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CHAPTER 1

INTRODUCTION

A co-orientable contact 3-manifold pM, ξq is overtwisted if it contains an overtwisted disk,

which is an embedded disk tangent to the contact planes along the boundary, and tight

if it does not contain an overtwisted disk. In [1], Eliashberg classified overtwisted contact

structures. Hence, more recent studies focus on the classification of tight contact structures.

Since tight contact structures respect the prime decomposition of 3-manifolds, it is

only necessary to consider the classification of tight contact structures on prime manifolds.

Geometrization of 3-manifolds implies that a prime 3-manifold is either Seifert fibered,

toroidal or hyperbolic. For Seifert fibered manifolds, there have been several results. For

lens spaces including S3, S1 ˆ S2, tight contact structures were classified in [2, 3, 4, 5].

Furthermore, after Etnyre and Honda showed that there exists no tight contact structure on

the Poincaré homology sphere with reversed orientation ´Σp2, 3, 5q in [6], there have been

several classification results on some Seifert fibered spaces. For example, see [7, 8, 9].

For toroidal manifolds, we can construct infinitely many tight contact structures by using

Giroux torsion. Tight contact structures on T 3 were classified in [10, 11]. Later on, Giroux

and Honda independently classified tight contact structures on torus bundles over a circle

in [4, 12] and [13]. In [14, 15], it was shown that a closed orientable irreducible 3-manifold

carries infinitely many tight contact structures up to isotopy if and only if it is toroidal.

For hyperbolic manifolds, much less is known. In [16], Honda, Kazez and Matić clas-

sified tight contact structures on genus 2 surface bundles over a circle when they have an

extremal relative Euler class. In [17], Conway and the author classified tight contact struc-

tures on surgeries on the figure-8 knot. However, none of them is an L-space. In this thesis,

we will classify tight contact structures on the Weeks manifold, which is a hyperbolic L-

space, obtained by p5, 5
2
q-surgery on the Whitehead link. See Figure 1.1. In [18], it was
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shown that the Weeks manifold has the smallest volume among closed oriented hyperbolic

3–manifolds. The existence of tight contact structures on the Weeks manifold was already

shown in [19, 20, 21].

Theorem 1.0.1. The Weeks manifold supports seven tight contact structures up to isotopy,

distinguished by their Heegaard Floer contact classes.

5

K2

5
2

K1

Figure 1.1: The Weeks manifold

We will prove Theorem 1.0.1 by constructing seven tight contact structures via contact

surgery and distinguish them using contact classes in Heegaard Floer homology. In [21],

Stipsicz used contact surgery and Heegaard Floer homology to find four tight contact struc-

tures on the Weeks manifold. We will expand this result by constructing three additional

tight contact structures. After that, we will find an upper bound of tight contact structures

using convex decompositions to show that there are at most seven tight contact structures

on the Weeks manifold.
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CHAPTER 2

CONTACT TOPOLOGY PRELIMINARIES

In this section we will briefly review several notions and theorems from contact topology

which will be used throughout the paper. We assume the reader is familiar with basic

contact topology at the level of [22, 23].

2.1 Convex surfaces

Here, we will review the theory of convex surfaces. For more details, see [24, 5].

Let pM, ξq be a contact 3-manifold. We call a vector field v a contact vector field if its

flow preserves ξ. A surface Σ (with or without boundary) is called convex if there exists a

contact vector field transverse to Σ.

Let Σ be a surface in pM, ξq and F be a characteristic foliation on Σ induced by ξ. A

multi-curve Γ is called a dividing set of F if

• ΣzΓ “ Σ` \ Σ´.

• Γ is transverse to F .

• there is a volume form ω on Σ and a vector field w such that

– ˘Lwω ą 0 on Σ˘,

– w directs F , and

– w points transversely out of Σ` along Γ.

A dividing set gives an easy criteria for checking a given surface is a convex surface.

Theorem 2.1.1 (Giroux [25]). If Σ is an orientable surface in pM, ξq with Legendrian

boundary (or empty), then Σ is convex if and only if its characteristic foliation has dividing

curves.
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We denote the twisting number of contact framing along a curve γ with respect to a

given framing F by twpγ, F q.

Theorem 2.1.2 (Giroux [25]). A closed surface Σ in pM, ξq is C8-close to a convex sur-

face. If Σ has Legendrian boundary with twpBΣ,Σq ď 0, then Σ can be C0-perturbed in a

neighborhood of the boundary and C8-perturbed on its interior to be convex.

Thus, convex surfaces are generic. There is also an easy way to compute the twisting

number of a simple closed Legendrian curve with respect to a given surface framing.

Theorem 2.1.3 (Kanda [10]). Let γ be a Legendrian closed curve on a convex surface Σ

with a dividing set Γ. Then,

twpγ,Σq “ ´
|γ X Γ|

2

Let Σ be a convex surface with a dividing set Γ. We call a properly embedded graph G

in Σ non-isolating if G intersect Γ transversely and every component of ΣzG intersects Γ.

Theorem 2.1.4 (Legendrian realization principle: Honda [5]). If G is a properly embedded

non-isolating graph on a convex surface Σ, then there is an isotopic copy of Σ relative to

its boundary such that G is Legendrian.

In particular, if ΣzG is connected, G can always be realized as a Legendrian graph.

This implies any non-separating curve on Σ can be realized as a Legendrian curve.

Let L be a Legendrian knot in pM, ξq. A standard neighborhood N of L is a tubu-

lar neighborhood of L which has a convex boundary with 2 closed dividing curves. By

Theorem 2.1.1, we can arrange the characteristic foliation to be linear as shown in Fig-

ure 2.1. The singular lines parallel to dividing curves are called Legendrian divides and

non-singular curves are called ruling curves. By Theorem 2.1.1 again, ruling curves can

have any slope except for the slope of the dividing curves.

Now we will review how to glue two convex surfaces. Kanda [10] and Honda [5]

showed that if two convex surfaces intersect along a Legendrian curve L, we have a stan-

dard model for this intersection. See Figure 2.2. Honda [5] used this model to glue two
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Figure 2.1: A standard convex torus with two dividing curves. The top and bottom sides
are identified, as are the left and right sides. The dashed black lines represent dividing
curves. The red lines represent Legendrian ruling curves and the Black solid lines represent
Legendrian divides.

convex surfaces with common Legendrian boundary and get a new connected convex sur-

face. See Figure 2.3. This is called an edge rounding.

Figure 2.2: The standard model of intersection between two convex surfaces.

We can modify a dividing set in a systematical way. Let Σ be an oriented convex surface

with a dividing set Γ and D be a disk with Legendrian boundary with tbpBDq “ ´1.

Suppose α “ D X Σ intersects Γ in three points tp, q, ru and Bα “ tp, qu are elliptic

singularity of D. By Theorem 2.1.1, we can perturb D for q to be a unique hyperbolic

singularity. We call D a bypass and the sign of the hyperbolic singularity is called the sign

of a bypass.

Honda proved in [5] that there is a one-sided neighborhood Σˆ r0, 1s of Σˆ t0u YD

such that Σ ˆ t0, 1u is convex and the dividing set on Σ ˆ t1u is modified as shown in

Figure 2.4. We say Σˆt1u is obtained from Σˆt0u by a bypass attachment along α ”from
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Figure 2.3: Rounding an edge between two convex surfaces.

the front”. If Σˆ r0, 1s is a neighborhood of Σˆt1uYD, then we say Σˆt0u is obtained

from Σˆ t1u by a bypass attachment ”from the back”.

Remark 2.1.5. If p and q are a same point, we obtain a degenerate bypass. In [5], Honda

showed that this bypass still can be attached and have a similar effect as regular bypasses.

front

back

Figure 2.4: Bypass attachments

Let us investigate the effect of bypass attachment to a torus in detail. First, we introduce

the Farey graph. We define the graph inductively. Let D be the Poincaré disk. Start with

the top-most vertex labeled 0 “ 0
1

and the bottom-most vertex labeled 8 “ 1
0

and connect

them by a geodesic. Given two vertices in the right half plane which are already labeled a
b

and c
d
, choose a vertex on BD in the middle of the vertices and label it as a`c

b`d
. Then connect
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it with the other two vertices by geodesics. For the left half plane, we treat8 as ´8 “ ´1
0

.

See Figure 2.5.

0
1

1
0

1
1

´1
1

1
2

2
1

´2
1

´1
2

1
3

2
3

3
2

3
1

´3
1

´3
2

´2
3

´1
3

Figure 2.5: The Farey graph

Now consider a convex torus T 2 with two parallel dividing curves and a linear foliation.

Choose a homology basis for T 2 as pp 10 q , p 01 qq. Denote the slope of curves parallel to p pq q

by q
p
.

Theorem 2.1.6 (Honda [5]). Let s and r be the dividing slope and ruling slope, respectively,

of a convex torus T 2 with two dividing curves. After a bypass attachment to the front of

T 2 along a ruling curve, we obtain a new convex torus with two dividing curves with slope

s1, where s1 is the vertex on the Farey graph clockwise of s and counter-clockwise of r. In

addition, s1 is closest to r with an edge to s.

Remark 2.1.7. If a bypass lies on the back of T 2, then Theorem 2.1.6 will hold after revers-

ing the word ”clockwise” and ”counter-clockwise”. Notice that here we use the topologist’s

convention for the slope of homologically non-trivial curves on BpS1ˆD2q. That is, p 10 q is

the longitudinal direction and p 01 q is the meridional direction.
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All of the results above are only useful when we can find a bypass. Fortunately, there

are several ways to find a bypass.

