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I enjoy trying to rethink basic facts that I learned some time ago, and attempting

to express them in clear terms. Typically when I learned things from textbooks

and classes, they seemed technical and complicated. Unless I go over and rethink

them, my memory gradually decays, making unjustified simplifications and

unfeasible shortcuts. I gain something by trying to rethink and express it, trying

not to resort too much to citing authorities or my intangible belief system of what

is well-known.

–William Thurston



to my parents and my football (soccer) family.
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SUMMARY

We proposed a conjecture that every 3-manifolds smoothly embedded in some

closed symplectic 4-manifolds. This work shows that any closed oriented 3-manifold

can be topologically embedded in some simply-connected closed symplectic 4-

manifold, and that it can be made a smooth embedding after one stabilization. As

a corollary of the proof we show that the homology cobordism group is generated

by Stein fillable 3-manifolds. We also find obstructions on smooth embeddings:

there exists 3-manifolds which cannot smoothly embed in a way that appropriately

respect orientations in any symplectic manifold with weakly convex boundary.

x



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

The embedding of 3-manifolds in higher dimensional space has always been a

fascinating problem. Whitney’s embedding theorem [1] says that every closed ori-

ented 3-manifold smoothly embeds in R6. Hirsch improved this result by proving

[2] that every 3-manifold can be smoothly embedded in S5. Meanwhile, Lickorish

[3] and Wallace [4] proved that every 3-manifold can be smoothly embedded in

some 4-manifold, and in fact, a generalization of their arguments shows that every

3-manifold can be smoothly embedded in the connected sum of copies of S2 × S2.

Freedman proved [5] that all integer homology 3-spheres can be embedded topo-

logically, locally flatly in S4. On the other hand, the Rokhlin invariant µ and Don-

aldson’s diagonalization theorem [6] show that some integer homology spheres

cannot smoothly embed in S4. Now, one can ask: Does there exists a compact 4-

manifold in which all 3-manifolds embed? Shiomi [7] gave a negative answer to

this question. Aceto, Golla, and Larson [8] studied the problem of embedding 3-

manifolds in spin 4-manifolds. Symplectic manifolds form a very interesting class

of 4-manifolds. Etnyre, Min, and the author conjectured the following in [9].

Conjecture 1. Every closed, oriented smooth 3-manifolds smoothly embed in a symplectic

4-manifold.

For example, notice that if Y is obtained by doing integer surgery on a knot in S3

then Y can have a smooth oriented embedding in CP2#CP2 or CP2#2CP2 depend-

ing on whether the surgery coefficient is odd or even. There does not seem to be

an analogous result for links.
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There is another reason why this conjecture is interesting. Heegaard Floer ho-

mology, defined by Ozsváth and Szabó, is a 3-manifold invariant with a choice

of Spinc structure. One interesting question would be, how one can understand

this homology from the perspective of 4-manifold theory. As we know that every

closed, oriented 3-manifold Y is boundary of a 4-manifold W . Such a manifold W

can be thought of as a cobordism from S3 → Y after deleting a 4-ball from the in-

terior of W . Ozsváth and Szabó defined a smooth cobordism invariant mix map in

[10], which is a map from certain flavor of Heegaard Floer group of S3 to a certain

flavor of Heegard Floer group of Y . (Conjecturally this is same as Seiberg-Witten

map.) Thus one can study Heegaard Floer homology of Y as an image of the mix

map. Although, non-vanishing of the mix map is not very well understood. The

following result gurantees the non-vanishing of the mixed map.

Theorem 1. (Ozsváth, Szabó [11]) If (X,ω) is a closed, symplectic manifold with b+2 (X) >

1, then for the canonical Spinc structure k corresponding to the symplectic form, Fmix
X,k is

non-vanishing. Here we think ofX as a cobordism from S3 to S3 by taking out two 4-balls.

So if a 3-manifold Y embeds in a symplectic closed manifold X in a separat-

ing way, one can hope under certain conditions, the mix map factors through the

Heegaard Floer homology group of Y . And thus, looking at the image of the mix

map, one can study the Heegaard Floer group of 3-manifold from the perspective

of 4-manifold theory.

1.1.1 Embeddings in symplectic manifolds

While we cannot resolve the above conjecture, we can show the existence of topo-

logical embeddings and of smooth embeddings after stabilization.

Theorem 2. Given a closed, connected, oriented 3-manifold Y there exists a simply-

connected symplectic closed 4-manifold X such that Y can be embedded topologically, lo-
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cally flatly in X . This embedding can be made a smooth embedding after one stabilization,

that is Y can smoothly embed in X#(S2 × S2).

When smooth embedding in symplectic manifolds do exist, they can imply in-

teresting things about topology. For example, recall that a closed oriented rational

homology sphere is called an L-space if its Heegaard Floer homology group is “as

simple as possible,” as specified in subsection 2.1.3. Embeddings of L-spaces in

symplectic manifolds are constrained as follows.

Theorem 3. If an L-space Y smoothly embeds in a closed symplectic 4-manifold X then

it has to be separating. Moreover, if X = X1∪Y X2 then one of the Xi has to be a negative-

definite 4-manifold.

Remark 4. Ozsváth and Szabó [11] have established the above result for separating L-

spaces in symplectic manifolds. So the main new content of the above theorem is to show

that L-spaces cannot be embedded as non-separating hypersurfaces in symplectic mani-

folds. The proof we give of this was inspired by Agol and Lin’s work on hyperbolic 4-

manifolds [12].

Theorem 3 gives rise to a very interesting question.

Question 1. Does every L-space bound a definite 4-manifold?

Remark 5. Notice that if the Conjecture 1 is true then the above question has a positive

answer.

