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SUMMARY

This thesis explores the question of understanding Legendrian submanifolds in con-

tact manifolds of dimension greater than 3. There are two primary contributions. First,

we explore two natural constructions of Legendrian spheres from supporting open book

decompositions and show that these always yield the standard Legendrian unknot. Sec-

ond, in joint work with Hughes, we explore the Legendrians obtained from the doubling

construction in dimension 5, and represent them as Legendrian weaves. We show that a

large family of pairwise non-isotopic Legendrians can be obtained by looking at doubles

associated to torus links λ(2, n). Further we also mention theorems in progress regarding

the fillability of these doubled Legendrians.

xv



CHAPTER 1

MAIN RESULTS

A contact manifold (M, ξ) is a smooth manifold M equipped with a nowhere integrable

hyperplane field ξ. The construction and investigation of contact manifolds has histor-

ically been aided by studying distinguished submanifolds that interact suitably with

the contact structure. In dimension 3, these submanifolds are either convex hypersur-

faces, or Legendrian knots, which are 1-dimensional submanifolds. These in conjunction

have helped achieve the classification of tight contact structures on several classes of 3-

manifolds e.g. [1, 2, 3, 4]. A general theme in most of these results can be seen as follows:

first understand Legendrian isotopy classes of a family of Legendrian knots in (S3, ξst),

then understand the contact structures that appear by performing contact surgery on

these Legendrians. In higher dimensions, the first hindrance to carrying out this plan

is the shortage of examples of Legendrian spheres. Some constructions of high dimen-

sional Legendrian spheres are explored in [5, 6, 7, 8], in R2n+1 with the standard contact

structure.

This thesis explores the construction of high-dimensional Legendrian submanifolds,

and then computing their invariants and understanding their fillability properties. The

main idea behind the constructions is to use a Legendrian in a (2n − 1)-manifold, and

use one or two exact Lagrangian fillings, to create a higher dimensional Legendrian in a

(2n + 1)-manifold. This idea was explored first to construct Legendrians in (R2n+1, ξst)

by Ekholm [6] and called a ”doubling construction”. In Chapter 4, we generalise the

doubling construction to arbitrary closed manifolds. In Chapter 5, which is based on
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joint work with Hughes, we construct a large class of Legendrian surfaces by doubling,

compute their sheaf moduli invariants, and explore their exact fillability.

The material in Chapter 4 has appeared in print in [9], while the material in Chapter

5 will be part of an article [10], which is in preparation.

1.1 Constructing high-dimensional Legendrians from open books

We describe some general constructions of Legendrian spheres in (2n + 1)-dimensional

contact manifolds from Lagrangian disks in pages of supporting open books.

Construction 1.1.1. A natural way to construct Legendrian submanifolds in a contact

manifold is via open book decompositions. Suppose (M, ξ) is supported by the open

book (B, ν), where ν : (M−B) → S1 is a fibration, and each page is symplectomorphic to

(W,ω). Consider a properly embedded Lagrangian n-disk L on the page. Then consider

two pages W,W ′ and two copies of the same Lagrangian, called L,L′ on them. The disks

can be individually perturbed to give Legendrian disks in M . Then, by Lemma 4.1.1,

the open book can be perturbed so that Legendrian disks actually lie on the page of the

open book as Lagrangian disks. We can further perturb L and L′ so they can be smoothly

joined to give the union, a Legendrian sphere L∪L′. This now gives a closed Legendrian

in (M, ξ). We will call this construction Sjoin(L). Since L′ is an isotopic copy of L, the

notation suppresses L′. This will be described in more detail in Section 4.2.

Construction 1.1.2. Consider (M, ξ) andL similarly as above. Then, the open book can be

stabilised, by modifying the page by attaching a Weinstein n-handle along ∂L, and then

performing a positive Dehn twist along the resulting Lagrangian n-sphere, obtained by

taking the union of L and the core of the handle. This resulting manifold is contacto-

morphic to (M, ξ). Also, the Lagrangian sphere in the new page can be perturbed to a

2



Legendrian sphere. We will call this Legendrian Sstab(L).

Our main result is that these constructions give Legendrian isotopic spheres and are

isotopic to the standard Legendrian unknot. The standard Legendrian unknot is defined

to be the Legendrian realisation of the n-dimensional unknotted sphere in a Darboux

neighbourhood, which is contactomorphic to a Darboux neighbourhood in (S2n+1, ξst),

which is the boundary of an exact Lagrangian disk in (B2n+2, ωst). Its front projection

can be inductively constructed by starting from the unknot with maximal Thurston-

Bennequin number in (R3, ξst) and successively spinning half of the front projection.

Theorem 1.1.3. Consider a supporting open book decomposition of a contact manifold (M, ξ).

Consider a Lagrangian disk L in the page. Then Sjoin(L) is Legendrian isotopic to Sstab(L), and

they are both isotopic to the standard Legendrian unknot.

A technical issue in the above proof is the following: Sjoin is defined with respect to

a certain open book decomposition of (M, ξ), whereas Sstab is defined with respect to the

stabilisation of the open book decomposition. While the open books support contacto-

morphic contact manifolds, to prove Legendrian isotopy, one needs to see stabilisation

of the open book as an embedded operation. We will show the following in Section 4.1:

Theorem 1.1.4. Assume (M2n+1, ξ) admits the supporting open book (B, ν), whose stabilisation

along the Legendrian disk L, which is a Lagrangian in the page, is (B′, ν ′). Then ν and ν ′ are

obtained from each other by surgering out a (2n + 1)-disk neighbourhood of L, and replacing it

by another (2n+ 1)-disk.

Construction 1.1.5. This construction of Legendrian spheres in (R2n+1, ξst) was intro-

duced by Ekholm in [6]. Start with a Lagrangian disk L which is cylindrical near its

boundary, in the symplectisation of R2n−1. Embed it in a hypersurface in R2n+1 trans-

verse to the Reeb flow. Then join the Legendrian lifts of this disk and a reflection of the

3



disk in the same hypersurface to obtain a Legendrian sphere Λ(L,L). An example of this

construction is given in Figure 1.1.