Theorem 2.1.8 (Imbalance principle: Honda [5]). Let Σ and A “ S1 ˆ r0, 1s be convex

surfaces with Legendrian boundary. Suppose Σ X A “ S1 ˆ t0u and twpS1 ˆ t0uq ă

twpS1 ˆ t1uq ď 0. Then there is a bypass on Σ along S1 ˆ t0u.

Theorem 2.1.9 (Honda [5]). Let Σ be a convex surface and D be a convex disk with a

Legendrian boundary. Suppose ΣXD “ BD. If tbpBDq ă ´1 then there is a bypass on Σ

along BD.

2.2 Basic slices and solid tori

Let B :“ T 2 ˆ I . A tight contact structure ξ on T 2 ˆ I is called a basic slice if (1)

BB “ T0 Y T1 is two standard convex tori with dividing slopes s0 and s1 respectively. (2)

s0 and s1 are connected by an edge in the Farey graph. (3) the slope of the dividing curves

on any convex torus T parallel to the boundary is between s0 and s1. This condition is

called minimal twisting.

Theorem 2.2.1 (Honda [5]). There are exactly two basic slices up to isotopy with a given

boundary condition. These two tight contact structures are distinguished by their relative

Euler class. They are called positive and negative basic slices and denoted by B`ps0, s1q

and B´ps0, s1q respectively.

Next, consider a solid torus S1 ˆ D2. Recall that p 10 q be a longitudinal direction by a

chosen framing and p 01 q be a meridional direction. Suppose the boundary of S1 ˆ D2 is

convex with two dividing curves. Kanda showed that there exists unique tight contact struc-

tures on this S1 ˆD2 if the dividing slope is an integer, and Giroux and Honda completed

the classification for general dividing slopes.

Theorem 2.2.2 (Kanda [10]). Suppose the dividing curves are parallel to p 1n q. Then there

exists a unique tight contact structure on S1 ˆD2.

8



Theorem 2.2.3 (Giroux [4], Honda [5]). Let p, q be relatively prime integers. Suppose

the dividing curves are parallel to p qp q, q ą ´p ě 1. Then, the number of tight contact

structures on S1 ˆD2 up to isotopy is following:

π0pS
1
ˆD2,Γq “ |pr0 ` 1q . . . prk´1 ` 1qrk|,

where
q

p
“ r0 ´

1

r1 ´
1

r2...´
1
rk

with ri ď ´2.

If the slope s “ p qp q does not satisfy the condition q ą ´p ě 1, use a self-diffeomorphism

of S1 ˆD2 which restricts to the Dehn twist on the boundary, whose matrix representation

is
`

1 0
m 1

˘

, to change the framing and get a desired slope.

2.3 Contact surgery and Heegaard Floer homology

Consider a Legendrian knot L in pM, ξq. Let N be a standard neighborhood of L. Contact

p
p
q
q-surgery on L is defined as following: Let pλ, µq be a contact framing and meridian

for L, respectively. Mpp{qqpLq is obtained by cutting N from M and re-gluing it via a

diffeomorphism of BN sending µ to pµ` qλ. Then, extend the contact structure pMzN, ξq

to the entire Mpp{qqpLq so that it is tight on N .

In general, the number of possible extensions is not unique. This depends on how many

contact structures exist on N with a given boundary condition. If we only focus on the

tight contact structures on N , Theorem 2.2.3 gives the answer. Therefore, we obtain the

following theorem.

Theorem 2.3.1 (Ding and Geiges [26]). Let L be a Legendrian knot in pM, ξq and p, q be

relatively prime integers. Suppose p
q
ă 0. The number of contact structures (not necessarily

9



non-isotopic) induced by contact pp
q
q-surgery on L is

|pr0 ` 1q ¨ ¨ ¨ prn ` 1q|

where
p

q
“ r0 ` 1´

1

r1 ´
1

r2...´
1
rn

with ri ď ´2.

If p, q does not satisfy the condition p
q
ă 0, use p

q´kp
instead where k is the smallest

positive integer such that q ´ kp ă 0.

In [27], Ding, Geiges and Stipsicz exhibited an algorithm that converts any contact

surgery diagram into a p˘1q-surgery diagram.

• contact pp
q
q-surgery with p

q
ă 0:

1. Stabilize L |r0 ` 2| times. Let this be L0.

2. For n “ 1, . . . , n, let Li be the Legendrian push-off of Li´1 and stabilize it

|ri ` 2| times.

3. Then a contact pp
q
q-surgery on L corresponds to a contact p´1q-surgeries on a

link pL0, . . . , Lnq.

• contact pp
q
q-surgery with p

q
ą 0:

1. Choose a positive integer k such that q ´ kp ă 0. Let r1 “ p
q´kp

.

2. Let L1, . . . , Lk be k successive Legendrian push-offs of L.

3. Then a contact pp
q
q-surgery onL corresponds to p`1q-surgeries onL,L1, . . . , Lk´1

and a contact pr1q-surgery on Lk.

Ozsváth and Szabó defined the Heegaard Floer homology yHF pMq in [28, 29], which

is an invariant of a 3-manifold M . They also defined the Heegaard Floer contact invariant

cpξq of pM, ξq in [30]. This invariant has the following properties.

10



Theorem 2.3.2 (Ozsváth and Szabó [30]). The Heegaard Floer contact invariant cpξq of

pM, ξq satisfies the following properties.

• If pM, ξq is overtwisted, then cpξq “ 0.

• If pM, ξq is strongly fillable, then cpξq ‰ 0.

Recall that if pM, ξq has a non-vanishing contact invariant cpξq, then contact surgery

with a negative coefficient carries a non-vanishing contact invariant. For right-handed tre-

foil with the maximum Thurston-Bennequin number, positive contact surgery possesses a

similar property.

Theorem 2.3.3 (Lisca and Stipsicz [31]). Let L be a Legendrian right-handed trefoil in

pS3, ξstdq with tbpLq “ 1. For any r P Qzt0u, contact r-surgery on L carries a non-

vanishing contact invariant.

2.4 Spinc structure

Two non-vanishing vector fields v0 and v1 in a 3-manifold M are called homologous if

they are homotopic through non-vanishing vector fields in MzD3. An equivalence class of

homologous vector fields in M is called a spinc structure on M . We denote the set of spinc

structures on M by Spinc
pMq.

Consider a contact 3-manifold pM, ξq. Recall that any oriented 2-plane field on M nat-

urally induces a spinc structure by taking its oriented normal vector field. Thus, ξ induced

a spinc structure tξ. Moreover, it has the well-defined first Chern class c1ptξq.

Suppose pM, ξq is obtained from pS3, ξstdq by a contact p˘1q-surgery on a Legendrian

link. Since the smooth surgery coefficients are also integers, we can think the surgery

diagram as a Kirby diagram and obtain a 4-manifold X . The contact structure ξ induces an

almost complex structure J on BX and J extends to a complement of a 4-ball in intpXq.

Then there is the characteristic cohomology class c P H2pX;Zq, whose restriction to BX

is c1ptξq. The following theorem had been first proved by Gompf in [32] for p´1q-contact

11



surgery diagrams and it was extended to contact p˘1q-surgery diagrams by Ding, Geiges

and Stipsicz in [27].

Theorem 2.4.1 (Ding, Geiges and Stipsicz [27]). SupposeX is a 4-manifold obtained from

p˘1q-contact surgery diagram on a Legendrian link
Ť

Li in S3 and ξ is a contact structure

on BX induced by the contact surgery diagram. Denote the normal curves of the surgery

knots by µi. Let c be its characteristic cohomology class. Then the following holds.

PD pc|BXq “ PDpc1ptξqq “
n
ÿ

i“1

rotpLiqrµis

.
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CHAPTER 3

CONSTRUCTING CONTACT STRUCTURES VIA SURGERY

In this chapter, we will construct seven contact structures on the Weeks manifold via contact

surgery and use contact classes in Heegaard Floer homology to show that they are tight.

Then we will show these contact structures are pairwise non-isotopic. Consider the surgery

diagram for the Weeks manifold W shown in Figure 1.1. After a left-handed Rolfsen twist

on one link component K2, the other component K1 becomes a right-handed trefoil in S3

as shown in Figure 3.1. After performing a sequence of blow-up operations, we obtain

the surgery diagram shown in Figure 3.2. Realizing the link in Figure 3.2 as a Legendrian

link, we obtain a contact surgery diagram shown in Figure 3.3. We apply the algorithm

in section 2.3 to turn the diagram into (˘1)-contact surgery diagram and determine the

number of contact structures (not necessarily different) induced by the diagram:

´5
4

5
2

Figure 3.1: The result of left-handed Rolfsen twist on K1

1. Take a Legendrian push-off of the Legendrian right-handed trefoil in Figure 3.3 and

stabilize it twice. Perform contact p`1q-surgery on the original knot and p´1q-

surgery on the push-off.

2. Perform p´1q-contact surgery on the other Legendrian unknots.
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´2 ´2
´2

´2

5
2

Figure 3.2: The result of blow-ups

p´1q

p´1q

p´1q

p´1q

p3
2
q

Figure 3.3: Legendrian realization of the link in Figure 3.2
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Since there are three different Legendrian representatives of a twice stabilized Legen-

drian knot, the contact surgery diagram in Figure 3.3 induces three contact structures.