Remark 6. We now discuss a strategy to show negative answer to Question 1 about

L-spaces bounding definite 4-manifolds. Before that notice, all lens spaces bound both

positive-definite and negative-definite 4-manifolds, because every lens space can be thought

of as the boundary of a negative plumbed manifold and −L(p, q) = L(p, p − q). One can

obstruct rational homology spheres Y with H1(Y,Z) ̸= 0 from bounding negative-definite

manifolds by using the technique developed by Owens and Strle [13] where in Theorem
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2 they proved that if maximum value of d-invariant of Y is smaller than 1/4 (with some

more algebraic conditions) then Y cannot bounds a negative-definite 4 manifold. Now

d(Y, s) = −d(−Y, s), so if we find an L-space Y with H1(Y,Z) ̸= 0, for which the ab-

solute differences between d-invariants for different Spinc structures are very small then

that could be used to obstruct it from bounding positive-definite and negative-definite 4-

manifolds (as both Y and −Y cannot bound negative-definite 4-manifolds). So we can

ask,

Question 2. For every n ∈ N does there exist an L-space which is not an ZHS3 and

whose d-invariant values are in (−1/n, 1/n)?

1.1.2 Cobordisms and symplectic structures

We say that a closed oriented 3-manifold is Stein fillable if there is a Stein fillable

contact structure on it, whose definition is deferred until subsection 2.1.2. Not all

3-manifolds are Stein fillable. Work of Eliashberg [14] and Gromov [15] proved that

Stein fillable contact structures are always tight. Lisca [16] gave the first example

of a non-Stein fillable manifold, and Etnyre and Honda [17] improved the result

by showing the existence of a 3-manifold without a tight contact structure.

Recall that we call a integral homology cobordism from Y0 to Y1 a Z-ribbon cobor-

dism if this integer homology cobordism is achieved by attaching handles of index

only 1 and 2 to Y0 × [0, 1] along Y0 × {1}. We also indicate such a cobordism by

saying Y0 is ribbon cobordant to Y1. Note that this relation is a partial ordering on

3-manifolds and not necessarily a symmetric relation. (We can similarly define

Q-ribbon homology cobordism.)

Theorem 7. Given any closed oriented 3-manifold Y there exists a Stein fillable 3-manifold

Y ′ and there is a Z ribbon homology cobordism W from Y to Y ′ which is obtained from

Y × [0, 1] by attaching a single pair of algebraically cancelling 1- and 2-handle. Moreover,
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this is an invertible cobordism, that is there is a cobordism W ′ from Y ′ to Y such that

W ∪Y ′ W ′ is diffeomorphic to Y × [0, 1]. In particular Y ′ embeds in Y × [0, 1].

Remark 8. Yasui has pointed out to the author that, while they do not talk about cobor-

disms, this result, without the statement of only needing a single 1- and 2-handle pair, can

be proven by putting together several results from [18].

In low-dimensional topology the study of integer homology cobordism group

Θ3
Z and rational homology cobordism group Θ3

Q are of special interest. The above

result gives a new generating set for these groups.

Corollary 9. The homology cobordism groups Θ3
Z and Θ3

Q are generated by Stein fillable

3-manifolds.

Remark 10. It is not known whether Θ3
Q is generated by L-spaces or not. Nozaki, Sato

and Taniguchi [19] proved that Σ(2, 3, 11)#2(−Σ(2, 3, 5)) does not bound definite 4-

manifold. If we can find an L-space Y which is rationally cobordant to Σ(2, 3, 11), then

Y#2(−Σ(2, 3, 5)) cannot bounds a definite 4-manifold. Since Y#2(−Σ(2, 3, 5)) is an L-

space, 3 says this manifold cannot be smoothly embedded in any symplectic 4-manifold.

Conversely, if all 3-manifolds embed in some symplectic 4-manifold, then Θ3
Q is not gener-

ated by L-spaces. So finally we can ask the following question.

Question 3. Is Σ(2, 3, 11) rationally cobordant to some L-space?

For a closed oriented 3-manifold Y , H3(Y ;Z) is canonically isomorphic to Z. So

a map f : Y0 → Y1 induces a homomorphism on the top-dimensional homology

group, f∗ : Z → Z. The degree of f is f∗(1) ∈ Z.

Corollary 11. Given any 3-manifold Y there exists a Stein fillable 3-manifold Y ′ and a

degree one map f : Y ′ → Y .

Although we cannot give a complete answer about smooth embeddings of 3-

manifolds in closed symplectic 4-manifolds, we can find obstructions to smooth
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embeddings in compact symplectic 4-manifolds with convex boundary. There is

an ambiguity when we think about smooth embeddings of a 3-manifold Y in a

smooth 4-manifold X . As oriented manifold Y is very different from −Y : for ex-

ample the Poincaré homology sphere with positive orientation bounds a negative-

definite 4-manifold but the Poincaré homology sphere with negative orientation

does not. On the other hand, if Y smoothly embeds in X then the boundary of a

small neighbourhood of Y is −Y ⊔ Y , so −Y smoothly embeds in X as well. But

we can fix this issue in terms of cobordisms.

Definition 12. We call a smooth embedding of Y in a cobordism W from Y0 to Y1 an

oriented cobordism embedding if Y is either non-separating or Y separates W into

W1 ⊔ W2 such that Y as an oriented manifold is a boundary component of W1, and all

other components of ∂W1 (if they exist) are part of Y0.

Theorem 13. If anL-space Y does not bound a negative-definite 4-manifold then Y cannot

have an oriented cobordism embedding in any symplectic 4-manifold with weakly convex

boundary.

Remark 14. There are many such L-spaces, for instance the Poincaré homology sphere

with negative orientation and r-surgery for r ∈ [9, 15) on the pretzel knot P (−2, 3, 7) in

S3 [20, 21] (the latter L-spaces are in fact hyperbolic). It was already known that these

manifolds are not Stein fillable [16, 20, 21]. Here, we proved that in addition to not being

weakly fillable they cannot even have a smooth oriented cobordism embedding in any weak

filling of any 3-manifold.

