y (T−1

x ◦ T−1
y )n(~x) = [1− k2An(k)]~x− kBn+1(k)~y,

One similarly has functions Cn, Dn of k so that we have the following formulas

for composition of left and right handed Dehn twists:

(Tx ◦ T−1
y )n(~x) = [1 + k2Cn(k)]~x+ kDn(k)~y,

T−1
y (Tx ◦ T−1

y )n(~x) = [1 + k2Cn(k)]~x+ kDn+1(k)~y,

(T−1
x ◦ Ty)n(~x) = [1 + k2Cn(k)]~x− kDn(k)~y,

Ty(T
−1
x ◦ Ty)n(~x) = [1 + k2Cn(k)]~x− kDn+1(k)~y.

We have similar recursive formulas for Cn and Dn, just like the ones for An and

Bn

Cn+1(k) = (1 + k2)Cn(k) +Dn(k) + 1, and (9.3)

Dn+1(k) = Dn(k) + 1 + k2Cn(k), (9.4)
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with the initial conditions C1(k) = 1 = D1(k).

In fact, we can directly relate the functions Cn and Dn to the functions An and

Bn as follows:

Cn(k) = An(ik), and Dn(k) = Bn(ik),

where i is a square root of −1. An alternate (and probably less mysterious) way

of making the same statement is as follows. Recall that An, Bn, Cn and Dn are

polynomial functions of k, where only even degree terms appear. Consequently,

we can think of them as polynomials in k2. We get the polynomial Cn (respectively

Dn) by substituting all occurrences of k2 in An (respectively Bn) by −k2, and vice

versa.

We illustrate using recurrence formulas by finding the labellings in a twist re-

gions with three positive half twists, with the bottom strands colored by the Dehn

twists T±1
x and T±1

y , and we pick some orientation of x and y, and let k denote

the algebraic intersection number between x and y. Depending on the sign of the

exponents, we have four cases to deal with, in Figure 9.9 (see Remark 9.6.2) we

consider the two cases that the two Dehn twists are similar handed (i.e. both right

handed or both left handed); while in Figure 9.10 (see Remark 9.6.3) we consider

the two cases that the two Dehn twists are different handed.

We can also do a similar calculation and see what the labellings would turn

out to be if we had a negative twist region. With the same choices as above, if

the labellings after n positive half twists are a~x + b~y and c~x + d~y (read from left

to right), then the labellings after n positive half twists are (−1)n(d~x − b~y) and

(−1)n(−c~x+a~y). One way to think about this is think of the input colors as a basis,

and the output colors as the image of a linear map. The linear maps corresponding

to positive and negative twist regions (with the same number of half twists) should

be inverses of each other, and everything boils down to the formula of the inverse
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of a 2× 2 matrix:  a b

c d


−1

=
1

ad− bc

 d −b

−c a

 .

Figure 9.9: Labellings of twist region with homology vectors corresponding to sim-
ilar handed Dehn twists

Remark 9.6.2. We discuss the case the two Dehn twists same handed, and this case

is illustrated by Figure 9.9.

If there are an even number of half twists, the labelling on the top left and top

right strands are of the form (1 − k2a)~x + kb~y and −kb~x + (1 − k2c)~y respectively

for some integers a, b, c. Moreover we have a + c = ∓b, where the sign is same as

the sign of the twist region, times the exponent sum of the bottom left coloring.

If there are an odd number of half twists, the labelling on the top left and top

right strands are of the form kb~x+ (1− k2a)~y and (1− k2a)~x+ kc~y respectively for

some integers a, b, c. Moreover we have b+ c = ±(1− k2a), where the sign is same

as the sign of the twist region, times the exponent sum of the bottom left coloring.

Remark 9.6.3. We now discuss the case of opposite handed Dehn twists, see Figure

9.10.

If there are an even number of half twists, the labelling on the top left and top
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Figure 9.10: Labellings of twist region with homology vectors corresponding to
different handed Dehn twists

right strands are of the form (1 + k2a)~x+ kb~y and kb~x+ (1 + k2c)~y respectively for

some integers a, b, c. Moreover we have a − c = ±b, where the sign is same as the

sign of the twist region, times the exponent sum of the bottom left coloring.

If there are an odd number of half twists, the labelling on the top left and top

right strands are of the form kb~x+ (1 + k2a)~y and (1 + k2a)~x+ kc~y respectively for

some integers a, b, c. Moreover we have b− c = ±(1 + k2a), where the sign is same

as the sign of the twist region, times the exponent sum of the bottom left coloring.

Note that in this case if the number of half twists increase, then so do these

coefficients a, b and c. This is because the functions Cn(k) and Dn(k) are strictly

increasing for k 6= 0, by the recurrence relations.

Remark 9.6.4. Consider ~x and ~y to have algebraic intersection number 1, and con-

sider the two situations in Figure 9.9. We see the labellings on the top strands are

~x and −~y for the sub figure on the left (corresponding to two right handed Dehn

twists), and −~x and ~y for the sub-figure on the right (corresponding to two left

handed Dehn twists). We see the labellings at the top and bottom match up only

if we allow the sign ambiguity. However, if we close up the twist region, we get

a trefoil, with the standard non-trivial braid coloring. This example is to illustrate
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that it is necessary that we allow the sign ambiguity when we are dealing with

labellings.

9.7 Pretzel Knots: Introduction

A pretzel link P (q1, q2, ..., qm) has a diagram withm twist regions joined up as illus-

trated in Figure 9.11, where there are qi (which can be both positive and negative

and zero) is the number of half-twists in the i-th region.

Figure 9.11: A pretzel link P (q1, q2, ..., qm).

Fact 9.7.1. We recall some basic facts about pretzel links.

• P (q1, q2, ..., qm) is isotopic to P (q2, ..., qm, q1).

• P (q1, q2, ..., qm) is a knot if and only if either exactly one of the qi is even, or all the

qi’s and m are odd.