Since the Whitehead link is symmetric, we can switch the surgery coefficients of the

link components K1 and K2. See the first drawing in Figure 3.4. Perform a left-handed

Rolfsen twist onK2, followed by a blow-up. We then obtain a surgery diagram with integer

coefficients as shown in the bottom drawing of Figure 3.4. Realizing the link in the bottom

drawing of Figure 3.4 as a Legendrian link, we obtain a contact surgery diagram shown

in Figure 3.5. Again, we apply the algorithm in section 2.3 to turn the diagram into a

p˘1q-contact surgery diagram:

5
2

5
´ 5

3

5

´3 ´2
5

Figure 3.4: Another surgery diagram for the Weeks manifold.

p´2q

p´1q

p4q

Figure 3.5: Legendrian realization of the third link in Figure 3.4.
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1. Stabilize the Legendrian unknot in Figure 3.5 with contact surgery coefficient p´2q

once and perform contact p´1q-surgery on it.

2. Take a Legendrian push-off of the Legendrian trefoil and stabilize it once. Then push

off the result twice. Perform contact p`1q-surgery on the original knot and p´1q-

surgeries on the push-offs.

3. Perform p´1q-contact surgery on the Legendrian unknot with contact surgery coeffi-

cient p´1q.

Since there exist two different Legendrian representatives for a once stabilized Legen-

drian knot, the contact surgery diagram in Figure 3.5 induces four contact structures. Thus

we obtain seven contact structures in total. Since both contact surgery diagrams consist of

a positive contact surgery on the Legendrian right-handed trefoil with tb “ 1, followed

by negative contact surgeries on the the other Legendrian knots, the Heegaard Floer con-

tact class induced by the surgery diagrams are non-vanishing by Theorem 2.3.3. Hence all

contact structures induced by Figure 3.3 and Figure 3.5 are tight. We now show that these

contact structures are pairwise non-isotopic.

Proposition 3.0.1. Each contact structure obtained from the contact surgery diagrams Fig-

ure 3.3 and Figure 3.5 induces distinct spinc structures.

Proof. It is enough to show that each contact structure has different first Chern classes. To

this end, fix one contact structure first. In other words, fix the choice of stabilizations. Now

according to Theorem 2.4.1, we can easily compute the Poincaré dual of the first Chern

class of the contact structure. First, we consider the contact structures obtained from the

surgery diagram in Figure 3.3. Recall that we took a push-off the trefoil in Figure 3.3 to turn

the diagram into a p˘1q-contact surgery diagram. If we slide the push-off over the original

trefoil, then we obtain the surgery diagram shown in the first drawing of Figure 3.6. Let

the meridians of each surgery component of Figure 3.6 be η1, ..., η6 from left to right. Then

the first homology of the Weeks manifold can be presented as
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H1pW ;Zq “ xη1, ..., η6 | ´ 2η1 ` η2 “ 0, η1 ´ 2η2 ` η3 “ 0, η2 ´ 2η3 ` η4 “ 0,

η3 ´ 2η4 “ 0, 2η5 ` η6 “ 0, η5 ´ 2η6 “ 0y

and the Poincaré dual of the first Chern class of the contact structure can be 0η1 ` ...`

0η5 ˘ 2η6 or 0η1 ` ... ` 0η6. Now we return back to the surgery diagram in Figure 1.1 by

following Figure 3.6. Since the blowing up/down operations and Rolfsen twists induce a

canonical self-diffeomorphism, we can keep track of the homology class under the diffeo-

morphisms. Let µ1 and µ2 be meridians of K1 and K2 respectively. Then the homology of

the Weeks manifold is presented as

H1pW ;Zq “ xµ1, µ2 | 5µ1 “ 5µ2 “ 0y,

and the Poincaré dual of the first Chern class is ˘4µ1 ` 0µ2 or 0µ1 ` 0µ2.

´2 ´2 ´2 ´2

2

´2

2

5

´2

5

2´2

5

5
2

Figure 3.6: Returning back to the Whitehead link
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Now consider the contact structures from Figure 3.5. Again, recall that we took the

push-offs of the trefoil in Figure 3.5 to turn the surgery diagram into the p˘1q-contact

surgery diagram. Slide the push-offs over the original trefoil and blow-down them. Then

we obtain the surgery diagram shown in the last drawing of Figure 3.4. By performing

a single blowing-down and Rolfsen twist, we obtain the surgery diagram in Figure 1.1.

As above, by keeping track of the Poincaré dual of the first Chern class, we obtain c “

˘2µ1 ˘ 3µ2 or c “ ˘2µ1 ¯ 3µ2.

Therefore, each contact structure induces different spinc structures. Hence they are

pairwise non-isotopic.

Remark 3.0.2. In [31], Lisca and Stipsicz showed that a contact surgery on the Legendrian

right-handed trefoil with tb “ 1 in pS3, ξstdq preserves Stein fillability if the smooth surgery

coefficient is greater than or equal to 4. Therefore, four contact structures on the Weeks

manifold induced by Figure 3.3 are Stein fillable.
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CHAPTER 4

AN UPPER BOUND ON TIGHT CONTACT STRUCTURES

In this section, we will find an upper bound of tight contact structures on the Weeks mani-

fold W . We begin by decomposing the Weeks manifold into two simpler pieces.

4.1 A Rational open book decomposition

Consider the surgery diagram for the Weeks manifold W as shown in Figure 1.1. If we

perform the surgery only on K2, then the result will be Lp´5, 1q. Moreover, K1 is a fibered

knot in Lp´5, 1q with a genus one fiber and the monodromy is given by

ψ “

¨

˚

˝

´3 1

´1 0

˛

‹

‚

which is the identity near the boundary. See [20, 33, 34] for more details on the fibration.

Also note that ψ is an Anosov map. Let N be a small tubular neighborhood of K1 and

M :“ Lp´5, 1qzN . Then M “ pΣˆIq{ „, where Σ “ T 2zD2 and px, 1q „ pψpxq, 0q. We

can obtain the Weeks manifold W by re-gluing N by a diffeomorphism φ : BN Ñ ´BM

given by

φ “

¨

˚

˝

1 2

2 5

˛

‹

‚

For BN , here we set p 10 q as a longitudinal direction given by the product framing of N and

p 01 q as a meridional direction of N . For ´BM , We set p 10 q as the direction given by BΣ and

p 01 q as the direction given by tpu ˆ I{ „, where p P BM . The last direction is well-defined

since ψ is the identity near BΣ.

Remark 4.1.1. In [34], Morimoto used a different gluing convention. That is, M “ pΣ ˆ
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Iq{ „ where px, 0q „ pψ1pxq, 1q. Thus the monodromy in [34] should be also different:

ψ1 “
`

´3 ´1
1 0

˘

.

ψ

p 10 q

p 01 q
Σˆ t1u

Σˆ t0u

Figure 4.1: The bundle structure of M “ S3zN . Opposite rectangles are identified. The
top and bottom are glued by ψ.

Here, we will use the topologist’s slope convention for N and BM . Recall that when

we attach a bypass to N from the front, the slope changes in a clockwise direction on the

Farey graph.

Consider the Weeks manifold pW, ξq equipped with a contact structure ξ. Let L be a

Legendrian knot in N isotopic to the core of N , which is the surgery dual knot of K1.

Now we can assume that N is a standard neighborhood of L after a perturbation. We can

also make the ruling curves parallel to p 5
´2 q. Since φ p 5

´2 q “ p 10 q, the ruling curves are

parallel to p 10 q on ´BM , which is parallel to BΣ. Therefore, we can make BΣ Legendrian

and perturb Σ to be a convex surface by Theorem 2.1.2.

From now on, when we say the twisting number of L, this means the twisting number

of L with respect to the product framing on N .

To find the upper bound of the number of tight contact structures on W , we use the fol-

lowing strategy: First, start with L having a large negative twisting number. Then increase

the twisting number by attaching bypasses to the standard neighborhood of L. Repeat this
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and maximize the twisting number. Call it s̄. Then count the number of potentially tight

contact structures in each piece when L has the maximal twisting number s̄. Finally, show

that contact structures should be overtwisted if the twisting number of L is bigger than s̄.

As mentioned above, to increase the twisting number of L, we need to find a bypass

that can be attached to N , the standard neighborhood of L. To find such bypasses, we will

use the method introduced by Etnyre and Honda in [35]. In [35], Etnyre and Honda showed

that there exists a unique tight contact structure up to contactomorphism in the complement

of the standard neighborhood of the figure-eight knot with tb “ ´3 in pS3, ξstdq, which

is a once-punctured torus bundle over S1 with an Anosov monodromy. We will slightly

generalize their method for any Anosov monodromy and apply this to our case.

Here, we outline how we will find an upper bound of tight contact structures on the

Weeks manifold W . First, we will show that if the twisting number of L is greater than

or equal to 0, then the contact structure is overtwisted. We then show that if the twisting

number of L is less than ´1, L can be destabilized. If the twisting number of L is ´1, then

we will find bypasses for N to make the dividing slopes of BN and BM to be p 1
´1 q and

`

´1
´3

˘

, respectively. Finally, with this boundary condition, we can arrange the dividing set

on Σ to be one of two configurations, and we will show that in one configuration there exist

at most four tight contact structures and in the other configuration, there exist at most three

tight contact structures.