Corollary 15. If Y ′ admits a weakly fillable contact structure then any L-space Y which

does not bound negative-definite 4-manifolds cannot have any smooth oriented cobordism

embedding in Y ′ × I .

The difference between smooth and topological embeddings can be used to

detect exotic structures on compact manifolds. If we find two homeomorphic 4-
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manifolds such that a 3-manifold embeds smoothly in one but not the other then

they are not diffeomorphic, i.e. they are an exotic pair. The next Corollary was

first proved by Akbulut [22] and since then by many others, but we will give an

alternative proof that follows from the study of embeddings of 3-manifolds into

4-manifolds.

Corollary 16. There exists compact 4-manifolds with boundary X and X ′ such that

b2(X) = b2(X
′) = 1 that are homeomorphic but not diffeomorphic.

We now turn to studying when a 3-manifold has a Stein filling for some contact

structure, and start by discussing obstructions. The Rokhlin invariant µ : Θ3
Z → Z/2

is defined as µ(Y ) = σ(W )/8 (mod 2), where W is any compact, spin 4-manifold

with boundary Y and σ(W ) is its signature. This invariant µ is an invariant under

homology cobordism. The Brieskorn homology sphere Σ(2, 3, 7) cannot bound a

ZHB4 since its Rokhlin invariant µ is 1. So any 3-manifold Y that is homology

cobordant to Σ(2, 3, 7) cannot have an integer homology ball ( ZHB4) as a Stein

filling. But Fintushel and Stern [23] proved that Σ(2, 3, 7) bounds a rational homol-

ogy ball (QHB4). So one can ask if Σ(2, 3, 7) has a QHB4 as a Stein filling. The

following lemma is well-known and can be proven easily by looking at the long

exact homology sequence.

Lemma 17. If a ZHS3 bounds a QHB4 which is not a ZHB4 then it must have a 3-

handle.

This implies that if Σ(2, 3, 7) bounds a QHB4 then it cannot be Stein as every

handle decomposition has a 3-handle which contradicts a result of Eliashberg [24].

From the previous discussion we can see that the same conclusion is true for any

3-manifold Y that is integer homology cobordant to Σ(2, 3, 7). So it is natural to ask

if there exists a 3-manifold Y that is rationally cobordant to Σ(2, 3, 7) and it bounds

a rational homology Stein ball. We know that S3 is rationally cobordant to Σ(2, 3, 7)
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[23]. But such a cobordism must have a 3-handle. So a modified question would

be: Does there exist a 3-manifold Y such that there is a rational ribbon homology

cobordism from Σ(2, 3, 7) to Y and Y bounds a rational Stein ball?

Theorem 18. If X is an oriented compact 4-manifold with connected boundary ∂X = Y ,

(i) If b1(X) = 0 then there exists a Stein 4-manifold X ′ with boundary ∂X ′ = Y ′ such

that there is a rational ribbon homology cobordism from Y to Y ′ and b2(X) = b2(X
′).

(ii) If ∂X = Y a QHS3, then there exists a Stein 4-manifold X ′ with boundary ∂X ′ =

Y ′ such that the intersection form of X is isomorphic to the intersection form of X ′

and there is a rational ribbon homology cobordism from Y to Y ′.

As discussed above, not every smooth fillingX of a 3-manifold Y can be given a

Stein structure, or indeed there are Y that do not even admit any Stein fillings. But

we can ask if there is a ribbon rational homology cobordism from Y to a manifold

Y ′ that has a symplectic filing X ′ so that X ′ shares some of the algebraic properties

of X . For example if we let

bF2 (Y ) = min{b2(X) | ∂X = Y },

then we can ask the following.

Question 4. Let Y be a 3-manifold. Is there a ribbon rational homology cobordism to Y ′

such that bF2 (Y ′) = bF2 (Y ) and Y ′ has a Stein filling which realized bF2 (Y ′)?

Remark 19. There exists a 3-manifold Y ′ and a rational ribbon homology cobordism from

Σ(2, 3, 7) to Y ′ such that Y ′ has a rational ball Stein filling. In particular it is true if we

replace Σ(2, 3, 7) with any 3-manifold which bounds a rational ball. A large class of such

manifolds is provided by Akbulut and Larson [25] and by Şavk [26].
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CHAPTER 2

METHODOLOGY

2.1 Background

2.1.1 Contact geometry

Recall that a (co-orientable) contact structure ξ on an oriented 3-manifold Y is the

kernel of an 1-form α ∈ Ω1(Y ) such that α ∧ dα is non-degenerate. Geometri-

cally a contact structure on a 3-manifold is a distribution of a 2-plane fields on

the manifold that is not tangent to any embedded surface in the manifold. Dar-

boux’s theorem says that every contact 3-manifold (Y, ξ) is locally contactomorphic

to (R3, ξstd = ker(dz− ydx)). In this sense we always assume that the contact struc-

tures are positive, i.e. the orientation on Y coincides with the orientation given by

α ∧ dα. We orient the normal direction to the contact plane by α, or equivalently

the contact planes are oriented by dα.

A knot L ⊂ (Y, ξ) is called Legendrian if at every point of L the tangent line to L

lies in the contact plane at that point, i.e. TL ⊂ ξ or equivalently α(TL) = 0 for the

contact 1-form α defining ξ. The contact framing of a Legendrian knot is defined by

the orthogonal of ξ along L, in other words, push L off in the normal direction to ξ.