• For a pretzel knot, if we pick any orientation on the knot, then one of the following

possibilities occur:

1. in every twist region the strands go in opposite directions (this happens if and

only if all the qi’s and m are odd);
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2. in every twist region the strands go in same directions (this happens if and only

if exactly one of the qi is even and m is even);

3. in exactly one twist region the strands go in opposite direction (this happens if

and only if exactly one of the qi is even and m is odd).

Claim 9.7.2. If we have any G-coloring on a pretzel link, and suppose that for some twist

region the colors on the bottom left (respectively right) strand is the same as the colors on

the top left (respectively right) strand, where we look at the color individually on each twist

region orienting the strands from bottom to top. Then same holds in any twist region, i.e.

the colors on the bottom strands is the same as the colors on the top strands (in the same

order).

Proof. In any twist region, the products of the meridians we have around the top

two strands is the same as that around the bottom two strands, since a loop enclos-

ing the bottom two strands is homotopic to the loop bounding the top two strands.

Alternately, this can be deduced by repeated application of the Wirtinger relations,

notice that the Wirtinger relation is precisely the statement in the previous sen-

tence if the twist region has one crossing. If we are given that the G-coloring fixes

the colors on the left strand (which is equivalent to both left and right strand), we

see the same has to be true for the rightmost strand of the twist region to the left,

and we get the result by repeating this observation.

Proposition 9.7.3. Suppose we have a non-trivial simple B3-coloring, so that the associ-

ated labelling by primitive vectors in Z2 on two strands on the bottom of a twist region

in any pretzel knot P (q1, ..., qm) are the linearly dependent (i.e. same or negatives of each

other). Then in every twist region where the coloring is non-constant must have the strands

gong the same way, and the number of half twists must be a multiple of 3, and we have the

pattern from Remark 9.3.2 repeated in each such a twist region.

Proof. As we have a non-trivial braid coloring, so there must be two twist regions,
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say T1 and T2 next to each other with say T1 on the left having the same labellings,

and T2 on the right different labellings. We note that this twist region with different

labellings must go in the same direction, as otherwise we cannot get the same

label (since the functions Cn(k) andDn(k) are monotonically increasing by Remark

9.6.3).

Since we have the strands going the same way in the twist region on the right,

we know that the exponent sums of the coloring top left and bottom left strands

on T2 must be the same, and hence it follows that the same should be true for

the exponent sums of the coloring top right and bottom left strands on T2. In

particular, for the twist region T2 the colorings on the top left strand is the same

as the colorings of the bottom left strand, and now the result follows from the

previous claim and Remark 9.6.2.

As a consequence of the above proposition, when we are analyzing simple B3-

colorings on pretzel knots, we may assume the associated labellings in each twist

regions are distinct, since otherwise we understand the coloring extremely well by

the above proposition.

Remark 9.7.4. We introduce some notation for future use. Suppose we label the

strands at the bottom and top with the labels ~x1,...,~xm and ~y1,...,~ym as illustrated in

Figure ??.

Let us denote by ki the algebraic intersection number 〈~xi, ~xi+1〉.

Since we assume for all i, ~xi−1 and ~xi are linearly independent we can express

each xi+1 as a rational linear combination of xi−1 and xi,

~xi+1 = αi~xi−1 + βi~xi for some αi, βi ∈ Q.

Notice that we have:
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ki = 〈~xi, ~xi+1〉 = 〈~xi, αi~xi−1 + βi~xi〉 = αi〈~xi, ~xi−1〉 = −αiki−1, and (9.5)

〈~xi−1, ~xi+1〉 = 〈~xi−1, αi~xi−1 + βi~xi〉 = βi〈~xi−1, ~xi〉 = βiki−1. (9.6)

9.8 Three strand Pretzel knots I: all odd

Let us consider the pretzel knot P (p, q, r) with p, q, r all odd. The Alexander poly-

nomial of this knot is [55, Example 6.9]

∆P (p,q,r)(t) =
1

4
((pq + qr + rp)(t2 − 2t+ 1) + t2 + 2t+ 1)).

In particular the determinant of such a pretzel knot is ∆P (p,q,r)(−1) = pq + qr + rp

(this formula for the determinant is true for more general pretzel knots, see [43,

Section 8]) and so pretzel knots P (p, q, r) is tricolorable if and only if 3 divides

pq + qr + rp.

It is easy to see that ∆P (p,q,r)(t) is divisible by 1−t+t2, the Alexander polynomial

of the trefoil knot (which is a pretzel knot P (1, 1, 1) or P (−1,−1,−1) depending on

the handedness) if and only if pq + qr + rp = 3. It follows from Theorem 9.5.2 that

if the determinant pq + qr + rp is any multiple of three different from three, then

any associated tricoloring does not lift to a simple B3-coloring. In this section we

will show that the only such pretzel knots which admit a simple B3-coloring are

the left and right handed trefoils.

We remark that the knot group of the trefoil (recall the knot groups of any knot

in S3 and it’s mirror are isomorphic) is isomorphic to the braid group B3 on three

strands, and this isomorphism sends meridians to half-twist, and gives us the de-

sired braid coloring.
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Figure 9.12: A three strand pretzel knot with p, q and r are all odd. The arrows (in
different colors) indicate an orientation of the knot in each twist region.

Suppose we have a pretzel knot P (p, q, r), with the strands in the bottom la-

belled by ~x, ~y, ~z and the three strands on top labelled by ~x1, ~y1, ~z1, as illustrated in

Figure 9.12 , and let us suppose 〈~x, ~y〉 = k , 〈~y, ~z〉 = l and 〈~z, ~x〉 = m.

By our discussion in the last section, from the leftmost twist region we get:

±~x1 = (1 + k2a)~y + kb~x and ± ~y1 = (1 + k2a)~x+ kc~y.