We begin by normalizing the dividing set of Σ. As discussed above, we can assume Σ

is convex. Let U be a vertical invariant neighborhood of Σ. Then MzU=Σ ˆ r0, 1s. Let

Σt :“ Σˆttu for 0 ď t ď 1 and Γt be a dividing set for Σt. We denote dividing curves with

boundary by dividing arcs. From now on, we will use the Legendrian realization principle

(Theorem 2.1.4) implicitly. First, observe the following simple lemma.

Lemma 4.1.2 (Etnyre and Honda [35]). There are at most three distinct isotopy classes of

properly embedded disjoint arcs on Σ which are not boundary parallel. Moreover, if there

are closed curves on Σ, then there is at most one isotopy class of arcs and it is parallel to
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the closed curves.

Proposition 4.1.3 (Etnyre and Honda [35]). Suppose Γ consists of properly embedded arcs

γ1, . . . , γn and closed curves c1, . . . , cm. Then one of the following holds.

I. There is one isotopy class of arcs: (a) n is odd, m=1, (b) n “ 0, m “ 2, (c) D a

bypass along BΣ.

II. There are two isotopy classes of arcs: (a) n “ 4 and each isotopy class has two arcs,

(b) D a bypass along BΣ.

III. There are three isotopy classes of arcs: (a) n is odd and one isotopy class contains

only one arc, (b) D a bypass along BΣ.

This proposition is due to Etnyre and Honda [35] but we present a proof for complete-

ness.

Proof. The basic strategy of the proof is finding a bypass on Σ to modify the dividing set Γ.

We will use an annulus cˆ I Ă Σˆ I where c is a closed curve on Σ and apply Imbalance

principle (Theorem 2.1.8) to find a bypass.

Case I: First, observe that m`n must be even to divide Σ. Choose a closed Legendrian

curve c on Σ0 which is parallel to curves in Γ0 so that c does not intersect Γ0. Consider an

annulus A :“ cˆI in ΣˆI . Then the geometric intersection number |cˆt1uXΓ1| ě m`

n ą 0 since an Anosov map does not preserve isotopy classes of curves and Γ0 “ ψpΓ1q.

Hence we can find a bypass along cˆ t1u by Imbalance principle (Theorem 2.1.8).

Let p, q, r be intersection points between Γ1 and the bypass in a consecutive order.

Suppose n ě 2,m ě 2. In this case, p, q, r always lie on distinct dividing curves. If p, q

or q, r lie on ci’s, m is reduced by 2 after attaching the bypass. If p, q or q, r lie on γi’s, we

obtain a bypass along BΣ. Now suppose n “ 1, m ě 3. In this case, any bypasses reduce

m by 2. If n ą 2,m “ 0, any bypasses give rise to a bypass along BΣ. Now consider the

case n “ 2,m “ 0. If |c ˆ t1u X Γ1| “ 2, we obtain a degenerate bypass along c ˆ t1u.
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After attaching this bypass, we obtain a bypass along BΣ. Suppose |c ˆ t1u X Γ1| ą 2.

Attaching a bypass along cˆt1u results in the change of the slope of curves in Γ1 according

to Theorem 2.1.6. Moreover, Theorem 2.1.6 implies that |cˆt1uXΓ1| ě 2, so we can find

a bypass along c ˆ t1u again. After a finite sequence of attaching bypasses along c ˆ t1u,

the slope of curves in Γ1 and the slope of c are connected by an edge on the Farey graph,

which implies |c ˆ t1u X Γ1| “ 2. Therefore, we obtain a degenerate bypass, which gives

rise to a bypass along BΣ. To summarize, we eventually arrive to (a) n ě 1 and m “ 1, (b)

n “ 0 and m “ 2, or (c) D a bypass along BΣ.

Case II: First, note that m “ 0 by Lemma 4.1.2. Denote the two isotopy classes by

v1 and v2 respectively, and let n1, n2 be the numbers of arcs in each isotopy class. Note

that n1 and n2 both must be even to divide Σ. Since ψ is an Anosov monodromy, there are

two eigendirections for ψ. They form an attractive fixed point and a repelling fixed point

respectively on the Farey graph. Denote the attractive eigendirection for ψ by p. Suppose

v1 is closer to p than v2 on the Farey graph. Then ψpv1q is closer to p than v1, which

implies it is different from both v1 and v2. Choose a closed curve c which is parallel to

ψpv1q so that |cX Γ0| “ n2. Take an annulus cˆ I in Σˆ I . Then the intersection number

|cˆt1uXΓ1| “ n1`n2. Hence by Imbalance principle, we can find a bypass along cˆt1u.

Suppose n1, n2 ą 2. Then p, q, r lie on distinct dividing curves and p, q or q, r are on

curves with a same isotopy class. After attaching the bypass, we obtain a bypass along BΣ.

Next, suppose n1 “ 2, n2 ą 2 (or n1 ą 2, n2 “ 2). In this case, the only bypasses which

do not give rise to a bypass along BΣ is the bypasses which pass only two dividing curves

parallel to v1 and p, r lie on the same dividing curve. Attaching this bypass results in the

change of the slope of v1. If cˆt1u intersects the dividing curves parallel to v1 in more than

two points, then we can find such bypass again. After a sequence of attaching the bypasses,

c ˆ t1u intersects the dividing curves parallel to v1 in only two points by Theorem 2.1.6.

Then there cannot exist a bypass which does not produce a bypass along BΣ. The only

remaining case is n1 “ 2 and n2 “ 2.
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Case III: First, note that n must be odd to divide Σ. Denote the number of dividing

curves in each isotopy class by n1, n2 and n3. Use the same argument as in Case II to get a

bypass on Σ1. If n1, n2, n3 ě 2, then p, q, r lie on distinct dividing curves and p, q or q, r

are on curves with a same isotopy class. Hence every possible bypass gives rise to a bypass

along BΣ. Therefore, at least one isotopy class should contain only one curve.

4.2 Twisting ď -1

In this section, we will show that if the twisting number of L is ď ´1, then we can always

find a bypass along BΣ. First, suppose that the twisting number of L is ´1. Then the

dividing curves on BN are parallel to p 1
´1 q. Since φ p 1

´1 q “
`

´1
´3

˘

, the dividing curves on

´BM are parallel to p 13 q. Then the twisting number of BΣ with respect to Σ is twpBΣ,Σq “

´|det
`

1 1
0 3

˘

| “ ´3. This implies that there are three dividing arcs on Σ by Theorem 2.1.3.

Moreover, Lemma 4.1.2 and Proposition 4.1.3 implies that Γ is either Case I(a) with n “

3,m “ 1 or Case III(a).

We now normalize Γ so that we can always assume Γ has one of two configurations.

During the normalization, we can assume that we do not encounter a bypass along BΣ. If

Γ is Case III(a) with three isotopy classes v1, v2, v3 P Z2, we will denote Γ by tv1, v2, v3u.

We also denote Γ by ts1, s2, s3u alternatively, where s1, s2, s3 are the slopes of v1, v2, v3

respectively. If Γ is Case I(a) with an isotopy class v, we will denote it by tvu or tsu, where

s is the slope of v.

Proposition 4.2.1. There is an isotopic copy of Σ with a dividing set Γ “ t´8,´1, 0u or

t0, 1,8u

Suppose Γ1 “ tv1, v2, v3u. Note that one isotopy class is the sum of the other two

isotopy classes, so we can assume v2 “ v1 ` v3 and tv1, v3u are a basis for Z2. Hence

tv1, v2, v3u form an ideal geodesic triangle on the Farey graph. We will find a bypass on Σ1

and investigate the effect of the bypass attachment. After a sequence of bypass attachments,

we arrive to either t´8,´1, 0u or t0, 1,8u.
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pAq

pBq

pCq

pDq

Figure 4.2: List of possible bypass attachments for Case III(a) with n “ 3. The top and
bottom are identified as are the left and right sides. The dashed lines represent dividing
curves and the blue solid lines represent the attachment for the bypasses. The bypasses are
attached from the back. For (A), (B) and (C), the slope of bypass attachment is less than 0.
For (D), the slope of the bypass attachment is between 0 and 1.
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pEq

pF q

pGq

pHq

pIq

Figure 4.3: Continuation of list of possible bypass attachments for Case III(a) with n “ 3.
For (E) and (F), the slope of bypass attachment is between 0 and 1. For (G), (H) and (I),
the slope of bypass attachment is between 1 and8.
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pJq

pKq

Figure 4.4: Two possible bypass attachment for Case I(a) with n “ 3,m “ 1.

Proof. First, we exhibit the complete list of possible bypass attachments on Σ1 when Γ1 is

Case III(a). There are nine possible non-trivial bypass attachments which do not give rise

to a bypass along BΣ. See Figure 4.2 and Figure 4.3 for the complete list. Note that the

bypasses are attached on the back of Σ1. See Figure 4.1. For Γ1 “ tv1, v2, v3u, Take an

orientation preserving diffeomorphism for T 2 which sends tv1, v2, v3u ÞÑ t0, 1,8u. Then

find a corresponding bypass attachment from the list.

Let p “ 3´
?
5

2
. Then p, 1

p
are the eigendirections of ψ, where p is an attracting fixed point

and 1
p

is a repelling fixed point on the Farey graph. Consider an infinite cyclic covering

space Σ ˆ R of M “ Σ ˆ I{ „. Since ψpΣ1q “ Σ0 and ψpΓ1q “ Γ0, the dividing set of

Σˆ tku is ψkpΓ1q for any k P Z. Hence we can use ψkpΓ1q instead of Γ1.

