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We are mirrors whose brightness is wholly derived from the sun that shines upon us.

C. S. Lewis



For Mom and Dad, who were my first teachers, and who taught me to be curious and to

ask questions.
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SUMMARY

We define the notion of a knot type having Legendrian large cables and show that having

this property implies that the knot type is not uniformly thick. Moreover, there are solid tori

in this knot type that do not thicken to a solid torus with integer sloped boundary torus, and

that exhibit new phenomena; specifically, they have virtually overtwisted contact structures.

We then show that there exists an infinite family of ribbon knots that have Legendrian large

cables. These knots fail to be uniformly thick in several ways not previously seen. We

also give a general construction of ribbon knots, and show when they give similar such

examples.
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CHAPTER 1

INTRODUCTION

The contact width w (K) of a knot K ⊂ (S3, ξstd) was defined in [1], more or less as

the largest slope of a characteristic foliation on the boundary of a solid torus representing

the knot type K. They also defined K to have the uniform thickness property if any solid

torus representing the knot typeK can be thickened to a standard neighborhood of a Legen-

drian representative of K and w (K) is equal to the maximal Thurston-Bennequin invariant

tb (K) of Legendrian representatives of K. The usefulness of this property became evident

when Etnyre-Honda showed in the same work that, if L ⊂ S3 is Legendrian simple and

uniformly thick, then cables of L are Legendrian simple as well. Recall that a knot type

is Legendrian simple if Legendrian knots in this knot type are completely determined (up

to Legendrian isotopy) by their Thurston-Bennequin invariant and rotation number. They

also showed that, if the cables are sufficiently negative, then they too satisfy the uniform

thickness property. This allows that certain iterated cables of Legendrian simple knots are

Legendrian simple, for example.

Uniform thickness has become a key hypothesis in work since then. For example,

generalizing the above work on cables, in [2], Etnyre-Vertesi showed that given a com-

panion knot L ⊂ S3 which is both Legendrian simple and uniformly thick, and a pattern

P ⊂ S1 × D2 satisfying certain symmetry hypothesis, the knots in the satellite knot type

PK may be understood.

Broadly, if one wants to classify Legendrian knots in a satellite knot type with compan-

ion knot K ⊂ S3, and a pattern P ⊂ S1 ×D2, then as a first step one needs to understand,

1. contact structures on the complement of a neighborhood N of K

2. contact structures on a neighborhood N of K
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3. a classification of Legendrian knots in the knot type of the pattern P in the possible

contact structures on N .

If K is uniformly thick, then N can always be taken to be a standard neighborhood of K

with dividing curves on the boundary of slope tb (K) (i.e. maximal Thurston-Bennequin

invariant of K), which reduces the problem to items (1) and (3) above. Moreover, if K is

Legendrian simple and uniformly thick, then (1) is more or less known as well. If K is not

uniformly thick, then understanding satellites is much more complicated.

Similarly, uniform thickness can be useful in understanding contact surgery construc-

tions. A typical way to obtain a new contact 3-manifold is removing a solid torus in the knot

type K, and gluing in some new contact solid torus. To understand the new manifold, one

needs to understand items (1) and (2) above, and the gluing map defining the surgery. If K

is uniformly thick, then N can always be taken to be a standard neighborhood of K with

dividing curves on the boundary of slope tb (K), which simplifies (1) and (2) considerably.

On the other hand, there are knot types that are not uniformly thick. For such knot

types, it is important to understand in what ways they can fail to be uniformly thick.

1.1 New phenomenon for non-uniformly thick knots

Given a knot type K ⊂ S3, the contact width of K is

w (K) = sup {slope (Γ∂N) | N solid torus representing K with convex boundary} .

We say a solid torus represents K if its core is in the knot type of K. The contact width

satisfies the inequality tb (K) ≤ w (K) ≤ tb (K) + 1 [1].

A word about slope conventions. If µ, λ are the meridional, respectively longitudinal,

curves on a torus T then [λ], [µ] form a basis for H1 (T ). A (p, q) curve, or a curve of slope

q/p, will refer to any simple closed curve in T that is in the homology class of p [λ] + q [µ],

where p, q ∈ Z are relatively prime. This is the opposite convention to the one used in
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several of the main references in this paper, which were some of the first works in convex

surface theory. However, it is the convention that is standard in low-dimensional topology.

We caution however that, when the phrase “integer slope” is used, it would correspond to

the phrase “one over integer slope” in [1, 3, 4] among others.

We are now in position to define uniform thickness. We say that a knot type K has the

uniform thickness property or is uniformly thick if

1. tb (K) = w (K), and

2. every solid torus representing K can be thickened to a standard neighborhood of a

maximal tb representative of K.

By a standard neighborhood of a Legendrian knot L, we mean a solid torus neighborhood

N of L with convex boundary, dividing set Γ∂N consisting of two curves, with slope tb (L).

In past work, a knot typeK can fail to have the uniform thickness property in two ways.

It can have neighborhoods whose slopes are larger than tb, as is the case with the unknot

U , which has tb (U) = −1 and w (U) = 0. It can also happen that there are neighborhoods

with slope strictly less than tb, but that do not thicken. The first and only such examples

are in [1] and [5] where it is shown that all positive torus knots Tp,q have tori N with slopes

satisfying slope (Γ∂N) < tb (Tp,q) but that do not thicken. Moreover, the contact structure

on all of these N is universally tight.

In what follows we will denote the set of Legendrian knots, up to isotopy, in the same

topological knot type asK byL (K). We also use the convention that for a pair of relatively

prime integers p and q, the (p, q) cable of K, that is, the knot type of a curve of slope q/p

on the boundary of a torus neighborhood of K, is denoted by Kp,q. Notice that if p = ±1,

then Kp,q is a trivial cable in the sense that it is isotopic to the underlying knot K. The

following theorem of Etnyre-Honda motivates us to define some new terminology.

Theorem 1.1.1. (Etnyre-Honda, [1]) If K ⊂ S3 satisfies the uniform thickness property,

then for |p| > 1 and any L ∈ L (Kp,q) we have that tb (L) ≤ pq.
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We generalize this result in Lemma 3.0.3 below. Notice that if we have a uniformly

thick knot K and we fix a Legendrian representative L ∈ L (K) with tb (L) = k, then

there is an isotopy of K which arranges that L is a trivial cable L = K1,k−1. But then we

have that tb (K1,k−1) = tb (L) = k � k − 1, so the inequality in Theorem 1.1.1 is not

satisfied.

Definition 1.1.2. Given |p| > 1, we will say that a Legendrian cable L ∈ L (Kp,q) is large

if tb (L) > pq, and call Kp,q Legendrian large if there exists large L ∈ L (Kp,q). We

will then say that K has Legendrian large cables, or has the Legendrian large cable (LLC)

property, if any of its non-trivial cables are Legendrian large.

Notice the example above indicates that if we allowed trivial cables, the LLC property

would be vacuous. Our main theorem relates the LLC property to uniform thickness.