From the middle twist region we get:

±~y1 = (1 + l2d)~z + le~y and ± ~z1 = (1 + l2d)~y + lf~z.

From the rightmost twist region we get:

±~z1 = (1 +m2g)~x+mh~z and ± ~x1 = (1 +m2g)~z +mi~x.
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In case any two of ~x, ~y and ~z are linearly dependent, any braid coloring has to

be trivial by Proposition 9.7.3. So we may assume that we are in the non trivial case

of ~x and ~y are linearly independent in H1(S1,1) ∼= Z2, and thus forms a basis for Q2

over the rationals, and thus we can express ~z as a rational linear combination of ~x

and ~y, ~z = α~x+ β~y.

Note that l = 〈~y, ~z〉 = α〈~y, ~x〉 = −αk and m = 〈~z, ~x〉 = β〈~y, ~x〉 = −βk.

Comparing coefficients in the expansion of ~x1, for some η1 ∈ {±1}we obtain:

η1(1 + k2a) = β(1 +m2g); η1kb = α(1 +m2g) +mi (9.7)

Similarly, comparing coefficients in the expansion of ~y1, for some η2 ∈ {±1}we

get:

η2(1 + k2a) = α(1 + l2d); η2kc = β(1 + l2d) + le (9.8)

Finally, comparing coefficients in the expansion of ~z1, for some η3 ∈ {±1} we

have:

η3lfα = (1 +m2g) +mhα; η3(lfβ + (1 + l2d)) = mhβ

Equivalently, we obtain:

1 +m2g = α(η3lf −mh); 1 + l2d = β(η3mh− lf) = −η3β(η3lf −mh) (9.9)
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From the equalities in the left of (9.7) and (9.8) we obtain:

|k|(1 + k2a) = |l|(1 + l2d) = |m|(1 +m2g) (9.10)

Claim 9.8.1. The integers k, l and m are pairwise coprime.

Proof. Suppose not, say gcd(k, l) > 1 (a similar argument works for other pairs).

From the second equality in Equation (9.8) we get η2k
2c = −m(1 + l2d) + kle. It

follows that gcd(k, l)2 divides m(1 + l2d), and hence gcd(k, l)2 divides m. From

Equation (9.10), it follows that gcd(k, l)2 divides k(1 + k2a) and l(1 + l2d), and

consequently it divides k and l. Thus, gcd(k, l)2 must divide gcd(k, l), a contra-

diction.

Thus k and l are coprime integers both dividing 1 +m2g, and we must have for

some integer θ, 1 + m2g = klθ. Note that by Equation (9.10), θ must be coprime to

k, l and m. Suppose we set ∆ = η3lf −mh, then we note that ∆ = −k2θ. We see by

using Equations (9.7), (9.8) and (9.9) that

η1α

η2β
=

1 +m2g

1 + l2d
= − α∆

η3β∆
= − α

η3β
,

and hence we have η1η3 = −η2. Now we see

kb+ kc = η1α(1 +m2g) + η1mi+ η2β(1 + l2d) + η2le

Since we know that η1η3 = −η2 we have

kb+ kc = η1(α(1 +m2g) +mi− η3β(1 + l2d)− η3le))
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Now taking η1 to the other side and substituting

η1(kb+ kc) = α(1 +m2g) +mi− η3β(1 + l2d)− η3le = (α2 + β2)∆ +mi− η3le

= (α2 + β2)∆−∆ +m(i− h)− η3l(e− f)

= (α2 + β2)∆−∆±m(1 +m2g)± l(1 + l2d)

= ∆(α2 + β2 − 1± αm± βl) = −θ(l2 +m2 − k2 ± γklm)

Thus θ divides kb+ kc and kb− kc = ±k(1 + k2a). Consequently θ divides 2kb and

1 + k2a, and since ~x1 is primitive, it must be the case that θ ∈ {±1,±2}. Thus we

have:

1 + k2a = |θlm|, 1 + l2d = |θkm|, 1 +m2g = |θkl| (9.11)

Note that one of a, d or g is 0 if and only if p, q or r equals ±1, respectively. If that

happens, then we claim that must have P (p, q, r) is a (left or right handed) trefoil.

For instance, if a = 0 (the argument holds similarly for d or g being 0), then

1 = |θlm|, which means |θ| = |l| = |m| = 1, and so |k| = 1 + d = 1 + g. Since a = 0,

one of b or c must be 0 as well. Thus by Equations (9.7) or (9.8), we see that one of e

or i has to be 1, which in turn implies one of d or g has to be 0 or 1. Since we know

|k| = 1 + d = 1 + g, |k|must be either equal to 1 or 2. We now have the case |p| = 1,

and since d = g, we must have |q| = |r|, which must lie in {1, 3}, with |k| ∈ {1, 2},

and |l| = |m| = 1. One can check7 that we get non-trivial colorings only on the

trefoils, ±P (1, 1, 1) and ±P (3, 3,−1).

7This can be done either directly, by trying to find solution to the system of equations, or by
using the Alexander polynomial criterion, or by using Theorem 9.3.1. For the last method, observe
that ±P (1, 3,−3) is isotopic to the ±61 knot, and ±P (1, 3, 3) is isotopic to the ±74 knot, and clearly
±P (1,−1, 1) is the unknot.
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Without loss of generality assume |k| ≤ |l| ≤ m. Let us now suppose all of

a, d, g are at least 1. It cannot be the case that |θ| = 1, since otherwise 1 + m2g will

not strictly bigger than |kl|.

Thus θ = ±2, and it follows that k, l,m and a, d, g are odd. If g > 1, we again

see that we cannot have 1 +m2g = 2|kl|, hence g = 1.