Figure 1.1: Front projection of a Legendrian sphere in (R5, ξst), where L is the Lagrangian
disk described by a pinch move from the middle knot and going to two Legendrian
unknots, which are then capped off.

In [11], Courte-Ekholm show that Λ(L,L) is isotopic to the standard Legendrian un-

knot.

The contact manifold (S2n+1, ξst) is supported by the open book where the pages are

symplectomorphic to (D2n, ωst), and the monodromy is the identity. The binding is con-

tactomorphic to (S2n−1, ξst). Given a Lagrangian disk L in (B2n, ωst), one can construct

all the three Legendrians as mentioned above. We can show that Courte-Ekholm’s result

is a particular case of Theorem 1.1.3.

Corollary 1.1.6. (Originally proven in [11]) Given a Lagrangian disk L in (B2n, ωst), Λ(L,L)

is isotopic to the standard Legendrian unknot.

The organisation is as follows: In Section 4.1, we prove Theorem 1.1.4. Then in Sec-

tion 4.2, we prove the first half of Theorem 1.1.3, namely that the join and stabilisation

constructions give isotopic spheres. Finally in Section 4.3, we prove that the construc-
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tions give the standard Legendrian unknot, completing the proof of Theorem 1.1.3 and

also show how to recover Courte-Ekholm’s result.

1.2 Understanding Legendrian surfaces via weaves

The work here is joint with Hughes. Let λ = λ(β∆) be an n−component Legendrian link

in (R3, ξst) given as the (−1)-closure of the positive braid β. Let L1, L2 be embedded exact

Lagrangian fillings of λ of genus g given as the Lagrangian projection of a Legendrian

weave with boundary λ.

Our first observation allows us to identify a weave description for the double Λ(L1, L2).

The doubled N -graph is defined by the graph obtained by gluing G1 and G2 along their

boundary.

Proposition 1.2.1. Let G1, G2, be N -graphs describing two exact Lagrangian fillings L1, L2 of

a link K. Then the Legendrian Λ(L1, L2) is the Legendrian weave corresponding to the doubled

N -graph (G1 ∪G2) ⊂ S2.

The main technical tool for understanding isotopy classes of asymmetric doubles is

the computation of the sheaf moduli of Λ(L1, L2) in terms of the sheaf moduli of the

fillings L1 and L2. Suppose the flag moduli invariant of Λ is M1(Λ). Let CL1 ⊆ M1(Λ)

and CL2 ⊆ M1(Λ) be the toric charts induced by L1 and L2 respectively.

Theorem 1.2.2 (with J. Hughes). The flag moduli M1(Λ(L1, L2)) is given by the intersection

CL1 ∩ CL2 .

Theorem 1.2.3 (with J. Hughes). The symmetric double Λ(L,L) is Legendrian isotopic to

#kT2
std where k = 2g + n− 1.

Let L1, L2 be two embedded exact Lagrangian fillings as above. As a direct conse-

quence of 1.2.2, we can conclude:
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Corollary 1.2.4 (with J. Hughes). The Legendrian double Λ(L1, L2) is a non-loose Legendrian.

The Legendrian torus link λ(2, n), has at least Cn embedded exact Lagrangian fillings

up to Hamiltonian isotopy, which can be represented by Lagrangian projections of Leg-

endrian weaves [12, 13, 14]. These weaves are trivalent graphs obtained as the duals

to certain triangulations of an (n + 2)-gon. Denote by Linit the filling of λ(2, n) coming

from the pinching sequence (1, 2, . . . , n). Denote the standard torus in R5 by T 2
std and the

Clifford torus by T 2
c . These Legendrians are defined in Chapter 3.

Theorem 1.2.5 (with J. Hughes). Let L1 and L2 be two exact Lagrangian fillings of λ(2, n)

obtained as above. Then,

1. The double Λ(Linit, L1) is Hamiltonian isotopic to #kT2
std#

lT2
c for some k and l such that

k + l = n− 1

2. GivenL1, and j such that 0 ≤ j ≤ n−1, there existsL2 such that Λ(L1, L2) is Hamiltonian

isotopic to #jT2
std#

n−1−jT2
c

3. The double Λ(L1, L2) is Hamiltonian isotopic to #n−1T2
std if and only if L1 and L2 are

Hamiltonian isotopic

From understanding the toric charts coming from fillings and how they behave under

a procedure called folding, and the associated cluster structure, we expect to be able to

prove the following results in [10]. We will talk about the relevant ideas in Section 5.3.

Theorem 1.2.6 (with J. Hughes). [in progress] For decomposable exact Lagrangian fillingsL,L′

coming from a Legendrian weave with L and L′ inducing distinct toric charts in M1(∂L), the

Legendrian double Λ(L,L′) is not exact Lagrangian fillable.
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Let ϕ be a Legendrian loop of λ and consider the mapping torus Σϕ(λ). See below

for a precise construction. Let ρ denote the Kálmán loop on Legendrian (2, n) torus links

λ(2, n) = λ(σn+2
1 ).

Theorem 1.2.7 (in progress, with J. Hughes). There are at least f(k) exact Lagrangian fillings

of Σρk(λ(2, n)) where

f(k) =



Cn−1
3

k = 2n
3
∈ N

Cn
2

k = n+2
2

∈ N

Cn k = n+ 2

0 otherwise

where Cn is the nth Catalan number.

One can also obtain infinitely many exact Lagrangian fillings of various twist spuns

from torus links:

Theorem 1.2.8. [in progress, with J. Hughes] There are faithful PSL(2,Z) and Mod(Σ0,4) ac-

tions on the set of exact Lagrangian fillings of Σρ3(λ(3, 6)) and Σρ4(λ(4, 8)), respectively.

Finally, we expect the following constraint for any asymmetric double coming from

two embedded fillings which induce distinct charts on the sheaf moduli of λ.