Theorem 1.1.3. If K has Legendrian large cables, then there exist solid tori V = S1×D2

representing K such that ξ |V is virtually overtwisted. Moreover, V cannot be thickened to

a standard neighborhood of a Legendrian knot, and K is not uniformly thick.

Recall that the term universally tight refers to a contact structure that is tight, and that,

when lifted to the universal cover, remains tight. If the lift becomes overtwisted, then we

will refer the the contact structure as virtually overtwisted.

Theorem 1.1.4. Given K, if there exists a slope q/p > tb (K), |p| > 1, such that Kp,q is

Legendrian large, then w (K) > tb (K).

Question: Are there knots K and slopes q/p < tb (K) such that Kp,q is Legendrian

large?

Question: If ξ is a virtually overtwisted contact structure on S = S1 ×D2, for which

p and q is there a Legendrian (p, q) knot L in S with tw (L) > pq?

The knots Km in Figure 1.1 have tb (Km) = −1. Building on the work of Yasui [6],

we observe that Km
(−n,1) is Legendrian large whenever m ≤ −5 and 1 < n ≤

⌊
3−m
4

⌋
. This

leads to the following theorem.
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m−1

Figure 1.1: The ribbon knots Km. There are m− 1 right handed full twists.

Theorem 1.1.5. The knots Km in Figure 1.1 with m ≤ −5, are not uniformly thick in

(S3, ξstd), in particular, there are solid tori T representing Km such that slope (Γ∂T ) >

tb (Km) and ξ |T is tight, but virtually overtwisted.

Remark 1.1.6. Previously, there were no known examples of K in (S3, ξstd) with w (K) >

tb (K), except for the unknot. These are also the first examples of solid tori in (S3, ξstd)

with virtually overtwisted contact structures.

It would be interesting to know what w (Km) is, and what the possible non-thickenable

tori in the knot type of Km are. We have the following partial result, following from

Theorem 1.1.5 and its proof.

Proposition 1.1.7. For m ≤ −5, the knots Km in Figure 1.1 have w (Km) ≥ − 1

b 3−m4 c
.

The origin of the examples in Theorem 1.1.5 come from an interesting connection be-

tween contact structures and the famous cabling conjecture first observed in [7]. Lidman-

Sivek showed that for a knotK with tb (K) > 0, Legendrian surgery onK (i.e. (tb (K)− 1)-

surgery) never yields a reducible manifold. They conjectured that this might be true with

no condition on tb (K). This is equivalent to the following conjecture for any K in S3.

Conjecture 1.1.8. For a Legendrian representative in the knot type L ∈ L (Kp,q), tb (L) ≤

pq.
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If tb (L) > pq for such an L, then there exists L′ with tb (L′) = pq + 1 (we can

always stabilize to achieve this). Legendrian surgery on this L′ would then yield a reducible

manifold. In [6], Yasui gave some interesting examples of ribbon knots which we will

denote Km, shown in Figure 1.1. In what follows, we will be concerned with integers

m < 0.

Theorem 1.1.9. (Yasui, [6]) There exist infinitely many Legendrian knots in (S3, ξstd), Fig-

ure 1.1, each of which yields a reducible 3-manifold by a Legendrian surgery in the stan-

dard tight contact structure. Furthermore, K can be chosen so that the surgery coefficient

is arbitrarily less than tb (K).

Yasui shows that for infinitely many pairs of integers m,n ∈ Z with m ≤ −5, Legen-

drian surgery on the cables Km
n,−1 yields a reducible manifold. This shows Lidman-Sivek’s

conjecture to be false, and stands in contrast with Theorem 1.1.1 of Etnyre-Honda.

We can now easily see that Km, Figure 1.1, does not have the uniform thickness prop-

erty.

Theorem 1.1.10. For integers m ≤ −5, the ribbon knots Km are not uniformly thick.

The interesting features of how Km fails to be uniformly thick given in Theorem 1.1.5

require much more work.

Proof. In [6], Yasui shows that for integers n ≤ 3−m
4

, the cables Km
n,−1 have the property

that tb
(
Km
n,−1
)

= −1. But by Theorem 1.1.1, if Km is uniformly thick, then we must

have that tb
(
Km
n,−1
)
≤ −n. So for any m ≤ −5 and any 1 < n ≤

⌊
3−m
4

⌋
we arrive at a

contradiction.

Theorem 1.1.10 can be used to address the following question.

Conjecture 1.1.11. IfK ⊂ S3 is fibered, thenK is uniformly thick if and only if ξK 6= ξStd,

where ξK is the contact structure induced by an open book decomposition of K.
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Building on our above work, Hyunki Min [8] recognized that the Km are counterex-

amples. Min showed that the Km are all fibered. We also know that they are slice and

non-strongly-quasipositive, which implies that ξK 6= ξStd by a result of Matthew Hedden

[9]. Theorem 1.1.10 tells us that Km are not uniformly thick however, and so at least

one direction of this conjecture is false. The other direction remains an interesting open

question.

1.2 Ribbon knots and Legendrian large cable examples

Yasui’s examples are all ribbon knots with Legendrian large cables, and can be generalized

to other families of ribbon knots. We first observe a folk result that any ribbon knot can be

described in a simple way.

Theorem 1.2.1. Suppose K ⊂ S3 is an arbitrary ribbon knot with n ∈ N ribbon sin-

gularities. Then there is an algorithm to construct a 2-handlebody for D4 having n − 1

or less 1-2 handle canceling pairs such that there is an unknot U in the boundary of the

1-sub-handlebody which, after attaching the 2-handles, is isotopic to K.

A representation of a ribbon knot K as in Theorem 1.2.1 will be called a handlebody

picture for K. The proof of Theorem 1.2.1 will be given in Section 3. Figure 1.2 gives an

example ribbon knot and its image after running the algorithm.

Theorem 1.2.2. Given an arbitrary ribbon knot K, we can associate to it a handlebody

picture. If it is possible to Legendrian realize the attaching circles of the 2-handles so that

the handle attachments are Stein (i.e. framings are all tb− 1), and also Legendrian realize

K so that tb (K) = −1, then K is a Legendrian ribbon knot that bounds a Lagrangian disk

in (B4, ωStd).

Proof. Given a handlebody picture for K, there is an unknot U in the boundary of the

1-sub-handlebody which, by hypothesis, can be realized with tb (U) = −1. Such an un-

knot bounds a Lagrangian disk in the 1-sub-handlebody. Since the 2-handles are attached

7



K
K

Figure 1.2: An example ribbon knot before running the algorithm in Theorem 1.2.1 (left),
and after running the algorithm (right).

N

S

EW

NENW

SW SE

T

(a) (b)

Figure 1.3: Possible examples of knots with Legendrian large cables. The ellipses are
meant to indicate a finite number of strands bundled as shown, while T is an arbitrary
Legendrian tangle.

disjointly from this disk, K bounds a Lagrangian disk after they are attached, that is, K

bounds a Lagrangian disk in (B4, ωStd).

Conway-Etnyre-Tosun [10] make use of this fact to describe when contact surgery on a

knot in (S3, ξStd) preserves symplectic fillability.