If |m| = 1, it implies |k| = |l| = 1. Thus by Equation (9.11) we have a = d =

g = 1, and so |p| = |q| = |r| = 3. In this case 9 divides the determinant of P (p, q, r),

and consequently there cannot be a non-trivial simple B3 coloring. If |m| = 3, then

1+m2g = 10 = 2|kl|, which implies either |k| or |l| has to be at least 5, contradicting

the maximality of |m|. Thus |m| > 4, and so 2|kl| = 1 + m2g = 1 + m2 > 4|m|, i.e

|m| ≤ |kl|
2

. In particular this implies |k| ≥ 2, and thus we also have the inequalities

|l| ≤ |km|
2

and |k| ≤ |lm|
2

. Thus ~x, ~y and ~z are 1-proportional, and hence by [44,

Theorem 1.1], there cannot be any relations between Tx, Ty and Tz. Hence, we have

shown:

Theorem 9.8.2. Consider the three strand pretzel knot P (p, q, r) with p, q, r odd. Then a

non-trivial tricoloring on P (p, q, r) lifts if and only if

±(p, q, r) ∈ {(1, 1, 1), (3, 3,−1), (3,−1, 3), (−1, 3, 3)}.

Recall P (p, q, r) is tricolorable if and only if 3 divides pq + qr + rp, and so

the above proposition gives infinitely many tricolrings of three strand odd pret-

zel knots which do not lift to braid colorings.

Remark 9.8.3. It follows from the discussion above that the only odd three stranded

pretzel knots which is isotopic to the trefoil are the four in the statement of the

proposition above.

We are yet to see an example of a knot with two distinct tricolorings, one of

which lift to B3 and the other do not. In the next section we will see such examples
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using similar techniques as our discussion above.

9.9 Three strand Pretzel knots II: one even

Let us consider the pretzel knot P (p, q, r) with p even and q, r odd. Suppose we

have a diagram of P (p, q, r) with the strands in the bottom labelled by ~x, ~y, ~z and

the three strands on top labelled by ~x1, ~y1, ~z1, as illustrated in Figure 9.13,

Figure 9.13: A three strand pretzel knot with p even and q and r are odd, together
with labellings on strands.

and let us suppose 〈~x, ~y〉 = k , 〈~y, ~z〉 = l and 〈~z, ~x〉 = m.

In the leftmost twist region we get:

±~x1 = (1 + k2a)~x+ kb~y and ± ~y1 = kb~x+ (1 + k2c)~y.

From the middle twist region we get:

±~y1 = (1− l2d)~z + le~y and ± ~z1 = (1− l2d)~y + lf~z.

135



From the rightmost twist region we get:

±~z1 = (1−m2g)~x+mh~z and ± ~x1 = (1−m2g)~z +mi~x.

In case any two of ~x, ~y and ~z are linearly dependent, any braid coloring has to

be trivial by Proposition 9.7.3 or constant on the leftmost twist region. So we may

assume that we are in the non trivial case of ~x and ~y are linearly independent in

H1(S1,1) ∼= Z2, and thus forms a basis for Q2 over the rationals, and thus we can

express ~z as a rational linear combination of ~x and ~y, ~z = α~x+ β~y.

Note that l = 〈~y, ~z〉 = α〈~y, ~x〉 = −αk and m = 〈~z, ~x〉 = β〈~y, ~x〉 = −βk. Compar-

ing coefficients in the expansion of ~x1, for some η1 ∈ {±1}we obtain:

η1(1 + k2a) = α(1−m2g) +mi; η1kb = β(1−m2g) (9.12)

Similarly, comparing coefficients in the expansion of ~y1, for some η2 ∈ {±1}we get:

η2kb = α(1− l2d); η2(1 + k2c) = β(1− l2d) + le (9.13)

Finally, comparing coefficients in the expansion of ~z1, for some η3 ∈ {±1}we have:

η3lfα = (1−m2g) +mhα; η3(lfβ + (1− l2d)) = mhβ

Equivalently, we obtain:

1−m2g = α(η3lf −mh); 1− l2d = β(η3mh− lf) = −η3β(η3lf −mh) (9.14)
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From the equalities in the right of Equation (9.12) and left of Equation (9.13) we

obtain:

k2b = |l(1− l2d)| = |m(1−m2g)| (9.15)

Claim 9.9.1. The integers k, l and m are pairwise coprime.

Proof. From Equation (9.15) we see that gcd(k, l)2 divides l and gcd(k,m)2 divides

m. Now, we observe that from Equation (9.14) that k(1 − m2g) = −l(η3lf − mh),

and consequently gcd(l,m)2 divides k.

Suppose now gcd(l,m) > 1, and suppose x is a prime power exactly dividing

gcd(l,m), and so x2 divides k. Without loss of generality, assume x exactly divides

l, and consequently x divides gcd(k, l), and hence x2 divides l, a contradiction.

Thus gcd(l,m) = 1.

From Equation (9.12), we see that α(1−m2g) and β(1−m2g), and consequently

k divides l(1−m2g) and m(1−m2g). Since gcd(l,m) = 1, it follows that k divides

1−m2g, and thus gcd(k,m) = 1. A similar argument shows gcd(k, l) = 1.

Thus k2 and l are coprime integers both dividing 1 −m2g, thus we must have

for some integer θ, 1 − m2g = k2lθ. Hence, from Equation (9.14), we see that

l(1− l2d) = −η3m(1−m2g) = −η3k
2lmθ, and so 1− l2d = −η3k

2mθ. Similarly, from

Equation (9.12), we see k2b = −η1k
2lmθ.

Note that by Equation (9.15), θ must be coprime to l and m. From Equations

(9.12), (9.13) and (9.14) we see that:

η1

η2

=
β(1−m2g)

α(1− l2d)
=
m(1−m2g)

l(1− l2d)
= − 1

η3

.

and hence η1η2η3 = −1. From Equations (9.12) and (9.13) we get:

137



1 + k2a+ 1 + k2c = η1α(1−m2g) + η1mi+ η2β(1− l2d) + η2le

= η1α(1−m2g) + η1(mi−mh) + η1mh+ η2β(1− l2d) + η2l(e− f) + η2lf

= η1α(1−m2g)−η1 sgn(r)m(1−m2g)+η2β(1−l2d)+η2 sgn(q)l(1−l2d)+η2(lf−η3mh)

We note that each summand on the right hand side is an integer divisible by kθ, by

using the formulas 1−m2g = k2lθ, 1−l2d = η3k
2mθ, and k(1−m2g) = −l(η3lf−mh).