Equivalently, we can take the framing obtained by pushing L off in the direction of

a nonzero vector field transverse to L which stays inside the contact planes. This

framing is the Thurston–Bennequin framing of L. If L is null-homologus in (Y, ξ)

then it admits a natural 0-framing provided by any embedded surface Σ ⊂ Y

with ∂Σ = L. In this case the Thurston–Bennequin framing can be converted into

an integer tb(L) ∈ Z — measure the Thurston–Bennequin framing with respect

to Seifert framing, i.e., the natural 0-framing. Notice that the 0-framning doesn’t
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depend on the choice of the surface Σ, therefore the number tb(L) is independent

of Σ and thus it is an invariant for null-homologus Legendrian knots, namely the

Thurston–Bennequin invariant.

In order to have a better understanding of the topological constructions we

discuss a way to visualize Legndrian knots in R3 (or, equivalently, in S3) equipped

with the standard contact structure ξstd = ker(dz − ydx).

Consider a Legendrian knot L in (R3, ξstd) and projects to a closed curve γ in

the xz–plane which is also known as front projection of L. The curve γ uniquely

determines the Legendrian knot L which can be reconstructed by setting y(t) as

the slope of γ(t). Notice that the projection has no vertical tangencies since dz
dx

=

y ̸= ∞. And for a similar reason, at a crossing of the projection, the most nega-

tively sloped curve always stays at front. There are two types of cusps singularity

possible when dz
dx

= 0 whcih are called left cusps and right cusps. See Figure 2.1.

Figure 2.1: The top row indicates the correct crossing and the cusps in the front
projection. And the bottom picture crossing will not occur in the front projection
diagram.

Looking at an oriented front projection one can compute the Thurston–Bennequin

invariant of a Legendrian knot tb(L) as follows. Given L an orientaion, we can de-

fine w(L) (the writhe of L) as the sum of signs of the double points.

Lemma 20. If c(L) is the number of cusps, then the Thurston–Bennequin invariant tb(L)
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given by the contact structure is equal to w(L)− 1
2
c(L).

For more details we refer [27] and [28].

Definition 21. A contact 3-manifold (Y, ξ) is called overtwisted if there exists a Legen-

drian unknot K with Thurston–Bennequin number 0, i.e., if the contact framing of K

conincides with the framing given by the seifert-disk D. A contact 3-manifold (Y, ξ) is

called tight if it is not overtwisted.

If one does frξ−1 surgery on L by removingN and gluing back a solid torus so

as to effect the desired surgery, then there is a unique way to extend ξ|Y−N over the

surgery torus so that it is tight on the surgery torus. The resulting contact manifold

is said to be obtained from (Y, ξ) by Legendrian surgery on L.

2.1.2 Symplectic fillings, cobordisms and caps

We recall that a compact symplectic manifold (X,ω) is a strong symplectic filling

of (Y, ξ) if ∂X = Y and there is a vector field v defined near ∂X such that the

Lie derivative of ω satisfies Lvω = ω, v points out of X and ιvω is a contact form

for ξ. Moreover, (X,ω) is a strong symplectic cap for (Y, ξ) if it satisfies all the

properties above, except ∂X = −Y and v points into X . We also say (X,ω) is a

weak filling of (Y, ξ) if ∂X = Y and ω|ξ > 0 (here all our contact structures are co-

oriented). Similarly, (X,ω) is a weak cap of (Y, ξ) if ∂X = −Y and ω|ξ > 0. We shall

say that (Y, ξ) is (strongly or weakly) semi-fillable if there is a connected (strong or

weak) filling (X,ω) whose boundary is disjoint union of (Y, ξ) with an arbitrary

non-empty contact manifold.

A symplectic cobordism from the contact manifold (Y−, ξ−) to (Y+, ξ+) is a com-

pact symplectic manifold (W,ω) with boundary −Y− ∪ Y+ where Y− is a concave

boundary component and Y+ is convex, this means that there is a vector field v

near ∂W which points transversally inwards at Y− and transversally outwards at

11



Y+, and Lvω = ω. The first result we will need concerns when symplectic cobor-

disms can be glued together.

Lemma 22. [29] Let (Xi, ωi) be a symplectic cobordism from (Y −
i , ξ

−
i ) to (Y +

i , ξ
+
i ), for

i = 1, 2, and (Y +
1 , ξ

+
1 ) is contactomorphic to (Y −

2 , ξ
−
2 ). Then we can construct a symplectic

cobordism (X,ω) from (Y −
1 , ξ

−
1 ) to (Y +

2 , ξ
+
2 ) such that X is diffeomorphic to X1 ∪Y +

1
X2.

Definition 23. A smooth function ϕ : X → R on a complex manifold X is (strictly)

plurisubharmonic if ϕ is (strictly) subharmonic on every holomorphic curveC ⊂ X. Recall

that ϕ is subharmonic if for r small enough ϕ(x0) ≤ 1
2πr

∫
B(x0,r)

ϕ(x)dx. A function

ϕ : X → R is an exhausting function if {x ∈ X|ϕ(x) < c} is relatively compact in X for

all c ∈ R. Recall that a map ϕ : X → R is proper if the image of a compact set is compact.

Definition 24. If a complex manifold X admits a proper plurisubharmonic function ϕ :

X → [0,∞) then it is called Stein.

A compact manifold W with boundary will be called Stein domain if there is a

Stein manifold Xand ψ : X → R is a proper plurisubharmonic functionsuch that

W = ϕ−1((−∞, a]) for some regular value a. So a compact manifold with bound-

ary (and complex structure on its interior) is a Stein domain if it admits a proper

plurisubharmonic function which is constant on the boundary. More genrally, a

cobordism W with boundary −Y1 ∪ Y2 is a Stein cobordism if W is a complex cobor-

dism with a plurisubharmonic function f : W → R such that f−(ti) = Yi, t1 < t2.

A closed contact 3-manifold (Y, ξ) is called Stein fillable if there exists a Stein

manifold (X, J, ψ) such that ψ is bounded from below, M is an inverse image of a

regular value of ψ and ξ = ker(−dψ ◦ J). In fact we have the following charecteri-

zation of Stein 4-manifolds.