Corollary 1.2.3. Given an arbitrary ribbon knot K, we can associate to it a handlebody

picture. If it is possible to Legendrian realize the attaching circles of the 2-handles so that

the handle attachments are Stein, Legendrian realize K so that tb (K) = −1, and also

arrange the local picture of K to be as in Figure 1.3 (a), then K has Legendrian large
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(a) (b)

(c) (d)

Figure 1.4: Shows the steps in a Legendrian isotopy to change strands of type S into strands
of type N .

cables.

Proof. The proof is exactly the same as the proof of Yasui’s Theorem 1.3 ([6], pp 7-13),

when there are only strands of type N , since everything in the arguments can be done

locally. The rest of the cases follow by Legendrian isotopy of Figure 1.3 (a). For example,

we can change all strands of type S into strands of typeN by the Legendrian isotopy shown

in Figure 1.4. We can also change all strands of types E andW into strands of type N by

even easier isotopies.

Remark 1.2.4. If the framings of the 2-handles allow stabilizations, then there are more

examples. Given an arbitrary ribbon knot K, we can associate to it a handlebody picture.

If it is possible to Legendrian realize the attaching circles of the 2-handles so that the

handle attachments are Stein, Legendrian realize K so that tb (K) = −1, arrange the local

picture ofK to be as in Figure 1.3 (a), and arrange that there is a stabilization on each of the

strands of at least one group of strandsNE ,NW , SE , or SW , thenK has Legendrian large

cables. This is true since we can isotop the stabilizations to have the form of Figure 1.5 (a),

9



(a) (b)

T
T

Figure 1.5: Shows a Legendrian isotopy of the tangle T . In this example, strands of type
NE are assumed to have stabilizations.

Legendrian isotop the tangle T off to the side as shown in Figure 1.5 (b), and then apply

Corollary 1.2.3.
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CHAPTER 2

BACKGROUND

We will assume that the reader is familiar with Legendrian knots and basic convex surface

theory. Some excellent sources for this material are [3, 11, 4, 12]. We will need to un-

derstand the twisting of a contact structure along a Legendrian curve with respect to two

different framings. Suppose we are given a solid torus S ⊂ (S3, ξ) with convex boundary

which represents the knot K. This just means that S = D2 × S1 and K = {pt} × S1

for some point in int (D2). Further suppose that we are given a Legendrian (p, q) curve

L in S. Since L is null-homologous in S3, there is a well defined framing on L given by

any Seifert surface Σ, and measuring the twisting of ξ along L with respect to this framing

gives us tw (L; Σ) = tb (L), that is, the Thurston-Bennequin invariant of L. We can also

find a boundary parallel torus T 2 ⊂ S containing L, and measure the twisting of ξ along L

with respect to the framing coming from T 2. We will denote this twisting by tw (L; ∂S).

The relationship between these twistings is given by the expression [1]

tw (L; ∂S) + pq = tb (L) .

Consider a contact structure ξ on T 2 × I with convex boundary, let T1, T2 be its two

torus boundary components, and assume without loss of generality that s1 = slope (ΓT1) ≤

slope (ΓT2) = s2, where ΓS denotes the dividing curves on a convex surface S. Then we

will say that ξ is minimally twisting if every convex, boundary parallel torus S ⊂ T 2 × I

has s1 ≤ slope (ΓS) ≤ s2. This is the same notion of minimal twisting that Honda defined

in [4]. We will also need to make use of his basic slices to decompose T 2 × I into layers.

Using the same notation as above, we will call (T 2 × I, ξ) a basic slice if

1. ξ is tight, and minimally twisting,

11



−1 1

0

∞

−1/3

−3

−1/2

−2

−2/3

−3/2

1/3

3

1/2

2

2/3

3/2

Figure 2.1: Farey Tessellation

2. Ti are convex, and #ΓTi = 2,

3. si form an integral basis for Z2.

Honda showed that, up to isotopy fixing the boundary, there are exactly two tight contact

structures on a basic slice, distinguished by their relative Euler classes inH2 (T 2 × I, ∂ (T 2 × I) ;Z).

The Farey tessellation, Figure 2.1, gives a convenient way to describe curves on T 2.

To construct the eastern half of the Farey tessellation, first label the north pole by 0 = 0
1
,

the south pole by∞ = 1
0
, and connect them by an edge (by edge, we mean a hyperbolic

geodesic). Next, label the eastern most point that is midway between 0 and∞ by 1 = 1
1
,

as shown in Figure 2.1. Connect 1 by edges to 0 and ∞. For rational numbers on the

tessellation with the same sign, we can define an addition on the Farey tessellation by

a
b

+ c
d

= a+c
b+d

, locate a+c
b+d

midway between a
b

and c
d
, and connect a+c

b+d
by edges with a

b
and

c
d

respectively. Thus we can fill in the rest of the positive side of the Farey tessellation

by iterating this addition. Notice that, if a
b
, c
d

are assumed to be an integral basis for Z2,

then both

∣∣∣∣∣∣∣
a a+ c

b b+ d

∣∣∣∣∣∣∣ = ad − bc =

∣∣∣∣∣∣∣
a c

b d

∣∣∣∣∣∣∣ = ±1 and similarly,

∣∣∣∣∣∣∣
a+ c c

b+ d d

∣∣∣∣∣∣∣ = ±1, so any

two points connected by an edge are an integral basis for Z2. Also notice that, given two

positive rational numbers a
b
> c

d
, there are exactly two other points with edges to both a

b

and c
d
, namely a+c

b+d
and a−c

b−d .
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To construct the western (negative) half of the Farey tessellation, first relabel the north

pole by 0 = 0
−1 . Next, label the western most point that is midway between 0 and∞ by

−1 = 1
−1 , as shown in Figure 2.1. Connect −1 by edges to 0 and ∞. Now using the

same addition we defined above, we can iteratively build up the negative side of our Farey

tessellation. Notice that the only point which was labeled twice was the north pole, which

is now given by 0
±1 .

For any two points p1 and p2 on the Farey tessellation, we define the interval [p1, p2] to

be the set of all points encountered starting from p1 and moving clockwise around the tes-

sellation until reaching p2. Given a clockwise sequence of three points connected by edges

p1, p2 and p3 on the Farey tessellation, we say that a jump from p2 to p3 is half maximal if

p3 is the half way point of the maximum possible clockwise jump one could make in the

interval (p2, p1). We will consider only clockwise paths in the Farey tessellation, where a

path is a sequence of jumps along edges. We call a path between two points s1, s2 ∈ Q a

continued fraction block if, after the first jump, every jump is half maximal. Notice that,

by construction, a path that is a continued fraction block cannot be shortened. We will also

need to consider decorated paths (i.e. paths for which each jump gets a “+” or “−”). We

can define an equivalence relation “∼” on decorated paths in the Farey tessellation which

says that any two paths with the same endpoints and which differ only by shuffling of signs

within continued fraction blocks are in the same class. The following result, due to Honda

[4], and in a different terminology Giroux [11], describes a relationship between contact

structures on T 2 × I and minimal decorated paths in the Farey tessellation. Given a man-

ifold M and a multicurve Γ in ∂M , let Tight (M,Γ ) denote the set of isotopy classes of

tight contact structures on M with convex boundary, such that Γ is a set of dividing curves

for ∂M . Similarly, given T 2 × I with boundary T1 t T2, and two multicurves Γi on Ti, let

Tight (T 2 × I, T1 ∪ T2) denote the set of tight, minimally twisting contact structures on

T 2 × I with convex boundary, such that Γi is a set of dividing curves for Ti.