Since kθ divides the sum and difference of 1+k2a and 1+k2c, and ~x1 is primitive;

it follows that |kθ| has to be either 0, 1 or 2.

Let us consider various cases:

1. m(1−m2g) = 0 (Note that by Equation (9.15), this contains the case |kθ| = 0):

Since m(1−m2g) = 0, we see that either m = 0, or 1−m2g = 0, which implies

|m| = 1. In either case, the coloring by Dehn twists on the right twist region

starts and ends with the same colors, hence by Proposition 9.7.3, the same

must be true for all the twist regions. This means k = 0, and |m|, |l| can be

either 0 or 1. The braid coloring is non-trivial if one of m and l is non-zero,

which means the other has to be as well. We see that all non-trivial braid col-

orings we get in this case which are constant in the leftmost twist region, and

non-constant in the middle and right twist regions (but the coloring matches

at the ends of either twist regions). In particular this can happen only when

q and r are odd multiples of 3.

2. |k| = 1 and |θ| = 1: we see then |1−m2g| = |l| and |1− l2d| = |m|. We consider

the subcases:

• dg = 0: Without loss of generality let us assume d = 0, which implies

then |m| = 1, and hence |l| = |1 − g|. Since |m| = 1, and the strands
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are going in the same direction in the rightmost twist region, we know

the pattern repeats every three half twists, we can assume r ∈ {±1,±3}.

Consequently the possible values of g are 0 and 1. Hence |l| has to be

1 or 0 (which we already dealt with). So b = 1, and hence p = ±2. let

us assume p = 2, by mirroring the pretzel knot if necessary. Note that

P (2,−1,−1), is the trefoil, and has a tricoloring which lifts to a simple

B3 coloring. Hence, by adding multiples of 6 to the right and middle

twist regions, we obtain simple B3-colorings8 on ±P (2, 6q0 − 1, 6r0 − 1),

for any integers q0, r0; and we see that no other pretzel knot has a non-

trivial simple B3 coloring of this type.

• dg 6= 0: If d 6= 1, then we see |m| = |1 − l2d| > |l|, and similarly if g 6= 1,

then |l| = |1−m2g| > |m|. Since we cannot simultaneously have |l| > |m|

and |m| > |l|, it must be that one of d or g is 1. If d = 1, we must have

|l| > 1 (otherwise m = 0, a case we saw earlier), so |m| = |l2 − 1| > |l|.

Similarly if g = 1 , then either |m| = 1 (which implies l = 0, which we

saw earlier), or |l| = |1−m2g| > |m|. Hence, we do not come across any

new braid colorings in this subcase.

3. |k| = 1 and |θ| = 2: we see then |1 −m2g| = 2|l| and |1 − l2d| = 2|m|. Thus,

m, g, l and d have to be odd. If g = 1, then 1 − m2g = (1 − m)(1 + m) is

divisible by 4, since m is odd. But this means l is even, since |1−m2g| = 2|l|,

which contradicts that l is odd. We get a similar contradiction if d = 1. If

g 6= 1, then 2|l| = |1 − m2g| > m2, and so either |l| > |m| or |l| = |m| = 1.

Similarly, if d 6= 1, then either |m| > |l|, or |l| = |m| = 1. Thus, we have

to have |l| = |m| = 1, since we cannot simultaneously have |l| > |m| and

|m| > |l|. In case |l| = |m| = 1, by Figure 9.9 (and the fact that the labellings

8Note that for these knots the determinant is ±3, and so there is only one tricoloring (up to
conjugation), which lifts to a unique (up to conjugation) simple B3-coloring.
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repeat after six half twists) the possible values of d and g are 0, 1 and 2, which

leads to a contradiction, as we saw above. Thus, we do not come across any

new braid colorings in this case.

4. |k| = 2 and |θ| = 1: we see then |1 −m2g| = 4|l| and |1 − l2d| = 4|m|. Hence

d, g, l and m are odd. Without loss of generality, let us assume |l| ≤ |m|. First

suppose |l| = 1, we know by Remark 9.3.2 (since the braid coloring repeats)

and Figure 9.9; the only possible values of d are 0, 1 and 2. Since d has to be

odd, we have d = 1, and so 4|m| = |1 − l2d| = 0, a contradiction. If |l| 6= 1,

then |l| ≥ 3, and so |m| ≥ |l| + 2 since |m| has to be an odd integer coprime

to |l|. Consequently, 4|l| = |m2g − 1| ≥ |m2 − 1| ≥ (|l| + 2)2 − 1 > 4|l|, a

contradiction. Thus, we do not obtain any new braid colorings in this case.

By combining our discussion of the various cases (and using that P (p, q, r) is

isotopic to P (q, r, p)), we have proved:

Proposition 9.9.2. Suppose we have a three strand pretzel knot P (p, q, r) with one of p, q

or r even. Then, any tricoloring on P (p, q, r) lifts to a simple B3-coloring if and only if the

tricoloring is constant on the twist region with an even number of half twists. Moreover,

there is unique (up to conjugation) lift to B3, when the tricoloring does lift.

We know [43, Section 8] that if p, q, r are all multiples of 3, then there are four in-

equivalent tricolorings, depending on how many twist regions have non-constant

tricolorings. We illustrate this with the four colorings on the pretzel knot P (3, 3, 6),

see Figure 9.14.