Theorem 25. (Elaishberg [24]; Gompf [28]) A 4-manifold is a Stein domain if and only if

it has a handle decomposition with 0-handles, 1-handles, and 2-handles and the 2-handles
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are attached along Legendrian knots in #S1 × S2 with framing one less than the contact

framing.

Another way to build cobordisms is by Weinstein handle attachment, [Weinstein91].

One may attach a 0, 1, or 2-handle to the convex end of a symplectic cobordism to

get a new symplectic cobordism with the new convex end described as follows.

For a 0-handle attachment, one merely forms the disjoint union with a standard

4–ball and so the new convex boundary will be the old boundary disjoint union

with the standard contact structure on S3. For a 1-handle attachment, the convex

boundary undergoes a, possibly internal, connected sum. A 2-handle is attached

along a Legendrian knot L with framing one less that the contact framing, and the

convex boundary undergoes a Legendrian surgery.

Theorem 26. Given a contact 3-manifold (Y, ξ) letW be a part of its symplectization, that

is (W = Y × [0, 1], ω = d(αet)). Let L be a Legendrian knot in (Y, ξ) where we think of Y

as Y × {1}. If W ′ is obtained from W by attaching a 2-handle along L with framing one

less than the contact framing, then the upper boundary (Y ′, ξ′) is still a convex boundary.

Moreover, if the 2-handle is attached to a Stein filling (respectively strong, weak filling)

of (Y, ξ) then the resultant manifold would be a Stein filling (respectively strong, weak

filling) of (Y ′ξ′).

The theorem for Stein fillings was proven by Eliashberg [24], for strong fillings

by Weinstein [30], and was first stated for weak fillings by Etnyre and Honda [31].

Starting with a Stein filling (respectively strong, weak filling) of (Y, ξ) one can

construct a symplectic closed manifold by capping it off. Various people have

studied concave caps on contact manifold but for our purpose we need the result

of Etnyre, Min and the author [9].

Theorem 27. If (W,ω) is weak filling of (Y, ξ) then there exists a closed symplectic 4-

manifold (X,ω′) in which (W,ω) symplectically embeds such that the complement of W

13



in X is simply-connected and has b+2 > 0.

2.1.3 Heegard Floer homology

Recall that Heegaard Floer homology is an Abelian group associated to a 3-manifold

Y , equipped with a Spinc structure t ∈ Spinc(Y ). These homology groups are in-

variant of the pair (Y, t) and are denoted byHF∞(Y, t), which is a graded Z[U,U−1]

module;HF+(Y, t), which is a graded Z[U−1] module;HF−(Y, t), which is a graded

Z[U ] module. These invariants fit into a long exact sequence

· · · HF−(Y, t) HF∞(Y, t) HF+(Y, t) · · ·ι π δ

Recall that associated to this long exact sequence there is another 3-manifold in-

variant

HF+
red(Y, t) = Coker(π) ∼= Ker(ι) = HF−

red(Y, t)

The isomorphism in the middle is induced by the co-boundary map. Recall that

d(Y, t) is the minimum grading of the torsion-free elements in the image{π : HF∞(Y, t) →

HF+(Y, t)}. For more details, readers are referred to [32, 33].

Now recall that an L-space Y is a rational homology 3-sphere whose Heegard

Floer homology is as simple as possible, that is HF+
red(Y, t) = 0 for all Spinc struc-

tures t ∈ Spinc(Y ).

A cobordism between two 3-manifold induces a map on Heegad Floer homol-

ogy. More precisely if W is a cobordism from Y0 to Y1 and s is a Spinc structure

in W whose restriction on Yi is denoted as si for i = 0, 1, then there is a map

F ◦
W,s : HF

◦(Y0, s0) → HF ◦(Y1, s1), where ◦ = +,− or∞.

Theorem 28. (Ozsváth-Szabó [10]) If W is a cobordism between Y0 to Y1 and s is a Spinc

structure on W whose restriction on Yi is denoted as si for i = 0, 1 then we have the

following,

14



· · · HF−(Y0, s0) HF∞(Y0, s0) HF+(Y0, s0) · · ·

· · · HF−(Y1, s1) HF∞(Y1, s1) HF+(Y1, s1) · · ·

F−
W,s

ι0

F∞
W,s

π0

F+
W,s

δ0

ι1 π1 δ1

where the vertical maps are uniquely determined up to an overall sign, and all the squares

are commutative.

The composition law states that if W0 is a cobordism from Y0 to Y1 and W1 is a

cobordism from Y1 to Y2, and let si be the Spinc structure on Wi for i = 0, 1, then

the relationship between composition of FW0,s0 with FW1,s1 , and the maps induced

by the composite cobordism W = W0 ∪Y1 W1 is

F ◦
W1,s1

◦ F ◦
W0,s0

=
∑

{s∈Spinc(W )| s|Wi=si,i=0,1}

±F ◦
W,s.

2.1.4 Closed 4-manifold invariants

There is a variant of the cobordism invariant which is defined for cobordism with

b+2 (W ) > 1. This following lemma is proven by Ozsváth and Szabó [10]

Lemma 29. Let W be a cobordism between Y0 and Y1 with b+2 (W ) > 0. Then the induced

cobordism map F∞
W,s vanishes for all Spinc structures on W .

If we have a cobordism W with b+2 (W ) > 1, then we can cut W along a 3–

manifold N , which divides W into two cobordism W0 and W1, both of which have

b+2 (Wi) > 0, in such a way that the map induced by the restriction

Spinc(W ) → Spinc(W0)× Spinc(W1)

is injective. Such a cut N is called admissible cut.
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Remark 30. Notice that if in a cobordismW with b+2 (W ) > 1 we find a separating rational

homology 3–sphere N such that both the pieces have b+2 > 0, then N is an admissible cut.