Theorem 1.2.9. The Legendrian double Λ(L1, L2) is a non-loose Legendrian, when L1 and L2

induce distinct toric charts on the sheaf moduli of the boundary Legendrian.

Conjecturally, it is expected that exact Lagrangian fillings distinct upto Hamiltonian

isotopy will induce distinct toric charts.
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CHAPTER 2

BACKGROUND - CONTACT AND SYMPLECTIC TOPOLOGY

2.1 Weinstein handlebodies

We briefly review the notion of Weinstein handle attachments here, which we will need to

define stabilisation of open books. For more detailed exposition the reader is encouraged

to consult [15].

A Weinstein domain is the symplectic analogue of a smooth handlebody. For a 2n-

dimensional domain, Weinstein k-handles can have index at most n, and are attached

along isotropic (k − 1)-spheres in the convex boundary. Recall that a submanifold S of a

contact manifold is called isotropic if TxS ⊂ ξx for all x ∈ S.

Definition 2.1.1. A Weinstein handle of index k is hk = Dk × D2n−k with a symplectic

structure so that ∂−hk = (∂Dk)×D2n−k is concave, and ∂+hk = Dk × (∂D2n−k) is convex.

Moreover, Dk × {0} is isotropic and its intersection with ∂−hk is an isotropic Sk−1 in the

contact structure induced on ∂−hk. Thus, the attaching sphere of a Weinstein k–handle is

an isotropic Sk−1. Given an isotropic sphere Sk−1 in the convex boundary of a symplectic

manifold with a choice of trivialization of its conformal symplectic normal bundle, one

can attach a Weinstein k–handle by identifying a neighborhood of the isotropic sphere

with ∂−hk.

A Weinstein handle of index n is called a critical Weinstein handle, and is attached

along a Legendrian sphere. It will be useful for us to understand the local model for at-

taching a critical Weinstein handle. Consider R2n with the symplectic structure
∑n

i=1 dxi∧

dyi. Now considerHa,b := Da×Db, whereDa is the disk of radius a in the xi subspace and
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Db the disk of radius b in the yi subspace. Then,Ha,b is a model for the Weinstein n-handle

hn. The expanding vector field v =
∑n

i=1−yidyi + 2xidxi induces contact structures on

∂−h
n = (∂Da)×Db and ∂+h

n = Da × (∂Db).

2.2 Legendrian and Lagrangian submanifolds

Definition 2.2.1. Given a contact manifold (M2n+1, ξ), an n-dimensional submanifold L

is called a Legendrian if Tx(L) ⊂ ξx for every x ∈ L.

It is well-known that a Legendrian sphere in a contact manifold always has a standard

neighbourhood.

Lemma 2.2.2. If S is a Legendrian n-sphere in (M2n+1, ξ), then in any open set containing S

there is a neighborhood N with boundary ∂N = Sn×Sn contactomorphic to an ϵ-neighbourhood

Nϵ of the zero section Z in the 1-jet space of Sn, denoted J1(Sn). We call N a standard neigh-

bourhood.

2.3 Legendrian surgery

The model we will use to describe Legendrian surgery is understood as what is happen-

ing on the boundary when a Weinstein handle is attached along the Legendrian sphere.

This is called the flat Weinstein model and is described in Section 3 of [16] in more gen-

erality, for isotropic surgery along Sk for k ≤ n. Our description follows the exposition

there.

Notation: To make the notation less cluttered when we talk about R2n+2, we will write

the coordinates (z1, w1, · · · , zn+1, wn+1) as (z, w). The symplectic form ω0 =
∑n+1

i=1 dzi∧dwi

will be referred to as dz ∧ dw. Similar liberties will be taken with 1-jet space coordinates
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where (z, p1, q1, · · · , pn, qn) will be truncated to (z, p, q), and the contact structure there is

ker(dz + pdq). Products between vectors should be thought of as dot products.

Consider the symplectic manifold (R2n+2, ω0), where the coordinates are (n+ 1) pairs

of (z, w) coordinates, and ω0 = dz ∧ dw. The vector field X = 2z∂z − w∂w is Liouville.

The set S−1 := {(z, w) | |w|2 = 1} is transverse to X and inherits the contact form α =

2zdw + wdz.

In S−1, the sphere {z = 0, |w|2 = 1} describes a Legendrian sphere. Using ψW :

J1(Sn) → S−1 given by (z, q, p) 7→ (zq + p, q), we get a strict contactomorphism between

S−1 and the standard neighbourhood described in Lemma 2.2.2. Thus S−1 can be re-

garded as the standard neighbourhood of a Legendrian sphere.

Now, Legendrian surgery along a Legendrian S will involve removing a neighbour-

hood of S identified with S−1 and gluing in another contact hypersurface of (R2n+2, ω0).

The contact hypersurface involved in that is called S1 and we describe it here. Define

functions f and g, described in Figure 2.1, to satisfy the following:

• f is increasing on [1− ϵ,∞)

• f(w) = 1 for w ∈ [0, 1− ϵ), f(w) = w + ϵ for w > 1− ϵ
2

• g is increasing on (0, 1 + ϵ)

• g(z) = z for z < 1, g(w) = 1 + ϵ for w > 1 + ϵ

Then, define the hypersurface S1 := {(z, w) | f(w2) − g(z2) = 0}. As X is trans-

verse to S1, it inherits a contact structure. Then, Legendrian surgery along S is remov-

ing ν(S) ∼= S−1 and gluing S1 in its place. If S ⊂ (M, ξ), and there is a symplectic

manifold W obtained by attaching a Weinstein handle to part of the symplectisation
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1 + ϵ

1

1 + ϵ

1

1 − ϵ 1

f g

1 1 + ϵ

Figure 2.1: The functions f and g used to describe Legendrian surgery.

(M×[0, 1], d(etα)), along S inM×{1}, the Legendrian surgery along S can be understood

as the upper boundary of W .

2.4 Open Book Decompositions

The background on contact open books is taken from the lecture notes by Van Koert [16].

The reader is referred to the same for more details.