By the Proposition above, we see that three of these tricolorings do not lift,

while the fourth does. More generally, we have:

Proposition 9.9.3. Consider the pretzel knot P (p, q, r) with two of p, q, r odd multiples of

3, and the third a multiple of 6. Then exactly one among the four inequivalent tricolorings

of P (p, q, r) lift to a simple B3-coloring.
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lifts

does not lift does not lift

does not lift

Figure 9.14: Four tricolorings of P (3, 3, 6), of which only the last one lifts to a simple
B3-coloring.

Thus we see that the answer to Question 9.5.3 is ”Yes”, and in fact there are

infinitely many such examples.
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CHAPTER 10

LIFTING BRANCHED COVERINGS IN HIGHER DIMENSIONS

10.1 Lifting coverings of manifolds in dimension bigger than four

It turns out that liftings of coverings of manifolds of dimension bigger than four is

essentially a question about algebra. This is because any finitely presented group

is the fundamental group of a compact manifold of any dimension greater than or

equal to four. For, given any finite presentation, we can attach one handles for each

of the generators and one two handle for each of the relations, that winds around

the one handles according to the relation. If dimension is bigger than four, we can

make sure these one handles are disjoint, and hence we obtain a manifold. This

stands in marked contrast with fundamental groups of two and three dimensional

manifolds, where the dimension restricts the type of fundamental groups we can

come across.

10.2 Lifting branched coverings over higher dimensional spheres

10.2.1 Colorings of Fox’s Example 12

In Example 12 in [26], Ralph Fox proved a conjecture of Morton Curtis, by showing

that there is a 2-knot (i.e. smoothly knotted 2-sphere in S4) for which the knot

group has torsion.

See Figure 10.1 for a motion picture description of the 2-knot. It has knot group

G = 〈x, a | xa2 = ax, a2x = xa〉.

Note that in G we have a2(xa2) = a2(ax), and so a2(xa) = a3x, thus a3 = 1, whence
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Figure 10.1: Fox’s Example 12: A motion picture description of a 2-knot. Start-
ing with the equatorial cross section (the middle picture), note that the result of
attaching a band gives rise to two component unlinks, which can be then capped
off.

there is torsion in G. Given ths relation, the two relations in the presentation of G

become equivalent to axa = x. Thus we have

G = 〈x, a | a3 = 1, axa = x〉.

Consider the tricoloring in Figure 10.2, of Fox’s example 12 defined by (observe

that all meridians are conjugate to x)

a 7→ (123), x 7→ (23).

Figure 10.2: A tricoloring on Fox’s Example 12.
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Since a is torsion in G, we see that this tricoloring does not lift to a B3-coloring,

by Claim 6.1.4. Note that we do not need to add the constraint that the braid

coloring be simple, meaning the branched cover associated to this coloring does

not lift to any (even possibly non-locally flat topological) braided embedding.

10.3 Non-liftable branched covers in dimension bigger than 4

As there are other 2-knot groups with torsion [36, Section 15.4], and n-knot groups

with n ≥ 3 (Kervaire characterization) with torsion, we have lots of branched cov-

ers over Sn, with n ≥ 4, which do not lift to braided embeddings. Once we find

a non-liftable branched cover, we can get such families in all higher dimension,

using Artin’s spinning construction [6], as explained below.

Recall that given any codimension 2 embedded connected submanifold K in

Rn (equivalently Sn), we can delete a standard ball (Bn, Bn−2) pair from (Rn, K)

and we end up with a properly embedded submanifold K1 with boundary in the

right half plane Rn
+. By spinning this half plane about an axis we get Rn+1, and K1

sweeps out a submanifold S(K), called the spun knot of K. S(K) is a knot (in the

same category as the original knot K) with the same knot group as K.

Since the knot groups are isomorphic, there is a canonical bijection between

colorings on these knots, and thus a branched coring on a knot lifts to a braided

embedding if and only if the corresponding branched cover on the spun knot lifts

to a braided embedding. Hence if we start with any non-liftable branched cover

over a surface knot K in S4 (for instance the one coming from the tricoloring in

Fox’s example 12 mentioned in the previous section), we see that for any m ∈ N,

there is a branched cover (coming from the corresponding coloring) on the spun

knot Sm(K) in S4+m which does not lift to a braided embedding.
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CHAPTER 11

CONCLUSION AND FUTURE DIRECTIONS

In this final chapter we will briefly discuss how the topics related to braided em-

beddings developed in this thesis can be interacts contact geomtery, and how these

ideas can help us prove purely topological results such as non-existence of spe-

cific kinds of branched coverings. As an illustration of the latter, we will first go

over how a closely related topic of braided immersions can be used to show non-

existence of nice branched covers.

11.1 Braided immersions and non-existence of nice branched covers

In light of Theorem 2.7.1, a natural question is to construct branched coverings of a

closed oriented manifold over the sphere with the simplest possible branch locus,

or to figure out obstructions. Let us say a branched covering is nice if it is a map

and branch locus is a submanifold with trivial normal bundle. The following result

gives an obstruction to existence of nice branched coverings.

Proposition 11.1.1. [21, Theorem 3.7] Any nice branched cover lifts to a codimension two

braided immersion.

By a braided immersion f : M → M × D2 here we will mean an immersion

so that the the projection pr1 ◦ f is a branched covering 1 Etnyre and Furukawa

[21, Section 3.2] used this result with characteristic class obstructions to existence

of immersions to show that:

1. For k > 1, CP k cannot be a nice branched cover over S2k,
1This is the natural analogue of braided embeddings in codimension two we have been study-

ing, where we replaced embedding with an immersion.
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2. For k > 7, RP k cannot be a nice branched cover over Sk.

11.2 Branched coverings of S5

We will show a similar non-existence of branched covering result, using contact

geometry (specifically [21]), together with the following upgraded version of The-

orem 5.1.1, which is work in progress.