Theorem 2.0.1. (Honda, [4]) Given T 2 × I with boundary T1 t T2, and two multicurves

13



Γi on Ti with #Γi = 2 such that s1 = slope (Γ1) ≤ slope (Γ2) = s2, then

Tight
(
T 2 × I, Γ1 ∪ Γ2

)
←→


minimal decorated paths

from s1to s2

/∼.

Given T 2 × I with a two component multicurve on each of its two torus boundary

components, and with boundary slopes s1, s2 ∈ Q, then any decorated path starting from

s1 and ending at s2 describes a contact structure on T 2×I . Each jump in the path describes

a basic slice, and therefore has two possible contact structures distinguished by the relative

Euler class. We then get T 2 × I by concatenating together these basic slices. For more

details, see [4]. It follows from Theorem 2.0.1 that within any continued fraction block,

shuffling the signs of the jumps results in isotopic contact structures.

Suppose we have a decorated path which can be shortened, see Figure 2.2. It follows

from Honda’s gluing theorem that if the two jumps which are being combined into a single

jump have different signs, then the contact structure on T 2 × I described by this path is

overtwisted. If the signs agree, then the contact structure will be tight. For this reason, we

say that a shortening is consistent if the signs of the smaller jumps agree, and make the

following theorem owing to Honda.

Theorem 2.0.2. Given a decorated path in the Farey tessellation from s1 to s2, the contact

structure on T 2×I with convex boundary T1tT2, #ΓTi = 2, and s1 = slope (ΓT1) , slope (ΓT2) =

s2 described by this path is tight if and only if every shortening is consistent.

To classify the tight contact structures on solid tori, we will consider a slightly different

type of path. Let a truncated path be a decorated path, as defined above, with the sign of

the first jump omitted from consideration. In other words, the first jump is not decorated.

Suppose we have S1 × D2 with a two component multicurve on its torus boundary, and

with boundary slope s2 ∈ Q. If the meridian of ∂ (S1 ×D2) has slope s1 ∈ Q, then we

14
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Figure 2.2: On the left, a consistent shortening, while on the right a shortening which is not
consistent.

have the following classification. Given S1 × D2 with boundary T , and a multicurve Γ

on T , let Tight (S1 ×D2, Γ ) denote the set of isotopy classes of tight, minimally twisting

contact structures on S1×D2 with convex boundary, such that Γ is a set of dividing curves

for T .

Theorem 2.0.3. (Honda, [4]) Given S1 × D2with boundary T , and a multicurve Γ on T

with #Γ = 2 such that s2 = slope (Γ ), and s1 = slope (µ), where µ is a meridional curve

for T , then

Tight
(
S1 ×D2, Γ

)
←→


minimal truncated paths

from s1 to s2

/∼.

Theorem 2.0.4. (Honda, [4]) (1) Given T 2×I with boundary T1tT2, and two multicurves

Γi on Ti with #Γi = 2 such that s1 = slope (Γ1) ≤ slope (Γ2) = s2, there are exactly two

tight contact structures on T 2 × I , and these contact structures are universally tight. The

paths describing these two structures are the same, one decorated entirely by “+”, and the

other decorated entirely by “−”.

(2) Given S1 × D2with boundary T , and a multicurve Γ on T with #Γ = 2 such

that s2 = slope (Γ ), and s1 = slope (µ), where µ is a meridional curve for T , then, if

s1 · s2 6= ±1, there are exactly two tight contact structures on S1 ×D2, and these contact

structure is universally tight. The paths describing these two structures are the same, one
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decorated entirely by “+”, and the other decorated entirely by “−”. If s1 · s2 = ±1,

then there exists a unique tight contact structure on S1 ×D2, and this contact structure is

universally tight.

It follows from Theorem 2.0.4 that if we have a path with a mixture of signs, then the

contact structure described by this path on either T 2 × I , or on S1 ×D2, must be virtually

overtwisted.
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CHAPTER 3

CABLES IN SOLID TORI

In this section, we will give the proof of Theorems 1.1.3, 1.1.4, and 1.1.5. We would like

to record and make use of the following result.

Theorem 3.0.1. (Etnyre-Honda, [1]) Any cable in a standard neighborhood of a Legen-

drian knot can be put on a convex torus.

Proposition 3.0.2. If ξ is a universally tight contact structure on a solid torus S with convex

boundary, then any Legendrian (p, q) knot L ⊂ S has tw (L; ∂S) ≤ 0.

We delay the proof of Proposition 3.0.2 to the end of this section, but use it here to give

proofs of our main theorems stated in the introduction.

Proof of Theorem 1.1.3

If K has Legendrian large cables, then there exists L ∈ L (Kp,q) such that tb (L) > pq.

Take a solid torus S representing K and containing L as a (p, q) curve. Perturb S to have

convex boundary. By hypothesis tw (L; ∂S) > 0, so by Proposition 3.0.2, ξ|S must be

virtually overtwisted. Suppose that it were possible to thicken S to a standard neighborhood

S̃ of K. Then slope
(
Γ∂S̃
)
∈ Z which implies by a result of Kanda [12], that ξ|S̃ is the

unique tight contact structure on S̃, and moreover that ξ|S̃ is universally tight. But this

is a contradiction since S ⊂ S̃ and ξ|S is virtually overtwisted, so no such thickening

exists. If K were uniformly thick, then any neighborhood of K would be thickenable to a

slope
(
tb(K)

)
standard neighborhood of K, which we have just seen is not possible. 0
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Proof of Theorem 1.1.4

By assumption, there exists L ∈ L (Kp,q) such that tb (L) > pq. Stabilize L to obtain L̃

such that tb
(
L̃
)

= pq. There is a solid torus S representing K for which L̃ ⊂ ∂S, and

as discussed at beginning of Section 2, we see that tw
(
L̃; ∂S

)
= 0. We can therefore C0

perturb a collar neighborhood N of L̃ in ∂S to be convex, and then C∞ perturb ∂S \ N

to obtain a solid torus S̃ representing K with convex boundary. Since tw
(
L̃; ∂S̃

)
= 0,

and since slope
(
L̃
)

= q
p
, we must have that slope

(
Γ∂S̃
)

= q
p
, owing to the fact that

tw
(
L̃; S̃

)
= −1

2

∣∣∣L̃ • Γ∂S̃∣∣∣ where C1 • C2 denotes the geometric intersection number of

two curves on a torus. But q
p
> tb(K) by assumption, so w (K) > tb(K). 0

Proof of Theorem 1.1.5

In [6], Yasui shows that for integers n ≤ 3−m
4

, the cables Km
n,−1 have the property that

tb
(
Km
n,−1
)