Definition 2.4.1. An (abstract) contact open book (Σ, λ, ϕ), or Open(Σ, ϕ) if we suppress

the Liouville form from the notation, consists of a compact exact symplectic manifold
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(Σ, λ) and a symplectomorphism ϕ : Σ → Σ with compact support, i.e., it is identity near

∂Σ.

Definition 2.4.2. An (embedded) supporting open book for a contact manifold (M, ξ) is

a pair (ν,B), where B is a codimension-2 submanifold of M with trivial normal bundle,

such that

• ν : (M − B) → S1 is a fiber bundle, such that ν gives the angular coordinate of the

D2-factor of a neighbourhood B ×D2 of B, and

• if α is a contact form for ξ, it induces a positive contact structure on B and dα

induces a positive symplectic structure on each fiber of ν

The embedded open book constructed from Definition 2.4.1 is the manifold Σ ×

[0, 1]/ ∼, where the equivalence relation ∼ identifies all points (x, t) and (x, t′) where

x ∈ ∂Σ, and identifies points (x, 0) with (ϕ(x), 1). For our purpose, we will employ an-

other (but equivalent, up to contact isotopy) way of building a manifold from an abstract

open book, where we will have something called the thickened binding. This construction

will work as follows:

Definition 2.4.3. A manifold constructed from the abstract open book Open(Σ, ϕ) with

thickened binding is the quotient of the disjoint union of the mapping torus Σ×[0, 1]/((x, 0) ∼

(ϕ(x), 1)) and the thickened binding ∂Σ × D2, under the identification (x, t) ∼ (x, 1, t),

where x ∈ ∂Σ, and {(x, r, θ) | r ∈ [0, 1], t ∈ R/Z} are the coordinates on ∂Σ×D2.

An open book with thickened binding can be given a compatible contact structure,

as shown in Section 2.2 of [16]. Every contact manifold has a supporting open book

decomposition, by work of Giroux. Further, the contact structure supported by an open

book is unique upto isotopy, as said by the next theorem, due to Giroux.
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Theorem 2.4.4 (Giroux). If an open book (Σ, λ, ϕ) supports a contact structure (M, ξ1), and

ξ2 is another contact structure on M supported by an open book whose pages are symplectomor-

phic to Σ and the monodromy is isotopic through symplectomorphisms to ϕ, then ξ1 and ξ2 are

contactomorphic.

An abstract open book defines a supporting open book for the corresponding contact

manifold. This follows from work of Thurston-Winkelnkemper [17] and Giroux. The

reader can refer to [16] for a proof (originally by Giroux), and more details. For open

books, by a page we refer to Σ for abstract open books, and to the closure of a fiber of ν

for embedded ones. In the manifold built from the abstract open book, the equivalence

class [(x, t)] for x ∈ ∂Σ is the binding. In the embedded case, B is the binding. In the

thickened binding case, ∂Σ×D2 is the binding. In the embedded case, as M −B has the

structure of a fibration over S1, it makes sense to talk about the monodromy of an open

book. In the abstract setting, ϕ is called the monodromy.

2.5 Relative Open Books

We will need the idea of open book decompositions of manifolds with boundary, and

how to glue such decompositions together. The difference from Definitions 2.4.1 and

2.4.2 in this case is that the page topology can change. This definition is closely linked to

the notions of partial open books [18] and foliated open books [19] in 3-dimensional contact

geometry.

Definition 2.5.1. An (embedded) supporting relative open book for a contact manifold

(M,∂M, ξ) is a pair (ν,B), where B is a codimension-2 submanifold of M with trivial

normal bundle, such that
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• ν : (M − B) → S1 is a circle-valued Morse function. Further, ν gives the angular

coordinate of the D2-factor of a neighbourhood B ×D2 of B, and

• if α is a contact form for ξ, it induces a positive contact structure on B and dα

induces a positive symplectic structure on each fiber of ν

In our case, the change in page topology will only be effected by adding or removing

a Weinstein n-handle. To help the reader’s intuition, we will give the notion of an abstract

relative open book, along the lines of abstract foliated open books [19] in 3 dimensions.

Definition 2.5.2. An (abstract) supporting relative open book for a contact manifold is a

tuple ({Si}2ki=0, h) where:

• Si’s are Liouville domains for odd (or even) i such that Si+1 is obtained from Si

by either attaching a standard 2n-ball or removing one, as a neighbourhood of a

properly embedded Lagrangian n-disk, which happens alternately.

• The boundary of Si is a smoothing ofB∪αi, where before smoothing, B is a convex

boundary component with an outward pointing Liouville vector field, αi is diffeo-

morphic to (Dn × Sn−1), and for alternate i it is a convex or concave boundary

component. The 2n-ball can be regarded as Dn ×Dn with the smoothed boundary

having two convex parts, the attaching part ∂− which is Dn × Sn−1, and the upper

part Sn−1×Dn. At every stage, to go from Si to Si+1 the ball is either attached along

a concave αi, or the convex αi is the upper part of the boundary of the ball that gets

removed.

• h is a symplectomorphism between S2k and S0.

In this case, we construct the manifold similarly as before by gluing together Si × I

pieces, then using h to create a ”mapping torus”, and then filling in the binding with
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B ×D2. There is a natural correspondence between the embedded and abstract descrip-

tions. The schematic of the pages changing is shown in Figure 2.2. We should point

that we expect the full generalisation of partial and foliated open books in high dimen-

sions should involve more ways of changing the page topology, and also the boundary

can possibly be enriched to be a convex hypersurface in the sense of Honda-Huang [20].

However, for the purpose of this paper, and understanding stabilisation, the simple no-

tion described here suffices.

cutting out a ball

adding a ball

properly embedded

Lagrangian disk
L

S2j S2j+1

Figure 2.2: A schematic for how the page topology changes in a relative open book. The
darkened part of the boundary is the region α.
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Example 2.5.3. We may obtain a relative open book decomposition of a contact ball

B2n+1, obtained as the neighbourhood of a properly embedded Lagrangian disk in the

page of an open book, as follows. A schematic of this decomposition is Figure 4.2. We

derive this in detail in Section 4.1.