Suppose Γ1 has a configuration of Case I(a). In this case, we can find a bypass on

Σ1 as in the proof of Proposition 4.1.3. Let p, q, r be intersection points between Γ1 and

the bypass in a consecutive order. If q is on a closed curve and p, r lie on arcs, the bypass

attachment changes Γ1 to become Case III(a). All other bypasses give rise to a bypass along

BΣ. Hence we can assume Γ1 has a configuration of Case III(a). Let Γ1 “ tv1, v2, v3uwhere

v2 “ v1`v3 and denote corresponding slopes by ts1, s2, s3u respectively. Since tv1, v2, v3u

form an ideal geodesic triangle on the Farey graph as mentioned above, we act repeatedly
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via ψ to make s1, s2, s3 ě 0 or s1, s2, s3 ď 0. To be precisely, we have following three

cases:

1. s1 ă s2 ă s3 ď 0 ă p

2. 0 ď p ă s1 ă s2 ă s3 ă
1
p

3. 0 ď s1 ă p ă s2 ă s3 ă
1
p

or 0 ď s1 ă s2 ă p ă s3 ă
1
p

(1) We will show that we can perform one of the following moves to the dividing set

Γ1 “ tv1, v2, v3u.

• tv1, v2, v3u ÞÑ tv1 ´ v3, v1, v3u: expanding the triangle to the counter-clockwise

direction.

• tv1, v2, v3u ÞÑ tv1, v3, v3 ´ v1u: expanding the triangle to the clockwise direction.

• tv1, v2, v3u ÞÑ tv3, v4, v5u: the biggest triangle starting from v3 and v4, v5 are clock-

wise of v3.

• tv1, v2, v3u ÞÑ tp 10 qu: type I(a) with slope 0.

After a finite sequence of the first three moves, we eventually arrive to t´8,´1, 0u. If

we encounter the last move, act via ψ´1 and we obtain Γ1 “ t´8u. Now use an annulus

c ˆ I with slope 0 to find a bypass as in the proof of Proposition 4.1.3. This bypass

attachment either gives rise to a bypass along BΣ or changes the dividing set Γ1 “ t´8u

to t´8,´1, 0u. See Figure 4.4.

Now we will show that we can perform the above moves by attaching bypasses. First,

note that ´8 ă s3 ď 0 and ψps3q ą 0 because ψp´8q “ 0. Since s1, s2 ă 0 and

ψps3q ą 0, there are no connecting edges on the Farey graph between each s1, s2 and

ψps3q. Now take an annulus cˆ I with slope ψps3q. Then the previous observation implies

that |Γ1 X c ˆ t1u| ą 2 and |Γ0 X c ˆ t0u| “ 2. Therefore, we can find a bypass on
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Σ1 along c ˆ t1u due to Imbalance principle (Theorem 2.1.8). Since ψps3q lies outside

of the triangle formed by tv1, v2, v3u on the Farey graph, this bypass is of type A, B or C

as shown in Figure 4.2. It can be explicitly checked by taking an orientation preserving

diffeomorphism of T 2 which sends tv1, v2, v3u to t0, 1,8u. B and C change the triangle

tv1, v2, v3u to either tv1, v3, v3 ´ v1u or tv1 ´ v3, v1, v3u, which correspond to the first two

moves in the above list. A changes tv1, v2, v3u to tv3u. Now suppose v3 is not p 10 q. Take

an annulus c ˆ I with slope ψps3q and find a bypass on Σ1 as before. Let v be the isotopy

class with the largest slope for which there exists an edge with v3 on the Farey graph. Let

v1 :“ v3 ´ v. Take an orientation preserving diffeomorphism of T 2 which sends tv1, v3, vu

to t1,´8, 0u. Since ψps3q is outside of the triangle tv1, v3, vu, it lies between r0, 1s after

acting via the diffeomorphism. Then there are only two possible bypass attachments which

do not give rise to a bypass along BΣ. See Figure 4.4. J changes tv3u to tv3, v3 ` v, vu and

K changes tv3u to tv1, v3, vu. The first move corresponds to a third move in the above list

and the second move corresponds to a third move followed by a second move in the above

list. Thus we can perform one of the moves in the list by attaching bypasses.

(2) After acting via ψk, we can assume 1 ď s1 ă s2 ă s3 ď 2. This is possible since

ψp2q “ 1. Take an annulus with slope ψps1q and we obtain a bypass of type A, B or C

as before. Using the same argument as in the case (1), we arrive to either Γ1 “ t2u or

Γ1 “ t1, 3
2
, 2u. In the first case, act via ψ´1 and we obtain Γ1 “ t1u. Take an annulus

with slope ψp1q “ 1
2

again to obtain a bypass. After the bypass attachment, we obtain

t1u ÞÑ t0, 1
2
, 1u, which will be dealt with in the case (3). Next assume Γ1 “ t1, 3

2
, 2u.

Again, use an annulus with slope ψp1q “ 1
2

to obtain a bypass. This bypass is of type B

or C. Hence after attaching the bypass, we obtain t1, 3
2
, 2u ÞÑ t1, 2,8u, which also will be

dealt with in the case (3).

(3) Assume we can perform one of the following moves.

• 0 ă s1 ă p ă s2 ă s3 ă 8: tv1, v2, v3u ÞÑ tv1, v1 ` v2, v2u.

• 0 ă s1 ă s2 ă p ă s3 ă 8: tv1, v2, v3u ÞÑ tv2, v2 ` v3, v3u.
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Consider a triangle tv1, v2, v3u in the Farey graph which straddle p. Then for some large

integer k, a triangle tψkp0q, ψkp1q, ψkp8qu separates p and tv1, v2, v3u. Because there are

only finitely many triangles between tv1, v2, v3u and tψkp0q, ψkp1q, ψkp8qu, we can obtain

tψkp0q, ψkp1q, ψkp8qu after a finite sequence of the above moves. Acting via ψ´k, we

obtain t0, 1,8u.

Now we will show that we can go back to the case (1) or perform the moves in the

above list by attaching bypasses. First, suppose s1 ă p ă s2 ă s3. Take an annulus with

slope ψps2q. Since p is an attractive fixed point, s1 ă p ă ψps2q ă s2 ă s3. Hence we can

find a bypass on Σ1 by Imbalance principle (Theorem 2.1.8) and the type of bypass is D, E

or F. D gives tv1, v2, v3u ÞÑ tv1u, which was already dealt with in Case (1). E and F give

tv1, v2, v3u ÞÑ tv1, v1`v2, v2u. Next, assume s1 ă s2 ă p ă s3. Use an annulus with slope

ψps2q to find a bypass as above. The type of this bypass is G, H or I. I gives tv1, v2, v3u ÞÑ

tv2u so we go back to the case (1). G and H give tv1, v2, v3u ÞÑ tv2, v2 ` v3, v3u.

In either case, we can always find a boundary parallel bypass.

Proposition 4.2.2. If the twisting number of L is ´1, there exists an isotopic copy of Σ

containing a bypass along BΣ.

Proof. The basic idea of the proof is same as before. We try to find a bypass on Σ to modify

Γ. However, we will not use an annulus. Instead, we will use a disk to find a bypass. First,

we round the edges of Σˆ I to make its boundary convex. See Figure 4.5. Note that there

is a holonomy on BΣ ˆ I . Then, we will look for a convex compressing disk D of Σ ˆ I

such that tbpBDq ă ´1. Then we can obtain a bypass along BD by Theorem 2.1.9.

By Proposition 4.2.1, we only need to consider the two following cases.

(1) Γ1 “ t0, 1,8u and Γ0 “ t
1
3
, 1
2
, 0u: Note that the monodromy ψ is a right-veering

diffeomorphism (cf. [36]) since it is a positive Dehn twist. Hence the dividing curves in

Γ0 are to the right of the curves in Γ1. See Figure 4.6. The compressing disk D is shown

as solid blue lines in Figure 4.6. The dividing curves on BΣ ˆ I are shown in Figure 4.5.
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1 2 3 4 5 6

1 2 3 4 5 6

Σ1

Σ0

BΣˆ I

Figure 4.5: The left and right sides are identified. The dashed lines represent dividing
curves. The top and bottom parts are neighborhoods of BΣi in Σi and the middle part is the
region BΣˆ I . The shaded regions are the result of edge-rounding. The dividing curves on
Σi divide BΣi into six intervals and they are labeled 1 to 6.

Σ1 Σ0

1
2

3

4

5

6 1
2

3

4

5

6

Figure 4.6: The dashed lines represent dividing curves on Σ1 and Σ0. The blue solid lines
represent the intersection of the compressing disks D1, D2 with Σ1 and Σ0.
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We can arrange D so that BD does not intersect any dividing curves on BΣ ˆ I . However,

it changes the sides of the dividing curves where BD is on. Note that if BD is in the i-th

interval of BΣ ˆ t1u, then BD is in the pi ´ 3q-th interval (mod 6) of BΣ ˆ t0u. Thus

tbpBDq “ ´2 and we can find a bypass along BD by Theorem 2.1.9. By Theorem 2.1.4,

we can arrange the bypass to be on Σ0. Note that this bypass lies on the front side of Σ0.

There are two possible bypasses on Σ0 and they both give rise to a bypass along BΣ after

the bypass attachment.

Σ1 Σ0

1

2

3
4

5
6 1

2

3
4

5
6

Figure 4.7: The dashed lines represent dividing curves on Σ1 and Σ0. The blue solid lines
represent the intersection of the compressing disks D1, D2 with Σ1 and Σ0.