Theorem 11.2.1. (in progress) Any piecewise linear embedded closed oriented three man-

ifold in R5 (or equivalently S5) can be isotoped to be a closed braid, where the associated

branch covering of the three manifold over S3 is simple, and the branch locus a submani-

fold.

Theorem 11.2.2. Any smooth closed oriented five manifold which is a branched cover over

S5, branched over a smoothly (or piecewise linear locally flatly) embedded orientable three

manifold must admit a contact structure.

Proof. Any smooth embedding has a piecewise linear approximation, and thus it

suffices we are in the case of the branch locus B being piecewise linear locally

flatly embedded. By Theorem 11.2.1 above, we see that we can isotope B to be

a closed braid with the associated branch locus being simple. We can look at the

monodromy defined by this braided embedding; and we note that we can now

construct a smooth braided embedding with this data. This is because we saw

in Chapter 7 that for simple branch covers, the criterion for extending a braided

embedding over the branch locus coincide in the smooth and piecewise linear cat-

egories. Now we can conclude that same smooth closed oriented five manifold a

branched cover over S5, branched over a smoothly braided embedded three man-

ifold in S5. By [21, Theorem 1.27], we can now isotope this branch locus to be

transversly embedded, and hence we can pull back the standard contact structure

on S5 to obtain a contact structure in M .
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It is known that smooth closed oriented five manifolds have two cobordism

classes, one containing S5 and the other containing the Wu manifold. The former

class admits contact structures while the latter do not. It therefore follows that:

Proposition 11.2.3. Any closed oriented five manifold cannot be a brached cover over

the 5-sphere, branched over a smoothly (or p.l. locally flatly) embedded orientable three

manifold.

The above discussion strongly suggests we may be able to improve Theorem 5.1.1

in the smooth category, and further study is needed to understand where the

smooth and piecewise linear categories behave similarly (or differently) for em-

beddings of manifolds. It is also interesting to investigate if there are obstructions

to existence of a braided embedding if we know an embedding exists.
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APPENDIX A

MATHEMATICA CODE FOR BRAIDED TORUS

The following Mathematica code was used to generate the images of projections

the braided torus used in Chapter 1.

ST = Graphics3D[{Black, Sphere[{0, 0, .5}, 0.1],

Yellow, Opacity[.2],

Polygon[{{1, 1, 0}, {2, 2, 0}, {2, -2, 0}, {1, -1, 0}}],

Yellow, Opacity[.2],

Polygon[{{1, 1, 0}, {2, 2, 0}, {-2, 2, 0}, {-1, 1, 0}}],

Yellow, Opacity[.2],

Polygon[{{-1, -1, 0}, {-2, -2, 0}, {2, -2, 0}, {1, -1, 0}}],

Yellow, Opacity[.2],

Polygon[{{-1, -1, 0}, {-2, -2, 0}, {-2, 2, 0}, {-1, 1, 0}}],

Yellow, Opacity[.2],

Polygon[{{1, 1, 1}, {2, 2, 1}, {2, -2, 1}, {1, -1, 1}}],

Yellow, Opacity[.2],

Polygon[{{1, 1, 1}, {2, 2, 1}, {-2, 2, 1}, {-1, 1, 1}}],

Yellow, Opacity[.2],

Polygon[{{-1, -1, 1}, {-2, -2, 1}, {2, -2, 1}, {1, -1, 1}}],

Yellow, Opacity[.2],

Polygon[{{-1, -1, 1}, {-2, -2, 1}, {-2, 2, 1}, {-1, 1, 1}}],

Yellow, Opacity[.2],

Polygon[{{2, 2, 0}, {2, 2, 1}, {2, -2, 1}, {2, -2, 0}}],

Yellow, Opacity[.2],

Polygon[{{2, 2, 0}, {2, 2, 1}, {-2, 2, 1}, {-2, 2, 0}}],

149



Yellow, Opacity[.2],

Polygon[{{-2, -2, 0}, {-2, -2, 1}, {2, -2, 1}, {2, -2, 0}}],

Yellow, Opacity[.2],

Polygon[{{-2, -2, 0}, {-2, -2, 1}, {-2, 2, 1}, {-2, 2, 0}}],

Blue, Opacity[.3],

Polygon[{{1, 1, 0}, {1, 1, 1}, {1, -1, 1}, {1, -1, 0}}],

Blue, Opacity[.3],

Polygon[{{1, 1, 0}, {1, 1, 1}, {-1, 1, 1}, {-1, 1, 0}}],

Blue, Opacity[.3],

Polygon[{{-1, -1, 0}, {-1, -1, 1}, {1, -1, 1}, {1, -1, 0}}],

Blue, Opacity[.3],

Polygon[{{-1, -1, 0}, {-1, -1, 1}, {-1, 1, 1}, {-1, 1, 0}}],

}]

TST = Graphics3D[{Black, Sphere[{1.5, 0, .5}, 0.1],

Yellow, Opacity[.2],

Polygon[{{1, 1, 0}, {2, 2, 0}, {2, -2, 0}, {1, -1, 0}}],

Yellow, Opacity[.2],

Polygon[{{1, 1, 0}, {2, 2, 0}, {-2, 2, 0}, {-1, 1, 0}}],

Yellow, Opacity[.2],

Polygon[{{-1, -1, 0}, {-2, -2, 0}, {2, -2, 0}, {1, -1, 0}}],

Yellow, Opacity[.2],

Polygon[{{-1, -1, 0}, {-2, -2, 0}, {-2, 2, 0}, {-1, 1, 0}}],

Yellow, Opacity[.2],

Polygon[{{1, 1, 1}, {2, 2, 1}, {2, -2, 1}, {1, -1, 1}}],

Yellow, Opacity[.2],

Polygon[{{1, 1, 1}, {2, 2, 1}, {-2, 2, 1}, {-1, 1, 1}}],
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Yellow, Opacity[.2],