Here k = 4. The manifolds S0, S2, and S4 are the disk cotangent bundles of the n-disk

Dn, while the manifolds S1 and S3 are the disk cotangent bundles of the n-dimensional

annulus Sn−1 × I . The map h is the identity. The Lagrangian disk in the page shows up

in this neighbourhood as the core n-disk of S0, S2, and S4.

Our main purpose to define these relative open books is to write down how to glue

two such decompositions of manifolds together to obtain a closed manifold with an open

book decomposition.

Lemma 2.5.4. Consider two relative open book decompositions on (M1, ∂M1) denoted ({Si,1}2ki=0, h1),

and on (M2, ∂M2) denoted ({Si,2}2ki=0, h2). Suppose the page boundaries are denotedB1∪αi,1 and

B2 ∪ αi,2. These induce relative open book decompositions on the thickened boundary of the man-

ifolds ∂M1 × I and ∂M2 × I . Suppose there is a contactomorphism ϕ : ∂M1 × I → ∂M2 × I ,

which restricts to each page boundary ϕ|(αi,1×I) as a local symplectomorphism that identifies the

concave boundary at αi,1 with the convex boundary at αi,2. This extends the symplectic structures

on Si,1 and Si,2 to a Weinstein structure on Si,1 ∪Si,2. Then, M1 ∪M2 is a contact manifold with

supporting open book decomposition where the pages are symplectomorphic to Si,1 ∪ Si,2, and the

monodromy is h1 ∪ h2.

Proof. The fact that M1 ∪ϕ M2 is a contact manifold follows because the contact struc-

tures on each of them are identified by ϕ over the gluing region. The relative open book

fibrations, by the given conditions, glue to give a fibration over the glued fibers.
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2.6 Generalised Dehn Twist

Suppose (W,ω) is a symplectic manifold with an embedded Lagrangian sphere L ⊂ W .

A neighbourhood νW (L) is symplectomorphic to a neighbourhood of the zero section

of the canonical symplectic structure on (T ∗Sn, dλcan), by the Weinstein neighbourhood

theorem. The cotangent bundle of the n-sphere T ∗Sn can be regarded as a submanifold

of R2n+2 as the set {(p, q) ∈ Rn+1 × Rn+1 | q · q = 1, q · p = 0}. In these coordinates,

λcan = pdq. Define an auxiliary map describing the normalised geodesic flow

σt(q, p) =

 cos t |p|−1 sin t

−|p| sin t cos t


q
p


Then define

τ(q, p) =


σg1(|p|) p ̸= 0

−Id p = 0

g1 is a smooth map as graphed in Figure 2.3. Since τ is identity outside a neighbour-

hood of the Lagrangian {p = 0}, it can be extended to all of (W,ω) by the identity and

defines a symplectomorphism. The map τ is called the generalised Dehn twist about the

Lagrangian sphere L.

2.7 Stabilisation of open books

Given a contact open book M = Open (Σ2n, ϕ), suppose L is an embedded Lagrangian

n-disk in the page Σ whose boundary ∂L is a Legendrian sphere in the binding. Consider

Σ̃ to be the manifold obtained by attaching a Weinstein n-handle to Σ along ∂L. Then,

call LS the Lagrangian sphere in Σ̃ defined by the union of L and the core of the n-handle.
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π

g1

Figure 2.3: The function g1 parametrising a Dehn twist.

Definition 2.7.1. The contact open book M̃ := Open (Σ̃, ϕ ◦ τLS), where τLS is the Dehn

twist along LS , is called the stabilisation of Open(Σ, ϕ) along L.

The following is a well-known statement due to Giroux. A proof can be found in [16].

Proposition 2.7.2. The stabilisation of a contact open book Open(Σ, ϕ) along a Lagrangian disk

L bounding a Legendrian sphere in ∂Σ is contactomorphic to the contact manifold Open(Σ, ϕ).

In Section 4.2, we use the following folklore theorem (refer [16] for details), that doing

Legendrian surgery on a Legendrian sphere that lives on a page is the same as changing

the monodromy by a Dehn twist about that sphere.

Theorem 2.7.3. Let Open(Σ, ϕ) be a contact open book with a Legendrian sphere LS , which

is also a Lagrangian sphere in Σ. Denote the contact manifold obtained from Open(Σ, ϕ) by

Legendrian surgery along LS by ˜Open(Σ, ϕ)LS . Then, the contact manifolds

Open(Σ, ϕ ◦ τLS) ≃ ˜Open(Σ, ϕ)LS

are contactomorphic.
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Example 2.7.4. This is the higher dimensional analogue of Example 6.4 in [19]. The stan-

dard contact (2n+1)-sphere is supported by the open bookOpen(D(T ∗Sn), τS). The page

D(T ∗Sn) can be parametrised as {(p, q) ∈ Rn+1 × Rn+1 | |q|2 = 1, p · q = 0, |p|2 ≤ 1}, and

τS represents a positive Dehn twist about the sphere S = {pi = 0} in the page. This

open book decomposition can be obtained by gluing together two relative open book

decompositions on (2n + 1) balls. The first one is the relative decomposition in Exam-

ple 2.5.3, but shift the indices on the pages by 1 (we can do that since the monodromy is

identity). So the page Si,1 is really the page Si−1 in Example 2.5.3. Here the Lagrangian

is S. The second one is the complement of the neighbourhood of S0. It can be denoted

({Si,2}4i=0, τS0), where S1,2 and S3,2 are the disk cotangent bundles of n-disks, and S0,2,

S2,2, and S4,2 are disk cotangent bundles of the n-sphere. The schematic of the gluing is

given in Figure 2.4. This example is understood in more detail in Section 4.1.

2.8 Doubling Construction of Legendrians

Given a Legendrian link K ⊂ (R3, ξst), and two exact Lagrangian fillings F,G, we recall

the definition of the doubled Legendrian Λ(F,G) from Section 2.1 of [6].