If s is a Spinc structure on W whose restriction to Wi is si and the induced Spinc

structures on 3-manifolds Y0, Y1 and N is t0, t1 and t , then

F−
W0,s0

: HF−(Y0, t0) → HF−(N, t)

factors through the inclusion HF−
red(N, t) → HF−(N, t), and

F+
W1,s1

: HF+(N, t) → HF+(Y1, t1)

factors through the projection HF+(N, t) → HF+
red(N, t). And thus by using the

identification of HF+
red(N, t)

∼= HF−
red(N, t) in the middle, we can define the mixed

invariant as a map

Fmix
W,s : HF−(Y0, t0) → HF+(Y1, t1).

Remark 31. It is also proven in [10] that Fmix does not depend on the choice of the admis-

sible cut.

From the discussion above one immediately sees the following result.

Lemma 32. If an admissible cut N of W is an L-space then Fmix
W,s vanishes.

Theorem 33. (Ozsváth, Szabó [11]) If (X,ω) is a closed, symplectic manifold with b+2 (X) >

1, then for the canonical Spinc structure k corresponding to the symplectic form, Fmix
X,k is

non-vanishing. Here we think ofX as a cobordism from S3 to S3 by taking out two 4-balls.

Remark 34. The above discussion implies that an L-space cannot be an admissible cut for

a closed symplectic 4-manifold with b+2 > 1.
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CHAPTER 3

RESULTS

3.1 Topological embedding of 3-manifolds in symplectic 4-manifolds

Now we will begin the proof of topological embedding of 3-maifolds into sym-

plectic 4-manifolds.

Proof of Theorem 2. We will topologically embed a 3-manifold Y into a symplectic

manifold X in three steps. In the fourth step we will show that the embedding

is smooth after a single stabilization with S2 × S2. We start with a Kirby picture,

consisting of only a 0-handle and 2-handles, for a 4–manifold whose boundary is

Y .

Step 1. Stein modification of the Kirby picture.

Let K1, . . . , Km be the attaching spheres for the 2-handles. We can Legendrian

realize the Ki so that each Ki intersects a fixed Darboux ball B in a horizontal

arc. We can blow up meridians to each Ki so that the framing on Ki is less than

tb(Ki)−2. All the blown-up unknots can be gathered in the Darboux ball as shown

in the top left of Figure 3.1. Blow up one more unknot as indicated in the upper

right of Figure 3.1 and notice that the resulting link L can be Legendrian realized

as in the bottom diagram of Figure 3.1. Let K be the unknot with framing −1

in the figure. We now stabilize the components of L − K so that the Thurson-

Bennequin invariant of each component is one larger than its surgery coefficients.

Legendrian surgery on L −K together with −1 surgery on K gives our manifold

Y . (Notice that to realize L each Ki might need to be stabilized one extra time

as shown in the figure. This is why we arranged the surgery coefficients to be less

than tb(Ki)−2.) So the manifoldW0 obtained by attaching Stein 2-handles to L−K
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-1

-1-1

blow-up
-2

-2

-2 −1

K
-1

Legendrian representation

(-1)

(-1)

(-1)

(-1)

(-1)

-1
K

Figure 3.1: Converting a Kirby picture of the 3-manifold by blowing up such that
the complement of the red knot is Stein. Here (−1) is measured relative to the
contact framing.
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is a Stein manifold and we denote the boundary by Y0. Now attaching a 2-handle

to W0 along K with framing −1 gives a 4-manifold W with boundary Y .

Step 2. Attach a cork and apply cork-twist.

We begin by constructing a manifoldW2 by modifying the surgery presentation

that is add the 1- and 2-handle shown in Figure 3.2, where the 2-handle links K as

indicated and is otherwise disjoint from L (by abusing of language we will call this

operation attaching a Mazur cork). Said another way, we can build a cobordism

W1 by attaching the 1- and 2-handle to Y × [0, 1] along Y × {1}. The manifold W2

is now simply W ∪W1 with ∂W glued to −Y ⊂ W1 and W1 is a cobordism from Y

to some manifold Y ′.

We can apply a cork-twist by interchanging the 1-handle and the 0-framed 2-

handle. The cork twist does not change the boundary 3-manifold Y ′. After the

cork twist the knot K is passing over the 1-handle geometrically once and thus

they cancel each others. After this handle cancellation the knot K in the original

picture Figure 3.1 is replaced by −1 framed knot in the third picture of Figure 3.2.

Notice that this new knot can be realized by a Legendrian knot that has Thurston-

Bennequin invariant +1 and thus −1 smooth surgery on this knot can be realized

as Legendrian surgery on a stabilization of the knot. So we get a Stein filling of the

boundary.

Step 3. Construct a simply connected a closed symplectic 4-manifold.

Also notice that the W1 deformation retract onto Y and W is a 2-handlebody, so

in particular W ′
2 is simply connected. So in Step 2 when we do the cork-twist the

new manifold W ′
2 is still homeomorphic to the compact manifold W2 by a result of

Freedman [5] and thus the original 3-manifold has a topological, locally flat em-

bedding in W ′
2. Now we use the simply connected cap constructed in Theorem 27

to cap off the upper boundary W ′
2 to get a closed simply connected symplectic
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−1 0
−1

cork-twist

0

handle cancellation

−1

-1

Stein presentation

Figure 3.2: The maximal Thurston-Benequin number of the black knot in the bot-
tom picture is +1. So it is a Stein 2−handle attachment.

4-manifold X into which the 3-manifold Y topologically, locally flatly embeds.

Step 4. Smooth embedding after one stabilization.