= −1. So for any m ≤ −5 and any 1 < n ≤
⌊
3−m
4

⌋
we see that Km has

Legendrian large cables L ∈ L
(
Km
n,−1
)
. Then by Theorem 1.1.3 Km is not uniformly

thick and has virtually overtwisted neighborhoods, and by Theorem 1.1.4 we have that

w (Km) > tb(Km)0

Proof of Proposition 1.1.7

The slope of the cable Km
n,−1 is slope

(
Km
n,−1
)

= − 1
n

. Whenever n ≤ 3−m
4

, we know

there exist L ∈ L
(
Km
n,−1
)

which are Legendrian large. Stabilize L to obtain L̃ such that

tb
(
L̃
)

= −n. There is a solid torus S representing Km for which L̃ ⊂ ∂S, and we have

seen that tw
(
L̃; ∂S

)
= 0. Using the strategy of the proof of Theorem 1.1.4, we can C0

perturb a collar neighborhood N of L̃ in ∂S to be convex, and then C∞ perturb ∂S \ N

to obtain a solid torus S̃ representing Km with convex boundary. Since tw
(
L̃; ∂S̃

)
= 0,

and since slope
(
L̃
)

= − 1
n

, we must have that slope
(
Γ∂S̃
)

= − 1
n

, and therefore that

w (Km) ≥ − 1
n

. 0

Now we will give a series of results leading to the proof of Proposition 3.0.2.
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Lemma 3.0.3. Let S be a solid torus with convex boundary, |Γ∂S| = 2, and slope (Γ∂S) ∈

Z with its unique tight contact structure ξ, then any Legendrian (p, q) knot L ⊂ S has

tw (L; ∂S) ≤ 0.

Proof. Notice that this follows immediately from Theorem 3.0.1, since S is a standard

neighborhood, and any Legendrian curve L on a convex torus T must have tw (L;T ) =

tw (L; ∂S) ≤ 0. Alternatively, we can reason in the following way. Recall that Kanda

[12] showed that any solid torus with integer slope and two dividing curves has a unique

tight contact structure. Suppose that S is a solid torus with convex boundary, |Γ∂S| = 2,

and slope (Γ∂S) = k ∈ Z with its unique tight contact structure ξ, and that L ⊂ S is a

Legendrian (p, q) knot. Then S is a standard neighborhood of a Legendrian core curve

K. Any two standard neighborhoods are contactomorphic, so we can find a neighborhood

N ⊂ (S3, ξstd) of a Legendrian unknot U ⊂ S3 with tb (U) = −1, and a contactomorphism

ϕ : S → N which sends ϕ (K) = U . This contactomorphism sends torus knots to torus

knots, so our (p, q) knot L is mapped to a (p, q − p (k + 1)) knot ϕ (L) as one can easily

check. But now ϕ (L) is a torus knot in (S3, ξstd), and Etnyre and Honda have shown

[3] that tb (ϕ (L)) ≤ p (q − p (k + 1)). But we understand how to switch between the

Seifert framing and the framing coming from the torus ∂N , that is, tw (ϕ (L) ; ∂N) =

tb (ϕ (L)) − p (q − (k + 1)) ≤ 0. This implies that tw (L; ∂S) ≤ 0, since N and S are

contactomorphic.

We can strengthen Lemma 3.0.3 slightly by dropping the assumption that |Γ | = 2.

Lemma 3.0.4. Let S be a solid torus with convex boundary, and slope (Γ∂S) ∈ Z with any

tight contact structure ξ, then any Legendrian (p, q) knot L ⊂ S has tw (L; ∂S) ≤ 0.

Proof. We will show that (S, ξ) will embed in a tight contact structure
(
S̃, ξ̃
)

that satisfies

the hypothesis of Lemma 3.0.3, and therefore show that tw (L; ∂S) ≤ 0. To this end, we

note that we can assume slope (Γ∂S) = 0 by applying a diffeomorphism to S. Recall [4],

that ξ is completely determined by the dividing set ΓD on a meridional disk D of S. We
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Figure 3.1: Arbitrary disk with arcs.

will build a model situation for S in which we can construct
(
S̃, ξ̃
)

. Since |Γ∂S| > 2 we

see that |ΓD| > 1. Suppose that we have a convex disk D with an arbitrary collection of

dividing curves Γ , as in Figure 3.

Let v be a vector field on D that guides the characteristic foliation. We can label the

regions in D \ Γ as either Σ+ or Σ− so that no adjacent pair share the same label. There

exists an area form ω on D which satisfies that ±divωv > 0 on Σ±. Assign a 1-form λ =

ιvω, then we know from Giroux [11] that there exists a function u : D → R such that udt+

λ gives rise to a contact structure ξ on D×R that is invariant in the R direction. Moreover,

we know from a theorem of Giroux that ξ is tight, since there are no homotopically trivial

dividing curves. This invariance means that we can mod out by Z to obtain a tight contact

structure on a solid torus D×R/Z = D × S1. The solid torus and contact structure we

obtain in this way are contactomorphic to our original (S, ξ), that is, there exists v, ω and

u : D → R for which this construction exactly reproduces (S, ξ).

Now suppose that the number of properly embedded arcs is greater than 1. We would

now like to reduce the number of dividing curves by taking a larger disk containing our

original D. So we attach an annulus to D to obtain Dext = D ∪ϕ (S1 × [0, 1]) where

ϕ : S1 × {0} → ∂D is the gluing map. Denote the endpoints of the properly embedded

arcs as {x1, . . . , x2k}. Notice that if we fix a point on p ∈ ∂D and move counterclockwise

from p along ∂D, then it must happen that we encounter an xi followed by an xi+1 which

are not endpoints of the same curve. If this were not so, then there could only be one curve,
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Figure 3.2: An annulus has been attached, and the number of curves has been reduced by
one.

which we have supposed not to be the case. Without loss of generality, assume that these

two points are x1 and x2. Now connect these points by an arc in S1× [0, 1]. Form arcs from

the remaining points {x3, . . . , x2k} to ∂Dext by using {xi} × [0, 1], as in Figure 3. Notice

that Dext has one fewer embedded arcs than D. So we can iterate this procedure to obtain a

disk D̃ ⊃ D which has only 1 properly embedded arc. Call this arc Γ̃ . Notice that we can

arrange the gluing map ϕ to be smooth and such that the extension of Γ to Γ̃ is smooth.

We can also smoothly extend ω and v to D̃ so that the singular foliation on D̃ guided by

v has Γ̃ as a dividing curve. We can now build, just as we did above, a contact structure

ξ̃ on D̃ × S1 = S̃ having D̃ as a convex meridional disk, with convex boundary. Since∣∣ΓD̃∣∣ = 1 we see that tb
(
∂D̃
)

= −1, which in turn implies that
∣∣Γ∂S̃∣∣ = 2. Notice that

ξ̃
∣∣∣
S

= ξ. Also notice that, by construction, the method of reducing the number of dividing

curves on ∂S yields slope (Γ ) = slope
(
Γ̃
)

. Now by Lemma 3.0.3, any Legendrian (p, q)

knot L ⊂ S has tw (L; ∂S) ≤ 0.