Let (x1, y1, x2, y2) be coordinates on R4 with the standard symplectic form −d(y1dx1 +

y2dx2), and note that the symplectic form on the symplectisation R× R3 is d(etα), where

α = dz − ydx is the contact form on (R3, ξst).

Consider the exact symplectomorphism ϕT : (R× R3) → R4, defined by

ϕT (x, y, z, t) = (x, ety, et − eT − 1, z)

Suppose the Legendrian K is at t = T , and the exact Lagrangian filling F lives in

t ≤ T , and is a cylinder on K near T . The image of F under ϕT lands in {x2 ≤ −1}.
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S2j+1,2α2j+1,2

S2j+1,1

S2j,2α2j,2

S2j,1

D(T∗Sn)

Figure 2.4: The schematic for gluing two relative open books to obtain S2n+1 as in Exam-
ple 2.7.4. The concave and convex parts of the boundaries, that are relevant for gluing
the open books, are labeled. The unlabeled boundaries constitute the binding and are
convex.
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Suppose further that F agrees with {t} ×K on (T − 1) < t ≤ T , i.e. it has a conical end.

Then, in that region, the coordinates for F in (R×R3) look like (x, dz/dx, z, t) where (x, z)

are the coordinates for the front projection ofK. Under ϕT , this maps to (x, et(dz/dx), et−

eT − 1, z).

Consider this R4 as being the {w = 0} slice in R5, and it has the standard contact

structure ξst = ker(dw− y1dx1 − y2dx2). Exact Lagrangians in {w = 0} can be Legendrian

lifted via flowing along ∂w.

The conical end of F can be Legendrian lifted to (x, et(dz/dx), et − eT − 1, z, etz) (the

fifth coordinate is the w coordinate), whose front projection to the (x1, x2, z) coordinates

is (x, z, etz), i.e. the front in (x1, w) plane scaled in the x2 direction. The Legendrian lift of

F thus is an embedded Legendrian with its boundary as just described.

Now, consider the reflection in R4 defined by (x1, y1, x2, y2) 7→ (x1, y1,−x2,−y2). Com-

posing this reflection with ϕT , we can map G to an exact Lagrangian that lives in x2 ≥ 1.

Similarly as above, we can lift it to a Legendrian with its boundary being a cylinder onK.

Now, these two Legendrians with boundary can be glued by the Legendrian correspond-

ing to the front (x, sz, eT z) where s goes from -1 to 1, where (x, z) are the coordinates in

the front projection of K.

This is how the doubled Legendrian Λ(F,G) is constructed. In this thesis, we will call

a double symmetric if F and G are Hamiltonian isotopic, and asymmetric otherwise.

In [11], the authors show that the isotopy class of a symmetric double Λ(L,L) is deter-

mined by the formal data associated to the filling L, which in turn determines the isotopy

class of the Legendrian lift of L, by the h-principle. The following is the result they prove.

Theorem 2.8.1. [11, Theorem 1] If L ⊂ (R × R2n−1) is an embedded exact Lagrangian sub-

manifold with Legendrian boundary, then the Legendrian isotopy class of Λ(L,L) ⊂ R2n+1 is

determined by the induced trivialisation of TL⊗ C.
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CHAPTER 3

BACKGROUND - LEGENDRIAN WEAVES AND MICROLOCAL INVARIANTS

This chapter contains the relevant background for understanding Legendrian surfaces

via weaves. The main theme is the following: certain Legendrian surfaces can be de-

scribed via N -graphs, which is a graph with (N −1) different coloured edges, with every

colour being associated to a pair of consecutive integers between 1 and N , with sin-

gle coloured trivalent vertices, and bicoloured hexagonal vertices (where two coloured

edges corresponding to consecutive pairs interlace). This graph encodes how to ”weave”

the surface and draw its front diagram, analogous to how dots on a circle can encode a

braid. The main reference for this is [21]. We will use the letters G and Γ to denote the

N -graphs.

The invariants to distinguish these surfaces come from the microlocal theory of sheaves.

We work in a simplified setting, as will be made clear in Section 3.3, so that the invariant

M1(Λ), the moduli space of microlocal rank 1 sheaves with singular support at the Leg-

endrian, is essentially the data of a collection of flags in CN for some N , with appropriate

transversality conditions. The moduli space M1(Λ) also contains information about the

exact Lagrangian fillings of Λ. Every exact Lagrangian filling L induces a toric chart

(chart isomorphic to (C∗)b1(L) on M1, and in certain nice cases, using a process called

mutations, one can change the filling which changes the corresponding chart in a suitable

way. This is the cluster structure on M1. The main reference for these sections is [22].
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3.1 Positive braids and (−1)-closures

A braid with only positive crossings represents a Legendrian link in J1(S1). By satelliting

the braid over the standard Legendrian unknot, we get a corresponding Legendrian knot

in (R3, ξst) or equivalently in (S3, ξst). As a warm up to weaves, a Legendrian knot coming

from an N -strand positive braid can be represented as a diagram with a sequence of (at

most (N − 1)) coloured points on a line, with every point representing a crossing. This

sequence of points represents a unique Legendrian knot in J1(S1), and the procedure of

satelliting about the standard Legendrian unknot produces a Legendrian knot in (S3, ξst)

which is obtained by adding a full negative twist ∆ to the braid before closing the strands

up. An example which gives the trefoil is shown in Figure 3.6. The knot thus obtained

after satelliting is called the (−1)-closure of the braid β.

3.2 Legendrian Weaves

In this section, we describe Legendrian weaves, a geometric construction of Casals and

Zaslow that can be used to combinatorially represent Legendrian surfaces Λ in the 1-

jet space J1D2 = T ∗D2 × Rz by the singularities of their front projection in D2 × Rz. In

practice, one often considers the Lagrangian projection of Λ when Λ has a Legendrian

link at its boundary in order to obtain an exact Lagrangian filling of λ = ∂Λ. Although

the Legendrian surfaces we construct in this work do not have boundary, the Legendrian

weaves we define in this section will generally be taken to have nonempty boundary, as

we construct Legendrian doubles by gluing together two such (Lagrangian projections

of) Legendrian weaves.