(2) Γ1 “ t´8,´1, 0u and Γ0 “ t0,
1
4
, 1
3
u: The compressing disk D is shown as solid

blue lines in Figure 4.7. As before, we can arrange D so that BD does not intersect any

dividing curves on BΣˆ I . Thus tbpBDq “ ´2 and we can find a bypass on Σ0 again. Note

that there are two possible bypasses on Σ0. A bypass which straddle a red dividing curve

gives rise to a bypass along BΣ and the other bypass which straddle a black dividing curve

modifies Γ0 and it becomes t0, 1
3
, 1
2
u. Acting via ψ´1, we obtain Γ1 “ t0, 1,8u, which was

already dealt with in (1).

If the twisting number of L is less than ´1, we can always find a bypass along BΣ.

Hence the twisting number can be increased by Theorem 2.1.6. We will prove the following

result in section 4.6
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Proposition 4.2.3. If the twisting number of L is less than´1, there exists an isotopic copy

of Σ containing a bypass along BΣ.

4.3 Finding tight contact structures

Suppose the twisting number of L is ´1 again. In this case, there exists a bypass along BΣ

by Proposition 4.2.2. After attaching this bypass to N , the dividing slope becomes p 2
´1 q

by Theorem 2.1.6. Since φ p 2
´1 q “ p

0
´1 q, the dividing slope of ´BM is p 0

´1 q. The twisting

number of BΣ with respect to Σ is ´|det
`

1 0
0 ´1

˘

| “ ´1. Hence there is only one dividing

arc on Σ. By Proposition 4.1.3, we have Case I(a) with n “ 1,m “ 1 or there is a bypass

along BΣ. In either case, we can find potentially tight contact structures on W . We start

with Case I(a) first.

Proposition 4.3.1. Suppose Γ “ tvu with one arc and one closed curve. Then there exists

an isotopic copy of Σ such that Γ “ t8u.

Proof. Let s be the slope of v. Acting via ψ repeatedly, there are only two possibilities: (1)

s ď 0 ă p, (2) p ă s ă 1
p
. Consider the first case. Suppose s is not already ´8 or 0. Since

ψp´8q “ 0, s ă 0 and ψpsq ą 0. Take an annulus with slope ψpsq to obtain a bypass on

Σ1 as before. After attaching the bypass, the slope changes in a clockwise direction on the

Farey graph by Theorem 2.1.6. After a sequence of the bypass attachments, we eventually

arrive to Γ1 “ t0u. Acting via ψ´1, we obtain Γ1 “ t8u. Next, suppose p ď s ď 1
p
.

Acting via ψ repeatedly, we can further assume that 1 ď s ă 2. Since ψp2q “ 1, ψpsq ă 1.

Suppose s is not already 1. Take an annulus with slope ψpsq to obtain a bypass on Σ1. This

bypass modifies the slope s in a clockwise direction on the Farey graph, so we eventually

arrive to s “ 2. Acting via ψ´1, we obtain s “ 1. Take an annulus with the slope ´1 to

obtain a bypass on Σ0. Note that this bypass is on the front of Σ0. The bypass changes Γ0

from t1
2
u to t0u. Hence Γ1 becomes t8u.
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Proposition 4.3.2. There exist two non-isotopic potentially tight contact structures on ΣˆI

where Γ1 is Case I(a). In this case, there exist four potentially tight contact structures on

W up to isotopy.

Proof. Because Σˆ I is a genus two handlebody, we will choose two convex compressing

disks and cut the handlebody along the disks. The result manifold is a 3-ball and there

exists unique tight contact structures on a 3-ball. Thus, the number of potentially tight

contact structures on M is determined by the number of possible configurations of dividing

curves on the disks and the signs of regions ΣzΓ.

1 2

1 2

Σ1

Σ0

BΣˆ I

Figure 4.8: The left and right sides are identified. The dashed lines represent dividing
curves. The top and bottom parts are neighborhoods of BΣi in Σi and the middle part is the
region BΣˆ I . The shaded regions are the result of edge-rounding. The dividing curves on
Σi divide BΣi into two intervals and they are labeled 1 and 2 respectively.

By Proposition 4.3.1, we can assume Γ1 “ t8u and Γ0 “ t0u. Note that there can

exist a boundary twisting on Σ, which is the result of Dehn twists along a boundary parallel

closed curve. Arrange the boundary twisting to be near the boundary and cut M along a

convex torus parallel to the boundary containing the boundary twisting. If the boundary

slope of the convex torus is bigger than ´8, we obtain a basic slice. Note that every

holonomy in a basic slice is equivalent. If the boundary slope of the convex torus is 8,

glue T 2 ˆ I layer to N . It does not change the boundary slope of N and remove the

boundary twisting of Σ. Hence we can fix one configuration without a boundary twisting.

Now, round edges of Σ ˆ I to make it have a convex boundary. See Figure 4.8. Then
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choose two compressing disks D1, D2 as shown in Figure 4.9. Arrange the disks so that

they do not intersect any dividing curves on BΣ ˆ I . Hence twpBDiq “ ´1 and there is a

unique configuration of dividing curves for Di. Now isotopy classes of contact structures

on M are only determined by the signs of regions ΣzΓ. Since we have two choices for the

signs, there exist two potentially tight contact structures on M up to isotopy. Since there

are two tight contact structures on the solid torus N with boundary slope ´1
2

by Theorem

2.2.3, there exist four potentially tight contact structures on W up to isotopy.

Σ1 Σ0

1

1 2

2
1

2

1

2

2

` ´

´

`

Figure 4.9: The dashed lines represent dividing curves on Σ1 and Σ0. The blue solid lines
represent the intersection of the compressing disks with Σ1 and Σ0.

Now consider the bypass case. Observe that there are two types of closed curves on Σ:

boundary parallel closed curves and essential(non-boundary parallel) closed curves. We

begin by normalizing the dividing set.

Proposition 4.3.3. Suppose Γ contains one boundary parallel arc and closed curves. Then,

one of the following holds.

IV. One boundary parallel arc and n closed boundary parallel curves.

V. One boundary parallel arc without closed curves.

Proof. Let m,n be the number of essential closed curves and closed boundary parallel

curves in Γ respectively. First, assume m ą 2. We can reduce m to 2 by the same argument

as in Proposition 4.1.3 and make essential curves parallel to p 01 q as in Proposition 4.3.2.
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Cut Σˆ I along the compressing disk as shown in Figure 4.10. Because BD has four more

intersection points with Γ1 than with Γ0, we can always find a bypass on Σ1. This bypass

attachment reduces the number of dividing curves in Γ1 by two. After a sequence of the

bypass attachments, we eventually arrive in either Case I(a) with n “ 1, Case IV or Case

V’: one boundary parallel arc with n “ 0,m “ 2. Suppose we have Case V’. Take a

compressing disk D with slope 0 again. Then we can arrange D so that BD intersect Γ1

four times and does not intersect Γ0. Hence we can find a bypass on Σ1 along BD. After

attaching the bypass, we obtain Case V with n “ 0,m “ 0.

Σ1 Σ0

Figure 4.10: The dashed lines represent dividing curves on Σ1 and Σ0. The blue solid lines
represent the intersection of the compressing disk with Σ1 and Σ0.

Let us consider Case IV. Let n be the number of boundary parallel closed curves in Γ.

Take a compressing disk D as shown in Figure 4.11. Suppose there is a bypass on Σ1. If

n ě 2, this bypass reduces the number of closed curves by 2. If n “ 1, Γ becomes Case

I(a). There is a unique configuration for D which does not contain a bypass on Σ1. See

Figure 4.12. This corresponds to the product contact structure on Σ ˆ I since the other

configurations contain non-trivial bypasses on Σ1. We will show that in this case we obtain

an overtwisted contact structure on W .

Proposition 4.3.4. Consider a product contact structure on Σˆ I for which Γ1 is Case IV.

This contact structure induces an overtwisted contact structure on W .

Proof. Choose a point p on a closed dividing curve in Γ1. Take an arc p ˆ r0, 1s. Then

the arc is Legendrian and the contact planes do not twist along the arc with respect to the
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Σ1 Σ0

Figure 4.11: The dashed lines represent dividing curves on Σ1 and Σ0. The blue solid lines
represent the intersection of the compressing disk with Σ1 and Σ0.

Figure 4.12: The dashed lines represent dividing curves on the compressing disk D. The
blue dots represent the intersection points of D and Γ1 and the red dots represent the inter-
section points of D and Γ0.
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product structure. Since ψ is an identity near BΣ, the arc p ˆ r0, 1s becomes a Legendrian

closed curve in M “ Σ ˆ I{ „ and the contact planes do not twist along the curve with

respect to the fibration structure. Hence we can find a convex torus parallel to ´BM whose

dividing slope is8, which is parallel to S1-direction. Between this torus and´BM , we can

find another convex torus whose dividing slope is 0, which is parallel to BΣ by Legendrian

realization principle (Theorem 2.1.4). This implies that there is a non-minimal twisting

T 2 ˆ I layer in M and after gluing this to the solid tours N , the result contains a convex

torus parallel to BN with dividing curves parallel to meridional direction. Hence the contact

structure induces an overtwisted contact structure on W .

Proposition 4.3.5. There exist two non-isotopic potentially tight contact structures on ΣˆI

where Γ is Case V. In this case, there exist four potentially tight contact structures on W

up to isotopy.