We can stabilize X by adding a Hopf link to W ′
2 and using the same cap (of

course this stabilized 4-manifold is no longer symplectic). We can now handle slide

one of the components C of the Hopf link over the 0-framed knot in the Mazur

cork as indicated at the top of Figure 3.3. Using the 0-framed meridian to C we

can untangle C from the 2-handle in the Mazur cork as shown in the middle of

Figure 3.3. We can further slide C over the 0-framed meridian to turn C into a

meridian of the 1-handle. Thus the 1-handle can be cancelled with C, leaving the

bottom picture in Figure 3.3. Thus we see a smooth embedding of Y into W ′
2#S

2×

S2 and thus into X#S2 × S2.

We now turn to Theroem 7 that says given any 3-manifold Y there is a simple

invertible Z ribbon homology cobordism to a Stein fillable manifold Y ′.

Proof of Theorem 7. The cobordismW1 from Step 2 is the desired ribbon Z-homology
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−1
0

0 0

handle slides as indicated

0

0

−1
0

use the 0-framed meridian to simplify the
2-handle and cancel it with 1-handle

−1

0

0

Figure 3.3: In this picture we are describing the Kirby moves of how connected
summing with S2 × S2 helps to cancel the 1-handle of the cork.
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cobordism which is attaching a cork along the red knot on top Figure 3.2.

LetD(W1) be the double ofW1 along Y ′, that is glue an upside down copy ofW1

on top of W1 along the boundary. If h is the 2-handle in W1, then D(W1) is formed

by attaching a 2- and 3-handle to W1, with the 2-handle attached to a 0-framed

meridian to h [34, Section 4.2]. Check Figure 3.4. Now by changing crossings

on the attaching circle of h using the 0-framed meridian we can arrange that h is

passing over the 1-handle geometrically once. Thus they cancel each other. And

after the cancellation the 0-framed meridian h will cancel the 3-handle. And thus

the resultant manifold D(W1) = Y × I .

D(W1) = ∪ 3− handle

isotopy

handle-slides

0

0

0

0

∪ 3− handle

0

0

∪ 3− handle

Figure 3.4: After isotopy, in the second picture the 0-framed blue 2-handle will help
to resolve the crossings of the black 2-handle so that it can cancel the 1-handle. And
after that the 3-handle will cancel the 0-framed unknotted blue 2-handle.
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We now prove that 3-dimensional homology cobordism group is generated by

Stein fillable manifolds

Proof of Corollary 9. Theorem 7 provides a homology cobordism from any manifold

to a Stein manifold. Thus the homology cobordism groups are generated by Stein

manifolds.

We now prove the existence of degree 1 map from a Stein fillable 3-manifold to

a given 3-manifold.

Proof of Corollary 11. As we noticed previously that Y ′ smoothly embed in Y × I as

a separating way. So, restriction to Y ′ of the projection map on Y × I onto Y will

induces a degree 1 map from Y ′ → Y .
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CHAPTER 4

DISCUSSION

4.1 Embedding L–spaces in symplectic 4-manifolds

We now prove that smooth embeddings of L-space in symplectic 4-manifold is

always separating.

Proof of Theorem 3. Suppose Y is an L-space that smoothly embeds in a closed sym-

plectic 4-manifold. We begin by showing it is separating. To this end we assume

it is non-separating. Let X1 be the compact manifold obtained from X by cutting

along Y . Notice that ∂X1 = Y ⊔−Y , so we can glue two copies X1
1 , X

2
1 of X1 along

their boundaries to get a closed manifold X ′. As constructed, X ′ is a double cover

of X so, in particular, we can lift the symplectic form using the covering map and

thus X ′ is symplectic. Let N be a neighbourhood of an arc in X1
1 connecting its

boundary components. SetX ′
1 = X1

1 −N andX ′
2 = X2

1 ∪N . Clearly ∂X ′
i = Y#−Y

which is an L-space. As X is symplectic and Y is a rational homology sphere, by

using the Mayer-Vietoris sequence we can see that b+2 (X ′
i) = b+2 (X) > 0 (since X

is symplectic, the cohomological element corresponds to the symplectic form pro-

duces an element of b+2 ). So Y#− Y is an admissible cut for a symplectic manifold

X ′ which contradicts Remark 34.

Now when Y embeds in X in a separating manner then one of the component

of X − Y must have b+2 = 0 or we will get the same contradiction as before.

We now prove Theorem 13 that says an L-space that does not bound negative-

definite 4-manifold cannot have an oriented cobordism embedding in a compact

symplectic 4-manifold with convex boundary.
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Proof of Theorem 13. Let Y be an L-space that does not bound negative definite 4-

manifold. If Y embed in any symplectic 4-manifold with weakly convex boundary

W then it has to be separating since otherwise we can cap off with a concave cap

to get a closed symplectic manifold where Y is non-separating which contradicts

Proposition 3. So Y has to be separating. When we cap off the upper boundary of

W by a cap with b+2 > 0, since Y does not bound a negative definite 4-manifold,

both the sides of Y have b+2 > 0. In particular Y is an admissible cut for a symplectic

4 manfiold with b+2 > 1 which is a contradiction by Remark 34.

Proof of Corollary 15. Let Y ′ admit weakly fillable contact structure and Y be an L-

space that does not bound a negative definite 4-manifold. If Y has an oriented

cobordism embedding in Y ′ × [0, 1], then since Y ′ is weakly fillable Y has an ori-

ented cobordism embedding in a symplectic 4 manfiold with weakly convex bound-

ary, contradicting Theorem 13.

We now show the existence of exotic manifolds with boundary and b2 = 1 using

the ideas above.