Let β ∈ Br+n be a positive braid. The contact geometric description of a Legendrian

weave surface with boundary λ(β∆) is as follows. We construct a filling of a Legendrian
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λ(β∆) by first describing a local model for a Legendrian surface Λ in J1D2 = T ∗D2 ×

Rz. We equip T ∗D2 with the symplectic form d(erα) where ker(α) = ker(dy1 − y2dθ) is

the standard contact structure on J1(∂D2) and r is the radial coordinate. This choice of

symplectic form ensures that the flow of erα is transverse to J1S1 ∼= R2 × ∂D2 thought of

as the cotangent fibers along the boundary of the 0-section. The Lagrangian projection

of Λ is then a Lagrangian surface in (T ∗D2, d(erα)). Moreover, since Λ ⊆ (J1D2, ker(dz −

erα)) is a Legendrian, we immediately obtain the function z : π(Λ) → R satisfying dz =

erα|π(Λ), demonstrating that π(Λ) is exact.

The boundary of π(Λ) is taken to be a positive braid β in J1S1 so that we regard it as a

Legendrian link in a contact neighborhood of ∂D2. As the 0-section of J1S1 is Legendrian

isotopic to a max-tb standard Legendrian unknot, we can take ∂π(Λ) to equivalently be

the standard satellite of the standard Legendrian unknot. Diagramatically, this allows us

to express the braid β in J1S1 as the (−1)-framed closure of β in contact S3.

The immersion points of a Lagrangian projection of a weave surface Λ correspond

precisely to the Reeb chords of Λ. In particular, if Λ has no Reeb chords, then π(Λ) is an

embedded exact Lagrangian filling of ∂(Λ). In the Legendrian weave construction, Reeb

chords correspond to critical points of functions giving the difference of heights between

sheets.

N -Graphs and Singularities of Fronts

Given a graph Γ ⊂ S2, to construct a Legendrian weave surface Λ in J1(S2), we combina-

torially encode the singularities of its front projection in a colored graph. Locally, J1(S2)

can be identified with J1(D2) and we will describe the weaving in these local models. Lo-

cal models for these singularities of fronts are given by Arnol’d [23, Section 3.2]; the three

singularities that appear in our construction describe elementary Legendrian cobordisms
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and are pictured in Figure 3.1.

Figure 3.1: Singularities of front projections of Legendrian surfaces. Labels correspond
to notation used by Arnold in his classification.

Since the boundary of our singular surface Π(Λ) is the front projection of an N -

stranded positive braid, Π(Λ) can be pictured as a collection of N sheets away from its

singularities. We describe the behavior at the singularities as follows:

1. TheA2
1 singularity occurs when two sheets in the front projection intersect transver-

sally. This singularity can be thought of as the trace of a constant Legendrian iso-

topy in the neighborhood of a crossing in the front projection of the braid β∆2.

2. The A3
1 singularity occurs when a third sheet passes transversally through an A2

1

singularity. This singularity can be thought of as the trace of a Reidemeister III

move in the front projection.

3. A D−
4 singularity occurs when three A2

1 singularities meet at a single point. This

singularity can be thought of as the trace of a 1-handle attachment in the front

projection.

Having identified the singularities of fronts of a Legendrian weave surface, we en-

code them by a colored graph Γ ⊆ D2. The edges of the graph are labeled by Artin gener-

ators of the braid and we require that any edges labeled σi and σi+1 meet at a hexavalent

vertex with alternating labels while any edges labeled σi meet at a trivalent vertex. To
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obtain a Legendrian weave Λ(Γ) ⊆ (J1D2, ξst) from an N -graph Γ, we glue together the

local germs of singularities according to the edges of Γ. First, consider N horizontal

sheets D2 × {1} ⊔D2 × {2} ⊔ · · · ⊔D2 × {N} ⊆ D2 ×R and an N -graph Γ ⊆ D2 × {0}. We

construct the associated Legendrian weave Λ(Γ) as follows [21, Section 2.3].

• Above each edge labeled σi, insert anA2
1 crossing between the D2×{i} and D2×{i+

1} sheets so that the projection of theA2
1 singular locus under Π : D2×R → D2×{0}

agrees with the edge labeled σi.

• At each trivalent vertex v involving three edges labeled by σi, insert a D−
4 singular-

ity between the sheets D2 × {i} and D2 × {i + 1} in such a way that the projection

of the D−
4 singular locus agrees with v and the projection of the A1

2 crossings agree

with the edges incident to v.

• At each hexavalent vertex v involving edges labeled by σi and σi+1, insert an A3
1

singularity along the three sheets in such a way that the origin of the A3
1 singular

locus agrees with v and the A2
1 crossings agree with the edges incident to v.
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N
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Figure 3.2: The weaving of singularities of fronts along the edges of the N -graph (cour-
tesy of Roger Casals and Eric Zaslow, used with permission). Gluing these local models
according to the N -graph Γ yields the weave Λ(Γ).
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If we take an open cover {Ui}mi=1 of D2 × {0} by open disks, refined so that any disk

contains at most one of these three features, we can glue together the resulting fronts

according to the intersection of edges along the boundary of our disks. Specifically, if Ui∩

Uj is nonempty, then we define Π(Λ(U1 ∪ U2)) to be the front resulting from considering

the union of fronts Π(Λ(U1)) ∪ Π(Λ(Uj)) in (U1 ∪ U2)× R.

Definition 3.2.1. The Legendrian weave Λ(Γ) ⊆ (J1D2, ξst) is the Legendrian lift of the

front Π(Λ(∪m
i=1Ui)) given by gluing the local fronts of singularities together according to

the N -graph Γ.