Proof. The proof is basically same as the proof of Proposition 4.3.2. First round edges of

ΣˆI to make its boundary convex. Choose two convex compressing disksD1, D2 as shown

in Figure 4.13. After cutting the handlebody along the disks, we obtain a 3-ball. There is

only one configuration of dividing curves in each disk since tbpBDiq “ ´1. Hence contact

structures are determined by the sign of the regions ΣzΓ as before. Therefore there exist

two potentially tight contact structures on Σ ˆ I up to isotopy. Since the number of tight

contact structures on the solid torus N with dividing slope ´1
2

is two by Theorem 2.2.3,

there exist four potentially tight contact structures on W .

Remark 4.3.6. James Conway showed in [37] that potentially tight contact structures on Σˆ

I from Proposition 4.3.2 and Proposition 4.3.5 are actually tight and not contactomorphic.

To summarize, there exist eight non-isotopic potentially tight contact structures on W .

We will improve the situation in the next section.
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Σ1 Σ0

1

2

2 1

2

2

`

´

`

´

Figure 4.13: The dashed lines represent dividing curves on Σ1 and Σ0. The blue solid lines
represent the intersection of the compressing disks with Σ1 and Σ0.

4.4 Bypass case

Consider a surgery diagram for W shown in Figure 3.1. Since this diagram is the result of

a left-handed Rolfsen twist on K2 of the diagram shown in Figure 1.1, it gives the same

decomposition as before. Hence we can realize K1 as a Legendrian knot with tb “ 1 as

shown in Figure 3.3. Thus, the dividing curves in ´BM is parallel to p 11 q. Since φ´1 p 11 q “

p 3
´1 q, the dividing slope of N is ´1

3
. Because the twisting number of BΣ with respect to Σ

is ´|det
`

1 1
0 1

˘

| “ ´1, the number of dividing arcs on Σ is 1. Therefore, we have Case I(a)

with n “ 1,m “ 1 or there exists a bypass along BΣ.

Consider the bypass case first. After attaching the bypass to N , the dividing slope

becomes s “ p 5
´2 q by Theorem 2.1.6. This implies that the bypass layer contains a convex

torus parallel to BN with the dividing slope p 01 q between p 3
´1 q and p 5

´2 q. Since p 01 q is the

meridional slope, we obtain an overtwisted contact structure on W .

Now consider Case I(a) with n “ 1,m “ 1. We can normalize Γ1 so that Γ1 “ tp
0
1 qu

by the same argument as in Proposition 4.3.1. Let Npsq be the solid torus with the bound-

ary dividing slope s. Now factor the solid torus Np´1
3
q into Np´1q and two basic slices

Bp´1,´1
2
q, Bp´1

2
,´1

3
q. Note that Bp´1,´1

2
q and Bp´1

2
,´1

3
q are continued fraction

blocks so we can shuffle the bypass layer. Especially, B`p´1,´1
2
q Y B´p´1

2
,´1

3
q “

B´p´1,´1
2
q YB`p´1

2
,´1

3
q.

LetMpsq be ΣˆI{ „with the boundary dividing slope s. Suppose pMp1q,Γ1 “ tp
0
1 quq
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admits more than one tight contact structure. Let Mξ :“ pMp1q,Γ1, ξq and Mξ1 :“

pMp1q,Γ1, ξ
1q be two tight contact structures on pMp1q,Γ1q. Now consider basic slices

B˘p´1
2
,´1

3
q. Here, slopes are measured with respect to the coordinate system of N . Since

φp´1
2
q “ 8 and φp´1

3
q “ 1, we can glue this basic slice to Mp1q and we arrive to Mp8q

with a bypass along BΣ. See Figure 4.14. By Proposition 4.3.5, there exist exactly two po-

tentially tight contact structures up to isotopy onMp8qwith a bypass along BΣ, and the iso-

topy classes are determined by the sign of a bypass. Denote them by Mp8q˘ according to

the sign of a bypass. Then, we obtainMξYB
˘p´1

2
,´1

3
q “Mp8q˘ “Mξ1YB˘p´1

2
,´1

3
q.

No matter how many tight contact structures pMp1q,Γ1q admits, we arrive to one of two

tight contact structures on Mp8q, which is only determined by the sign of the basic slice.

Therefore, we can fix one tight contact structure on pMp1q,Γ1 “ tp
0
1 quq.

Figure 4.14: Gluing two tight contact structures.

Consider the situation of Proposition 4.3.5. We have two tight contact structuresMp8q˘.

We also have two tight contact structures on Np´1
2
q, which are determined by the sign of

basic slice Np´1,´1
2
q. Denote them by Np´1

2
q˘. Hence four potentially tight contact

structures on W can be expressed as following:

Np´
1

2
q
`
YMp8q`

Np´
1

2
q
´
YMp8q`

Np´
1

2
q
`
YMp8q´
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Np´
1

2
q
´
YMp8q´

By the above discussion, we can decompose them further:

Np´1q YB`p´1,´
1

2
q YB`p´

1

2
,´

1

3
q YMp1q

Np´1q YB´p´1,´
1

2
q YB`p´

1

2
,´

1

3
q YMp1q

Np´1q YB`p´1,´
1

2
q YB´p´

1

2
,´

1

3
q YMp1q

Np´1q YB´p´1,´
1

2
q YB´p´

1

2
,´

1

3
q YMp1q

However, since Bp´1,´1
2
q and Bp´1

2
,´1

3
q are continuous fraction blocks, we can

shuffle the bypass layers. Therefore, the second and third contact structures in the above

list are isotopic, so there are only three potentially tight contact structures up to isotopy.

Thus, we have proved the following proposition.

Proposition 4.4.1. Suppose we have pMp8q,Γq where Γ is Case V. In this case, there exist

three potentially tight contact structures on W up to isotopy.

4.5 Twisting ě 0

First, suppose the twisting number of L is bigger than 0. Stabilize L finitely many times

to make the the twisting number 0. Therefore, we only need to consider the case that the

twisting number is 0. In this case, the dividing slope of BN is s “ p 10 q. Since φ p 10 q “

p 12 q, the dividing slope of ´BM is p 12 q. The twisting number of BΣ with respect to Σ is

´|det
`

1 1
0 2

˘

| “ ´2. Thus, there are two dividing arcs on Σ and by Proposition 4.1.3, we can

always find a bypass along BΣ. After attaching this bypass to N , the diving slope of BN

becomes p 2
´1 q. This implies that we can find a convex torus parallel to BN with dividing

slope p 01 q between p 10 q and p 2
´1 q. Because p 01 q is the meridional slope of N , the contact

structure on W is overtwisted.
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Thus, there exists at most seven tight contact structures on W up to isotopy.

4.6 Thickening the solid torus

In this section, we will prove Proposition 4.2.3. Suppose the twisting number of L is

n ă ´1. Then the dividing slope of BN is p 1n q. Since φ p 1n q “
`

1`2n
2`5n

˘

, the twisting

number of BΣ with respect to Σ is ´|det
`

1 1`2n
0 2`5n

˘

| “ 2` 5n ď ´8. This implies there are

at least eight dividing arcs on Σ. First, we will normalize Γ as in Proposition 4.2.1. Let

multpsq be the number of dividing curves in the isotopy class with slope s.

Proposition 4.6.1. There is an isotopic copy of Σ with a dividing set Γ “ t8u, or Γ “

t0, 1,8u with multp0q “ multp8q “ 1 and multp1q “ |4` 5n|.

Proof. As discussed above, if n ă ´1, the number of dividing arcs on Σ is´2´5n ě 8. In

this case, Proposition 4.1.3 implies that Γ can be normalized so that we can assume either

Case I(a) or Case III(a). Suppose we have Case I(a). Let Γ1 “ tsu. Then as in the proof

of Proposition 4.2.1, choose an annulus with slope ψpsq to get a bypass on Σ1. The only

bypass which does not give rise to a bypass along BΣ changes Γ to become Case III(a). See

Figure 4.17. Hence we can assume Γ is Case III(a).

Figure 4.15 and Figure 4.16 show the all possible bypass attachments on Σ1 which do

not give rise to a bypass along BΣ when Γ1 is Case III(a). For Γ1 “ tv1, v2, v3u, Take an

orientation preserving diffeomorphism for T 2 which sends tv1, v2, v3u ÞÑ t0, 1,8u. Then

find a corresponding bypass attachment from the list.

The basic idea is same as the proof of Proposition 4.2.1. We will use an annulus cˆI Ă

Σˆ I to find a bypass and modify Γ1. Suppose Γ1 “ tv1, v2, v3u and corresponding slopes

are ts1, s2, s3u. If multpsq ą 1 for two isotopy classes, we have one of moves A, B or C

in Figure 4.15. After a sequence of these moves, we can assume that two isotopy classes

have mult “ 1. Let p, 1
p

be the eigendirections of ψ. After acting via ψk, we have three

possibilities:
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pAq

pBq

pCq

pDq

pEq

pF q

Figure 4.15: List of possible bypass attachments for Case III(a) with n ą 3. The top and
bottom are identified as are the left and right sides. The dashed lines represent dividing
curves and the blue solid lines represent the attachment for the bypasses. The bypasses are
attached from the back.
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pGq

pHq

pIq

pJq

pKq

pLq

Figure 4.16: Continuation of list of possible bypass attachments for Case III(a) with n ą 3.
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pMq

pNq

Figure 4.17: Two possible bypass attachments for Case I(a) with n “ 3,m “ 1.