Proof of Corollary 16. Now start with B4 and attach a 2-handle h along pretzel knot

K = P (−2, 3, 7) to get a 4-manifold W ′ with S3
9(K) (which is an L-space as men-

tioned in Remark 14) as its boundary. Attach a cork as Step 2 of the Theorem 2

and get W with b+2 (W ) = 1. After a cork-twist we can see that the 2-handle h now

passing over the 1-handle of the cork and this will increase the contact framing of

h by one as in Figure 4.2 and thus the resulting manifold W ′ will be Stein by Theo-

rem 25. Before the cork-twist we had a smooth embedding of S3
9(K) in W . But by

Theorem 13 S3
9(K)cannot embed smoothly in W ′ so they are exotic pairs.
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4.2 Constructing rational ribbon cobordism

Now we begin the proof of Theorem 18 that says that given a compact 4-manifold

with some specific conditions one can construct a Stein 4-manifold with same al-

gebraic topology but different boundary.

Proof of the Theorem 18. Part i) LetX be a compact oriented 4-manifold with bound-

ary Y and b1(X) = 0. Turning a handle structure on X upside down, we can think

of X as a cobordism from −Y to ∅, this is indicated in Figure 4.1. Notice that in

this upside-down cobordism all the 1-handles of X are converted into 3-handles

and all the 3-handles become 1-handles. In the upside-down X , 1-handles are at-

tached onto −Y × [0, 1] along −Y × {1}, let us call this cobordism M1. Notice that

b1(X) = 0 so the homology long exact sequence of the pair (X, Y ) implies that

there exists a minimal set of 2-handles such that if we attach those on top of M1,

and let us call it M2, then H1(M2, Y ;Q)) = 0. (Here by minimum we mean that if

we take any 2-handle out from the set then H1(M2, Y ;Q) ̸= 0.) Since we consider

a minimal set of 2-handles for this construction, we have H2(M2, Y ;Q) = 0 as well

because in this case the number of 1-handles of M2 is the same as the number of 2-

handles. Thus M2 is a rational ribbon cobordism from Y to say Y1 which is the top

boundary of M2, see the top right of Figure 4.1. Consider X1 to be the handlebody

obtained from X by taking out M2 and turning what remains upside-down, this is

indicated in the third picture Figure 4.1. Thus X1 only has 1- and 2-handles with

boundary Y1. If this is Stein then we are done. If not then that implies it has some

2-handles whose smooth framing is bigger than that the contact framing minus 1

of the attaching circle in #S1 × S2 (in this case we can think of the top boundary

Y1 is obtained after attaching 2-handles on the boundary of 1-handlebody which

is connected sum of S1 × S2). To fix this framing issue, we repeatedly apply the

Step 2 of the proof of Theorem 2. That is we attach a cork as in Figure 3.2 (where

26



X

3-handles

Y

turn upside-down

M2

-Y

Y1

slice off M2 and turn upside-down

X1

add corks

Y1

M3

Y ′

cork-twist

X ′

−Y

Y ′

Y ′

M2

M3

Figure 4.1: A schematic of the construction of a ribbon cobordism from Y to a Stein
fillable Y ′.
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the red curve there is the handle that needs its Thurston–Bennequin invariant in-

creased). We then do a cork twist that exchange the 1-and 2-handles. We claim

this has the effect of increasing the contact framing of the original attaching sphere

of the 2-handle by 1. To see this, notice that if a knot passing over 1-handle then

in the front projection diagram of a knot we are actually deleting two consecutive

right and left cusps by connecting them through a 1-handle and thus we are in-

creasing the contact framing. See Figure 4.2. But this process does not change

isotopy

Legendrian realization

Figure 4.2: The contact framing of blue knot increased by +1 after a cork-twist.

the smooth surgery coefficient. Let us consider the cobordism X2 obtained by

attaching a suitable number of corks to X1 so that the manifold X ′
2 obtained by

applying the cork twists is Stein. The manifold X2 and X ′
2 are homeomorphic as

the cork-twist homeomorphism can always be extend as homeomorphism on the

4-manifold by the result of Freedman [5]. Observe b2(X ′
2) = b2(X1) = b2(X). Let Y ′

be the top boundary of X ′
2. Then there is a homology ribbon cobordism M3 from

Y1 to Y ′ which is given by attaching the above corks to the top of X1, see the fourth

picture in Figure 4.1. Glue this cobordism on top of M2 to get our desired ribbon

rational homology cobordism M =M2 ∪M3 from Y to Y ′ with Y ′ Stein fillable.
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For part ii), let X is a compact manifold with connected boundary Y which is

a QHS3, then we consider a handle decomposition of X = X0 ∪ X1 ∪ X2 ∪ X3

where Xi contains handles of index i. Consider the minimum set of 1-handles

which generate the free part of (H1(X;Q)). Let X be the manifold obtained from

X by doing surgery on those 1-handles. (In Kirby calculus this is equivalent of

replacing those dotted 1-handles with 0-framed unknotted 2-handles.) We will

now show that this surgery operation does not change the b2 (or more precisely

the intersection form). As Y is a QHS3, H1(X;Q) = 0 = H3(X;Q). But we are not

doing anything with the 3-handles of X , so the only way the third homology of X

vanishes with Q co-efficients is if the 3-handles cancel the 2-handles in homology.

And thus from cellular homology, we can see that b2(X) = b2(X). Also notice that

the above surgery does not change the non-torsion elements of H2(X;Z) so they

have the same intersection form. Now apply the proof of Theorem 18 on X̄ and

we get the desired Stein manifold X ′ with boundary Y ′.
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CHAPTER 5

FUTURE DIRECTIONS AND QUESTIONS:

Here I will summarize all the important questions that arrived in the above dis-

cussions.

Question 5. Does every L-space bound a definite 4-manifolds?

Question 6. Does rational homology cobordism group ΘQ genrated by L-spaces?

Question 7. Is Σ(2, 3, 11) rationally homology cobordant to some L-space?

Question 8. Does every 3-manifolds admit a Floer cap?

Question 9. Does every 3-manifold embed smoothly in a separating way to some closed

4-manifold with non-trivial mix map or Seiberg–Witten solution?
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