Lemma 3.0.5. If ξ is a universally tight contact structure on a solid torus S with convex

boundary and |Γ∂S| = 2, then any Legendrian (p, q) knot L ⊂ S has tw (L; ∂S) ≤ 0.

Proof. By a diffeomorphism of S, we can assume that slope (Γ∂S) = −r/s where −∞ ≤

−r/s ≤ −1, and that the meridional slope is−∞. Let n = dr/se. Then since ξ is universally

tight, we know that any path in the Farey tessellation, describing our contact structure has
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Figure 3.3: Farey tessellation picture describing the contact structure on our solid torus.
The original solid torus, S, is shown in blue, while the red indicates the T 2 × I which is
glued on to obtain the larger solid torus S̃.

the property that each jump must be decorated with the same sign by Theorem 2.0.1. A

portion of the Farey tessellation shows this in Figure 3.3. We can obtain a larger solid torus

S̃ ⊃ S, convex, two dividing curves, and with slope
(
Γ∂S̃
)

= −n+ 1 in the following way.

Take a shortest path in the Farey tessellation from −r/s to −n+ 1, and decorate each jump

with the sign which appears in the description of the contact structure on S. This describes

a contact structure on T 2× I which extends S to S̃, and since the signs are all the same we

know that S̃ is tight by Theorem 2.0.2. Moreover, we see that S̃ has integer slope giving it

a unique tight contact structure. Now we have that tw(K; ∂S) ≤ 0 by Lemma 3.0.3.

Remark 3.0.6. In the above proof, we are able to thicken S to a larger solid torus S̃ ⊇ S

with slope
(
Γ∂S̃
)

= −n+1 because we are thinking of S = S1×D2 abstractly as a contact

3-manifold with convex boundary, and not embedded in any particular contact manifold.

There is a shortest path in the standard Farey tessellation picture from any negative rational

−r/s to −n + 1 which describes our contact structure. We are not claiming that if S is a

solid torus representing a knot K ⊆ S3 it must always be thickenable in S3, for example,

Etnyre, LaFountain, and Tosun have given examples of non-thickenable tori in [5].

Proposition 3.0.2 strengthens Lemma 3.0.5 slightly by dropping the assumption that
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A A

(a) (b)

B

Figure 3.4: On the left,X = T 2×I , and on the right, the annulusA and its dividing curves.

|Γ | = 2.

Proof of Proposition 3.0.2

Suppose we are given a solid torus S with convex boundary, a universally tight contact

structure ξ, and we have a Legendrian (p, q) knot L in S. Again, by a diffeomorphism of

S, we can assume that slope (Γ∂S) = −r/s where −∞ ≤ −r/s ≤ −1, that the meridional

slope is −∞. Let n = dr/se. If |Γ∂S| = 2k > 2, then we can attach a bypass to ∂S along

a Legendrian ruling curve to obtain a smaller solid torus S ′ ⊂ S which has slope (Γ∂S′) =

−r/s and |Γ∂S′| = 2k − 2. We can repeat this procedure until we have a solid torus S̃ ⊂ S

which has slope
(
Γ∂S̃
)

= −r/s and
∣∣Γ∂S̃∣∣ = 2. Notice that the contact structure on S̃ is

just ξ|S̃ . If we look at a meridional disk D ⊂ S, we know that along ∂D there are 2sk

intersection points with Γ∂S , however there exists a slope γ for which, curves on ∂S of

slope γ have exactly 2k intersection points with Γ∂S . For convenience, change coordinates

on S so that slope (γ) 7→ −∞ and slope (Γ∂S) 7→ 0. Notice that we have a T 2 × I layer

X = S \ S̃, and we can find a convex annulus A in X with Legendrian boundary of slope

γ. We would like to show that the contact structure on X is completely determined by the

dividing curves on A. Since
∣∣Γ∂S̃∣∣ = 2, |Γ∂S| = 2k, and slope

(
Γ∂S̃
)

= slope (Γ∂S) = 0,

we know that the dividing curves on A must have the form shown in Figure 3.4 (b) by the

green arcs.
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We know from Giroux [11] that the contact structure on a neighborhood of A is deter-

mined by its dividing curves. If we cut X along A, and round corners, we obtain a solid

torus Y with convex boundary. Using the edge rounding lemma [4], it is easy to see that

|Γ∂Y | = 2 and slope (Γ∂Y ) = −1. Notice in Figure 3.4 (a) that we have a meridional

disk B of Y which we have just seen has tw (∂B) = −1, and which we can perturb to be

convex. There is a unique choice of dividing curves on such a disk. Finally, if we cut Y

alongB and round corners, we obtain aB3 with convex boundary, which has a unique tight

contact structure from work of Eliashberg [13]. So we have seen that the contact structure

of X is determined solely by the dividing curves on A.

Let v be a vector field on A that guides the characteristic foliation. We can label the

regions in A \ Γ as either Σ+ or Σ− so that no adjacent pair share the same label. There

exists an area form ω on A which satisfies that ±divωv > 0 on Σ±. Assign a 1-form λ =

ιvω, then we know from Giroux [11] that there exists a function u : A→ R such that udt+λ

gives rise to a contact structure ξ on A × R that is invariant in the R direction. Moreover,

we know from a theorem of Giroux that ξ is tight, since there are no homotopically trivial

dividing curves. This invariance means that we can mod out by Z to obtain a tight contact

structure on A×R/Z = T 2 × I . The T 2 × I layer and contact structure we obtain in this way

are contactomorphic to our original (X, ξ), that is, there exists v, ω and u : A → R for

which this construction exactly reproduces (X, ξ).

Now observe that we can smoothly extend A, abstractly, by an annulus Â causing the

number of dividing curves to be reduced to 2, just as we did with the disk in the proof of

Lemma 3.0.4, see Figure 3.5.

We can arrange that the extension of ΓA to ΓA∪Â is smooth, and we can also smoothly

extend ω and v to a neighborhood of Â so that the singular foliation on Â guided by v

has ΓA∪Â as a set of dividing curves. We can now build, just as we did above, a contact

structure ξ̂ on
(
A ∪ Â

)
× S1 = X̂ with convex boundary. Since

∣∣ΓA∪Â∣∣ = 2 we see that

tb
(
∂Â ∩ ∂X̂

)
= −1, which implies that

∣∣Γ∂X̂∣∣ = 2. Notice that ξ̂
∣∣∣
X

= ξ. Also notice
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A A Â

Figure 3.5: Reducing the number of dividing curves on A by extending with an annulus Â

that, by construction, the method of reducing the number of dividing curves on ∂X yields

slope (Γ∂X) = slope
(
Γ∂X̂

)
. But now we have a minimally twisting T 2× I layer X̂ whose

boundary tori each have two dividing curves with slope 0. Honda showed [4] that there are

an integers worth of tight contact structures satisfying these boundary conditions, and that

each one is I-invariant. Adding the I-invariant thickened torus X ∪ X̂ to S̃ we get a new

solid torus with contact structure contactomorphic to ξ|S̃ , thus universally tight. Clearly S

is contained in this solid torus. Now by Lemma 3.0.5, L has tw (L; ∂S) = tw (L; ∂S ′) ≤ 0.