1. s1 ă s2 ă s3 ď 0 ă p

2. 0 ď p ă s1 ă s2 ă s3 ă
1
p

3. 0 ď s1 ă p ă s2 ă s3 ă
1
p

or 0 ď s1 ă s2 ă p ă s3 ă
1
p

(1) As discussed above, here we always assume that two isotopy classes havemult “ 1.

We will show that we can perform one of the following moves:

• tv1, v2, v3u with multps2q ą 1 ÞÑ tv1, v2, v3u with multps1q ą 1

• tv1, v2, v3u with multps1q ą 1 ÞÑ tv1, v2, v3u with multps3q ą 1

• tv1, v2, v3u with multps1q ą 1 ÞÑ tv1 ´ v3, v1, v3u or tv1, v3, v3 ´ v1u

• tv1, v2, v3u with multps3q ą 1 ÞÑ tv3, v4, v5u: the biggest triangle starting from v3

in a clockwise direction

• tv1, v2, v3u with multps3q ą 1 ÞÑ tp 10 qu

Take an annulus c ˆ I with slope ψps3q. Note that s3 ď 0 and ψps3q ą 0. Hence,

we obtain a bypass of type D, E, F or G. If multps2q ą 1, the only possible move is of
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type D. Apply D once and we obtain C. Apply C repeatedly to make multps1q ą 1 and

multps2q “ 1. This corresponds to the first move in the above list. If multps1q ą 1, the

only possible moves are E and G. If we have move E, then we can expand the triangle

tv1, v2, v3u and obtain either tv1 ´ v3, v1, v3u or tv1, v3, v3 ´ v1u. This corresponds to the

third move in the list. If we have move G, apply it once and apply A repeatedly to make

multps3q ą 1 and multps1q “ 1. This corresponds to the second move in the list. Next,

if multps3q ą 1, apply F and we get tv1, v2, v3u ÞÑ tv3u. Suppose v3 is not p 10 q. Take

an annulus with slope ψps3q and we obtain a bypass. Let v be the isotopy class with the

largest slope for which there exists an edge with v3 on the Farey graph. Let v1 :“ v3 ´ v.

Take an orientation preserving diffeomorphism of T 2 which sends tv1, v3, vu to t1,´8, 0u.

Since ψps3q is outside of the triangle tv1, v3, vu, it lies between r0, 1s after acting via the

diffeomorphism. Hence the bypass is of type M or N. M gives tv3u ÞÑ tv3, v3 ` v, vu,

which is the biggest triangle starting from v3 in a clockwise direction. This corresponds

to the fourth move in the list. N gives tv3u ÞÑ tv1, v3, vu, which corresponds to the fourth

move followed by the third move in the above list. Thus, we can perform one of the moves

in the list by attaching bypasses.

Using the moves in the list, we eventually arrive to Γ1 “ t´8,´1, 0u or Γ1 “ t0u.

If Γ1 “ t0u, acting via ψ´1 to get Γ1 “ t8u. Suppose we have Γ1 “ t´8,´1, 0u with

multp´1q ą 1. Using the first move in the list, we arrive to Γ1 “ t´8,´1, 0u with

multp´8q ą 1. Take an annulus with slope 0 and we can apply the second move from the

list. Hence we arrive to Γ1 “ t´8,´1, 0u with multp0q ą 1. Take an annulus with slope

ψp0q “ 1
3

and we can apply the last move in the list. Hence we get Γ1 “ t0u. Acting via

ψ´1, we obtain Γ1 “ t8u.

(2) After acting via ψk, we can further assume that 1 ď s1 ă s2 ă s3 ď 2. By the same

argument as (1), we eventually arrive to Γ1 “ t1,
3
2
, 2u or Γ1 “ t2u. In the former case, take

an annulus with the slope ψp0q “ 1
3

and we obtain a bypass of type E only if multp1q ą 1.

It changes Γ1 to t1, 2,8u, which will be dealt with in the case (3). If multp1q “ 1, the
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bypass gives rise to a bypass along BΣ. If Γ1 “ t2u, act via ψ´1 to get Γ1 “ t1u. Take an

annulus with slope 1
3

and we obtain a bypass. This changes Γ1 to t0, 1
2
, 1u, which also will

be dealt with in the case (3).

(3) Suppose that we can perform one of the following moves:

• 0 ă s1 ă p ă s2 ă s3 ă 8: tv1, v2, v3u with multpv2q ą 1 ÞÑ tv1, v1 ` v2, v2u with

multpv2q ą 1.

• 0 ă s1 ă s2 ă p ă s3 ă 8: tv1, v2, v3u with multpv3q ą 1 ÞÑ tv2, v2 ` v3, v3u with

multpv3q ą 1.

Using this two moves, we eventually arrive to Γ1 “ tψ
kp0q, ψkp1q, ψkp8qu. Note that

the actual order is ´8 ă 0 ă 1. Hence we obtain Γ1 “ t´8, 0, 1u with multp1q ą 1.

Now we will show that we can perform the moves in the above list or go back to the

case (1). First assume s1 ă s2 ă p ă s3. Take an annulus with slope ψps2q to find a bypass

of type G, H, I or J. I gives tv1, v2, v3u ÞÑ tv2u, so we go back to the case (1). If we have

G, then the next move must be H or J. Suppose we have J. Then the next move is I. I gives

tv2u, so we again go back to the case (1). H gives tv2, v2 ` v3, v3u with multpv3q ą 1.

Next, suppose s1 ă p ă s2 ă s3. Take an annulus with slope ψps2q again to find a bypass

of type J, K or L. K gives tv1u, so we go back to the case (1). If we have J, the next move

must be K, which gives tv1, v1 ` v2, v2u with multpv2q ą 1.

Now we are ready to prove Proposition 4.2.3

Proof of Proposition 4.2.3. By Proposition 4.6.1, we only need to consider the case Γ1 “

t8u or Γ1 “ t0, 1,8u with multp0q “ multp8q “ 1. The basic strategy of the proof is

same as Proposition 4.2.2. First we round edges of ΣˆI to make it have a convex boundary.

Then, take a convex compressing disk D with Legendrian boundary to find a bypass. We

will arrange the disk so that the boundary intersects dividing curves only on Σ0. As in

Proposition 4.2.2, it changes the sides of dividing curves where BD is on. Note that there
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are 2|5n`2| intervals and the slope of dividing curves on BΣˆ I is 5n`2
2n`1

. This implies that

if BD is on i-th interval in BΣˆ t0u, then BD is on pi´ 2|2n` 1| ´ 1q “ pi´ |4n` 1|q-th

interval (mod 2|5n` 2|) in BΣˆ t1u.

Σ1 Σ0

Figure 4.18: The dashed lines represent dividing curves on Σ1 and Σ0. The blue solid lines
represent the intersection of the compressing disk D with Σ1 and Σ0

Figure 4.19: The dashed lines represent dividing curves on the compressing disk D. The
red dots represent the intersection points of D and the dividing arcs in Γ0. The green dot
represents the intersection point of D and the closed dividing curve in Γ0.

(1) Γ1 “ t8u and Γ0 “ t1u: Note that curves in Γ0 are to the right of curves in Γ1

since ψ is right-veering. Take a compressing disk D as shown in Figure 4.18. As discussed

above, BD intersects dividing curves only on Σ0 and traverse a closed curve. Above the

closed curve, BD intersects |4n ` 1| dividing arcs. Below the closed curve, BD intersects

|5n ` 2| ´ |4n ` 1| “ |n ` 1| arcs. If n ď ´2, then |4n ` 1| ´ |n ` 1| ą 1. This implies

that the red dots are not balanced and bypasses cannot be nested with respect to the green

dot as shown in Figure 4.19. Hence there exists a bypass on Σ0 which does not straddle the
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green closed dividing curve. This bypass gives rise to a bypass along BΣ.

Σ1 Σ0

Figure 4.20: The dashed lines represent dividing curves on Σ1 and Σ0. The blue solid lines
represent the intersection of the compressing disk D with Σ1 and Σ0

(2) Γ1 “ t0, 1,8u with multp0q “ multp8q “ 1 and Γ0 “ t0,
1
2
, 1
3
u with multp1

3
q “

multp0q “ 1: Take a compressing disk D as shown in Figure 4.20. It is easy to check that

BD only intersects the red and green dividing curves. The only bypasses which do not give

rise to a bypass along BΣ are bypasses which straddle a green dividing curve. Attaching

this bypass yields Γ0 “ t0,
1
2
, 1
3
uwithmultp0q “ 3,multp1

2
q ą 1 andmultp1

3
q “ 1. Acting

via ψ´1, we obtain Γ1 “ t0, 1,8u with multp0q “ 1, multp1q ą 1 and multp8q “ 3.

Take an annulus with slope 0 and we can find a bypass on Σ1. Every possible bypass gives

rise to a bypass along BΣ.

Hence we can increase the twisting number of L in either case. This completes the

proof of Proposition 4.2.3.
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Invent. Math., vol. 135, no. 3, pp. 789–802, 1999.

[12] ——, “Structures de contact sur les variétés fibrées en cercles audessus d’une sur-
face,” Comment. Math. Helv., vol. 76, no. 2, pp. 218–262, 2001.

[13] K. Honda, “On the classification of tight contact structures. II,” J. Differential Geom.,
vol. 55, no. 1, pp. 83–143, 2000.
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