Polygon[{{-1, -1, 1}, {-2, -2, 1}, {2, -2, 1}, {1, -1, 1}}],

Yellow, Opacity[.2],

Polygon[{{-1, -1, 1}, {-2, -2, 1}, {-2, 2, 1}, {-1, 1, 1}}],

Yellow, Opacity[.2],

Polygon[{{2, 2, 0}, {2, 2, 1}, {2, -2, 1}, {2, -2, 0}}],

Yellow, Opacity[.2],

Polygon[{{2, 2, 0}, {2, 2, 1}, {-2, 2, 1}, {-2, 2, 0}}],

Yellow, Opacity[.2],

Polygon[{{-2, -2, 0}, {-2, -2, 1}, {2, -2, 1}, {2, -2, 0}}],

Yellow, Opacity[.2],

Polygon[{{-2, -2, 0}, {-2, -2, 1}, {-2, 2, 1}, {-2, 2, 0}}],

Yellow, Opacity[.5],

Polygon[{{1, 1, 0}, {1, 1, 1}, {1, -1, 1}, {1, -1, 0}}],

Blue, Opacity[.3],

Polygon[{{1, 1, 0}, {1, 1, 1}, {-1, 1, 1}, {-1, 1, 0}}],

Blue, Opacity[.3],

Polygon[{{-1, -1, 0}, {-1, -1, 1}, {1, -1, 1}, {1, -1, 0}}],

Blue, Opacity[.3],

Polygon[{{-1, -1, 0}, {-1, -1, 1}, {-1, 1, 1}, {-1, 1, 0}}]

}]

CM=Graphics3D[{Black, Sphere[{1.5, 0, .5}, 0.1],

Green, Opacity[.5],

Polygon[{{1, 1, 0}, {-1, 1, 0}, {-1, -1, 0}, {1, -1, 0}}],

Green, Opacity[.5],

Polygon[{{1, 1, 1}, {-1, 1, 1}, {-1, -1, 1}, {1, -1, 1}}],
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Blue, Opacity[.5],

Polygon[{{1, 1, 0}, {1, 1, 1}, {-1, 1, 1}, {-1, 1, 0}}],

Blue, Opacity[.5],

Polygon[{{-1, -1, 0}, {-1, -1, 1}, {1, -1, 1}, {1, -1, 0}}],

Blue, Opacity[.5],

Polygon[{{-1, -1, 0}, {-1, -1, 1}, {-1, 1, 1}, {-1, 1, 0}}],

Green, Opacity[.5], Polygon[{{1, 1, 0}, {1, 1, 1}, {1.9, 0, .5}}],

Green, Opacity[.5],

Polygon[{{1, -1, 0}, {1, -1, 1}, {1.9, 0, .5}}],

Green, Opacity[.5], Polygon[{{1, 1, 0}, {1, -1, 0}, {1.9, 0, .5}}],

Green, Opacity[.5], Polygon[{{1, 1, 1}, {1, -1, 1}, {1.9, 0, .5}}]

}]

BT=Graphics3D[{Black, Sphere[{1.5, 0, .5}, 0.05],

Yellow, Opacity[.2],

Polygon[{{1, 1, 0}, {2, 2, 0}, {2, -2, 0}, {1, -1, 0}}],

Yellow, Opacity[.2],

Polygon[{{1, 1, 0}, {2, 2, 0}, {-2, 2, 0}, {-1, 1, 0}}],

Yellow, Opacity[.2],

Polygon[{{-1, -1, 0}, {-2, -2, 0}, {2, -2, 0}, {1, -1, 0}}],

Yellow, Opacity[.2],

Polygon[{{-1, -1, 0}, {-2, -2, 0}, {-2, 2, 0}, {-1, 1, 0}}],

Yellow, Opacity[.2],

Polygon[{{1, 1, 1}, {2, 2, 1}, {2, -2, 1}, {1, -1, 1}}],

Yellow, Opacity[.2],

Polygon[{{1, 1, 1}, {2, 2, 1}, {-2, 2, 1}, {-1, 1, 1}}],

Yellow, Opacity[.2],
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Polygon[{{-1, -1, 1}, {-2, -2, 1}, {2, -2, 1}, {1, -1, 1}}],

Yellow, Opacity[.2],

Polygon[{{-1, -1, 1}, {-2, -2, 1}, {-2, 2, 1}, {-1, 1, 1}}],

Yellow, Opacity[.2],

Polygon[{{2, 2, 0}, {2, 2, 1}, {2, -2, 1}, {2, -2, 0}}],

Yellow, Opacity[.2],

Polygon[{{2, 2, 0}, {2, 2, 1}, {-2, 2, 1}, {-2, 2, 0}}],

Yellow, Opacity[.2],

Polygon[{{-2, -2, 0}, {-2, -2, 1}, {2, -2, 1}, {2, -2, 0}}],

Yellow, Opacity[.2],

Polygon[{{-2, -2, 0}, {-2, -2, 1}, {-2, 2, 1}, {-2, 2, 0}}],

Yellow, Opacity[.7],

Polygon[{{1, 1, 0}, {1, 1, 1}, {1, -1, 1}, {1, -1, 0}}],

Green, Opacity[.3],

Polygon[{{1, 1, 0}, {-1, 1, 0}, {-1, -1, 0}, {1, -1, 0}}],

Green, Opacity[.3],

Polygon[{{1, 1, 1}, {-1, 1, 1}, {-1, -1, 1}, {1, -1, 1}}],

Green, Opacity[.3], Polygon[{{1, 1, 0}, {1, 1, 1}, {1.9, 0, .5}}],

Green, Opacity[.3],

Polygon[{{1, -1, 0}, {1, -1, 1}, {1.9, 0, .5}}],

Green, Opacity[.3], Polygon[{{1, 1, 0}, {1, -1, 0}, {1.9, 0, .5}}],

Green, Opacity[.3], Polygon[{{1, 1, 1}, {1, -1, 1}, {1.9, 0, .5}}]

}]
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