0
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CHAPTER 4

BUILDING RIBBON KNOTS FROM CANCELING HANDLES

We are concerned here with ribbon knots, which we take to be the following:

A knot K ⊂ S3 is a ribbon knot if there is an immersed disk ϕ : D2
K → S3 such that

1. ∂ϕ (DK) = K

2. all of the double points of ϕ (DK) = D̃K (we will use the symbol ∼ to denote image

under ϕ) occur transversely along arcs γi ⊂ S3 whose pre-image ϕ−1 (γi) ⊂ DK

consists of exactly two arcs. One of these, αi, must be contained entirely in the

interior, αi ⊂ int (DK), and the other, βi (meant to suggest boundary), must be a

properly embedded arc in DK (i.e. ∂βi ⊂ ∂DK and int (βi) ∩ ∂DK = ∅).

An example ribbon disk and its image under ϕ are shown in Figure 4.1.

DK
ϕ

K ⊂ S3

α2

β2
γ2

α1

β1

γ1

Figure 4.1: The immersion of a ribbon disk DK

Note that by transversality, the pre-images of the γ′is are 1-dimensional sub-manifolds

of the compact manifold DK , so there are only finitely many ribbon singularities γi.

We want to give a construction of an arbitrary ribbon knot using 1-2 handle canceling

pairs. Given any ribbon knot K ⊂ S3, it has a ribbon disk DK by the definition. Notice,

every ribbon singularity, γi, must appear exactly twice on the ribbon disk, once as a properly

embedded arc, and once as an arc contained entirely in the interior of DK . We will use a

26



Figure 4.2: A general ribbon disk example

ϕ

cj

Figure 4.3: Cutting a ribbon disk along an arc cj

common color when picturing these pairs. So a general ribbon disk might look something

like the one seen in Figure 4.2.

We will want to make cuts, cj , by pushing off two parallel copies of an arc in DK and

removing a small ε-strip. The result of this cut is shown in Figure 4.3.

We also need to set up a tool for manipulating ribbon disks and their images. Suppose

we have an arc b ⊂ ∂DK whose end-points are the end-points of one of our β′s. Further

suppose that the subdisk D they bound contains no other singular points as in Figure 4.4.

Let N = I × [0, ε] be a collar neighborhood of β in DK such that (t, 0) = β. We can

form a new disk Dε = D ∪N with boundary

∂Dε = b ∪ (0, s) ∪ (1, s) ∪ (t, ε)

and notice that int (β) ⊂ int (Dε). By choosing ε > 0 sufficiently small, we can assume
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ϕ
DK

D

b

ϕ(b)N

β

ϕ(β)

Figure 4.4: A sub-disk and collar neighborhood, and its immersed image under ϕ.

ϕ

ϕ

DK

DK

D

β

ϕ(β)

β

ϕ(β)

Figure 4.5: An illustration of a disk slide.

that D̃ε is embedded. Then we can see that Dε guides an isotopy, supported in a small

neighborhood of DK , taking b to (t, ε) so that the disk DK −Dε = D′K does not contain β.

We will refer to such a move as a disk slide. Figure 4.5 shows a typical disk slide.

Theorem 4.0.1. Given an arbitrary ribbon knot K ⊂ S3 with n ∈ N ribbon singularities,

γi, we can make n − 1 or less cuts, cj , so that what remains of K is an unlink, and what

remains of D̃K is, after n or less disk slides, embedded. That is, it is a collection of disjoint

disks.

To prove this we will need the following.
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Lemma 4.0.2. Given a ribbon knot K with n ribbon singularities, if we can find a subdisk

D ⊂ DK such that

∂D = (an arc in ∂DK) ∪ βi

for one of our properly embedded arcs, βi , and int (D) is disjoint from all α′s and β′s,

then a disk slide gives an isotopy of K supported in a small neighborhood of D so that the

new slicing disk D̃′K has n− 1 ribbon singularities.

Proof. For reference, let bi = ∂D ∩ ∂DK so that ∂D = bi ∪ βi. Also, let N = I × [0, ε]

be a collar neighborhood of βi in DK such that (t, 0) = βi similar to the one shown in

Figure 4.4.

Then we can define a new subdisk Dε = D ∪ N with boundary ∂Dε = bi ∪ (0, s) ∪

(1, s) ∪ (t, ε) and notice that int (βi) ⊂ int (Dε). By choosing ε > 0 sufficiently small, we

can assume that D̃ε is embedded. Then there is a disk slide taking bi to (t, ε) so that the

disk DK −Dε = D′K does not contain βi. But then it also cannot contain αi, since the pre-

images of singularities occur in pairs, and hence the singularity, γi, has been eliminated.

We also have that the resulting knot, ∂D̃′K , is isotopic to K.

Notice that Lemma 4.0.2 says that if we see a boundary parallel arc in DK with no

other singular points between that arc and some portion of ∂DK , that we can eliminate that

arc and its interior partner from the picture by an isotopy of K. Now back to our general

picture and the proof of Theorem 4.0.1.

Proof of Theorem 4.0.1

We will assume that our ribbon disk is reduced in the sense that, if it were possible to

simplify with a disk slide, then we have done so already. We will consider Figure 4.2 as

our prototypical ribbon disk, and recall the convention that for each singularity γi, ϕ−1 (γi)

consists of αi ∪ βi with βi properly embedded. Given an arbitrary ribbon knot K ⊂ S3

with n ∈ N ribbon singularities, γi, and ribbon disk ϕ : DK → S3, there will always be
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Figure 4.6: Cutting a ribbon disk

an “outermost” properly embedded arc, βi. This means that in some subdisk, D, whose

boundary is βi together with an arc bi ⊂ ∂DK , there are only interior singular points, αj ,

and no other properly embedded arcs. Figure 4.6 (a) shows one such case.

Let c be a properly embedded arc in D ⊂ DK such that c cuts D into D′ ∪ S with

βi ⊂ S and D′ containing all arcs αj ⊂ D. We may cut DK along c so that ϕ is defined on

D′K = DK −D′ and D′, and after a small isotopy of ϕ |D′ we have that ϕ (D′) and ϕ (D′K)

are disjoint as pictured in Figure 4.6 (c). Then a disk slide eliminates βi by Lemma 4.0.2.

Notice that when we eliminate a particular βi using a disk slide, that automatically elim-

inates the corresponding αi since they occur in pairs. Also notice, each cut eliminates at

least one βi, but could allow for the removal of more than one. But after at most n− 1 cuts

we have at most one βj and its corresponding αj . Since βj cuts the disk it sits on into two

components, one of them contains no α curves, see Figure 4.7, and so βj can be removed

with no further cuts. Thus we never need to make the nth cut since this last β curve may

be eliminated by a disk slide without making a cut. Then the image under ϕ is now n
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D′K

αj

βj

Figure 4.7: Final iteration

{n− times

Figure 4.8: An example ribbon knot with n+ 2 singularities for which a single cut suffices.

embedded disks whose boundary is an unlink. 0

We remark that this gives an upper bound on the number of cuts needed, but there are

certainly cases where this number is not optimal as the following example shows.

Example 4.0.3. Consider the ribbon knot in Figure 4.8.

This knot has n+ 2 ribbon singularities for any n ∈ N, and yet only one cut (shown in

green) will reduce the picture to two disjoint disks.

Now we will introduce handles and obtain a Kirby picture in which our knot K takes

a particularly simple form. We assume that the reader is familiar with basic handlebody

theory; an excellent reference for this material is [14]. For every cut cj , we will attach an arc

hj seen in Figure 4.9. We will think of hj as a thin ribbon, which would recover K if glued
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ϕ
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hj

Figure 4.9: A 2-handle hj associated to a cut cj

Kcut Kcut

hj

Figure 4.10: A 1-2 handle canceling pair

along. For this reason we will give the arc, hj , a framing, by which we mean a parallel arc,

and keep track of this framing through any isotopies of K. By a 1-sub-handlebody, we will

mean the sub-handlebody consisting of the 0-handles and the 1-handles.

Proof of Theorem 1.2.1

Using Theorem 4.0.1, we can make k < n cuts to the ribbon disk to obtain the unlink. So

we have a diagram in which there are k disjoint disks, and k − 1 framed arcs hj . We know

that by taking a band sum along these arcs (paying attention to framings) we can recover

our diagram for K. Let Kcut be the union of the boundaries of these disks. Now in a small

neighborhood of the end points of each hj we insert the attaching spheres of a 1−handle,

letting hj be the attaching circle of a 2−handle as seen in Figure 4.10.

This pair cancels by construction, and also has the effect of doing the band sum that

recovers K for the cut cj as seen in the movie in Figure 4.11. Notice that we make two

handle slides that free Kcut from the 1−handle, and then cancel the pair. Also notice that

this has exactly the same effect that a band sum of Kcut along hj would have had.
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Figure 4.11: An example handle cancellation to recover K.

Kcut Kcut

Kcut

Kcut

hj

hj

Figure 4.12: Framing adjustment

There is no obstruction to this handle slide and cancellation caused by the possible

presence of other handle pairs, since the double band sum shown on the left can be carried

out in a small neighborhood of the attaching sphere on the left. So after n − 1 or less

iterations, we have recovered our diagram for K. It is worth noting that framings on 2-

handles denote an even number of half twists, therefore the framings on the hj must be

even. If our diagram forK requires an odd number of half twists then we can accommodate

this by inserting any number of half twists in one of the disks spanningKcut shown in figure

Figure 4.12 for the case of a single half twist.
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Kcut Kcut Kcut

Figure 4.13: Handle picture corresponding to a uni-valent vertex of G.

We would like to think of our diagram in which there are k disjoint disks connected by

k − 1 arcs, hj , abstractly as a graph in order to show that Kcut can be pulled free of the

1-handles. To do this, we first work in the boundary of the 1-sub-handlebody. We think of

each of our disjoint disks as a vertex, and put an edge between vertices if the corresponding

disks are joined by a 1-handle. NoticeG embeds inDK as the “dual” graph toDK cut along

ϕ−1 (cj), that is, there is a vertex in the center of each component of DK − ∪k−1j=1ϕ
−1 (cj)

and an edge for each ϕ−1 (cj). Then G is homotopy equivalent to DK , and so we see that

χ (G) = χ (DK) = 1. It is well known that the Euler characteristic of a connected graph

is one if and only if that graph is a tree, so G is a tree. Each uni-valent vertex of G is now

associated to a portion of our picture consisting of two disks connected by a 1−handle,

where, one disk might have many 1−handle attaching spheres, but the other must have

exactly one 1−handle attaching sphere as shown in Figure 4.13. In the 1-sub-handlebody

it is clear that Kcut may be isotoped off this 1-handle. Notice that the effect of this isotopy

on G is to remove the corresponding edge and uni-valent vertex from the graph. Since G

is a tree, we can iterate this procedure revealing that Kcut can be pulled completely free of

the 1-handles. This may be seen in Figure 4.14 by simply ignoring the attaching circles of

the 2-handles, hj .

The above iteration gives an isotopy of Kcut which extends to an ambient isotopy of

the boundary of the 1-sub-handlebody. This, in turn, induces an isotopy on the attaching

circles of the 2-handles, hj , resulting in a 2-handlebody as claimed in Theorem 1.2.1. See

Figure 4.14. By construction, handle slides and cancellations gives us a knot isotopic to

K ⊂ S3. 0
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{ K

n− 1 or less

Figure 4.14: A 2-handlebody picture where K appears as the unknot in the boundary of the
1-sub-handlebody.

Figure 4.15: A 2-handlebody picture of the complement of the slice disk for K.

So we have shown that any ribbon knot with n ribbon singularities may be constructed

by starting with the unknot in #
k
S1 × S2, where k ≤ n − 1, and attaching 2-handles to

cancel each of the 1-handles in an appropriate manner.

Example 4.0.4. It is an exercise in Kirby calculus to show that images in Figure 1.2 are

two pictures of the same ribbon knot in S3.

Corollary 4.0.5. In Figure 4.14, if we replace the unknot in the 1-sub-handlebody with a

dotted circle, then we obtain a picture of the 4-manifold which is the complement of the

slicing disk in D4, shown in Figure 4.15.

Proof. The slicing disk can be seen in the picture as the disk filling the unknot that we have
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K

K

Figure 4.16: An example ribbon knot in S1 × S2 and its decomposition.

in the 1-sub-handlebody. This is since canceling the 1-2 handle pairs not only recovers K,

but also recovers the ribbon disk D̃K . The definition of the dotted circle notation is that

we remove a small neighborhood of the dotted unknot along with a small neighborhood of

the disk after pushing it into D4. And so this is exactly the complement of the slicing disk,

D4 − D̃K .

One nice fact is that, since disk slides, isotopies and handle cancellations can be done

locally, and since ribbon knots always bound an immersed ribbon disk, this construction

actually works in any 3-manifold. We did not rely on any special properties of S3 during

the process. One can create examples by combining a 2-handlebody picture for a ribbon

knot K ⊂ S3 as in the above construction with a Kirby picture of a 4-manifold W whose

boundary is the intended 3-manifoldM3 = ∂W . When combining the two pictures,K may

be allowed to run across non-canceling 1-handles to form non-trivial examples as shown

below. In Figure 4.16 we have a Kirby picture of a 4-manifold whose boundary is S1×S2.

We can see the ribbon disk for K in the image on the left. The image on the right shows

the result using the technique developed above.
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