Equivalence of N -graphs

We consider Legendrian weaves to be equivalent up to Legendrian isotopy fixing the

boundary. Such Legendrian isotopies can also often be combinatorially understood through

N -graphs. We can restrict our attention to specific isotopies, pictured in Figure 3.3 and

refer to them as Legendrian Surface Reidemeister moves. From [21], we have the follow-

ing theorem relating surface Reidemeister moves to the corresponding N -graphs.

Theorem 3.2.2 ([21], Theorem 4.2). Let Γ and Γ′ be two N -graphs related by one of the moves

shown in Figure 3.3. The Legendrian weaves Λ(Γ) and Λ(Γ′) are Legendrian isotopic relative to

their boundaries.

The topology of the Legendrian surface

Given a graph G on S2, we can read the smooth topology of the surface Λ(G) as follows.

If G is an N -graph, the surface Λ(G) is a branched (N)-fold cover of S2. The genus of
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Figure 3.3: Legendrian Surface Reidemeister moves for N -graphs. Clockwise from top
left, a candy twist, a push-through, a flop, and two additional moves.

Λ(G) [21, Section 2.4] is given by:

g(Λ(G)) =
1

2
(v(G) + 2− 2N)

3.2.1 Legendrians in (R5, ξst) and Lagrangian Fillings

Given an N -graph G that lives on S2, we will use Λ(G) to denote the Legendrian ob-

tained by satelliting the Legendrian in J1(S2) to the standard 2-dimensional Legendrian

unknot. Figure 3.4 give some simple examples of N -graphs on S2, and their correspond-

ing Legendrians (obtained by satelliting about the standard unknot) are drawn in the

front projection are shown in Figure 3.5.

Free N -graphs and Lagrangian fillings

This is described in Section 7.1.2 of [21]. Consider a graph G properly embedded in D2.

Definition 3.2.3. An N -graph G ⊂ D2 is said to be free if the Legendrian lift Λ(G) ⊂

J1(D2) contains no Reeb chords.
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Figure 3.4: In clockwise from top left, N -graphs that describe the standard unknot, the
standard torus T 2

st, the first in the infinite family of spheres found in [5], and the Clifford
torus T 2

C .

When G is free, the Lagrangian projection of Λ(G) is an embedded exact Lagrangian

filling of Λ(∂G), which is the (−1)-closure of the braid β formed by the boundary of G.

Given a free N -graph G, the Lagrangian projection of Λ(G) describes a Lagrangian

filling of the knot the (−1)-closure of the boundary braid coming from ∂G.

Example 3.2.4. [14, 12] The torus knot λ(2, n) admits at least Cn = 1
n+1

(
2n
n

)
fillings coming

from 2-graphs, as pictured in Figure 3.6 for the trefoil λ(2, 3). In Figure 3.6, the trefoil is

λ(2, 3) on the left drawn in its front projection, and as a 1-dimensional weave in the

bottom. Satelliting this weave over the max-tb unknot produces the (−1)-closure of the

29



Figure 3.5: The fronts of some Legendrian surfaces in (R5, ξst). Clockwise from top left
are the standard unknot, the standard torus T 2

st, a knotted sphere found in [5], and the
Clifford torus T 2

C .

2-strand braid with 5 positive crossings. Its fillings are given by trivalent trees with 5-free

boundary edges.

Example 3.2.5. Given any (−1)-closure of a positive braid, Section 3.3 of [22] gives an

algorithm to produce a free N -graph filling, i.e., an exact Lagrangian filling.

Legendrian surgery moves on weaves

In [21], the authors describe some local graph moves that translate to certain surgeries

on the associated Legendrians. In the original manuscript, these moves are described
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Figure 3.6: The trefoil λ(2, 3), pictured as the 1-weave on bottom-left satellited about the
max-tb unknot, and its fillings, pictured as 2-graphs.

for Legendrians in J1(C) for arbitrary C and there are subtleties regarding where the

resultant Legendrian lives. For our setting, everything lives in a J1(S2) neighbourhood

for a standard Legendrian unknot so these subtleties can be ignored. The local moves are

described in Figure 3.7 and in the following theorem.

Theorem 3.2.6 (Theorem 4.10, [21]). Given two N -graphs, the local modifications shown in

Figure 3.7 correspond to the following:

1. A connect sum.

2. Connect summing with a T 2
st.
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Figure 3.7: The surgery moves in Theorem 3.2.6.

3. Connect summing with a T 2
C .

3.2.2 Loose Legendrians

A subclass of Legendrian submanifolds, called loose [24], are classified by an h-principle.

For Legendrians represented by weaves, there is a simple combinatorial criterion that

characterises looseness. Let C be a surface (in our thesis we only use C = S2). Let

ι : C → R5 be a Legendrian embedding into the standard contact structure.

Definition 3.2.7. [21] An N -graph G ⊆ C is said to have a bridge if there exists two

disjoint 2-disks D1, D2 ⊆ C such that the complement G \ (G ∩D1 ∪ G ∩D2) consists of
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(N−1) disjoint strands with labels τ1, τ2, . . . , τN−1 consecutive with respect to a transverse

oriented curve in C \ (D1 ∪D2).

Theorem 3.2.8. [21] IfG ⊂ C is anN -graph with a bridge, then the satellite Legendrian ι(Λ(G))

is a loose Legendrian.

3.2.3 Mutations

The word mutation arises in symplectic geometry in various contexts (wall-crossing phe-

nomena, Lagrangian mutations), and it is related to underlying connections with cluster

varieties and quiver mutations. In [21] the authors define Legendrian mutations which

is a related operation on Legendrian surfaces in (R5, ξst) – it amounts to performing a

Lagrangian mutation on the Lagrangian projection and often (but not always) produces

a new Legendrian not isotopic to the original. For the purpose of this thesis, the process

of mutation will be defined for Legendrian surfaces represented by N -graphs.

Definition 3.2.9. [21] LetG be anN -graph and e an i-edge between two trivalent vertices.

The graph produced by the local move shown in Figure 3.8 is called the mutation of G

along e and denoted µe(G).

Definition 3.2.10. The Legendrians ι(Λ(G)) and ι(Λ(µe(G))) are said to be mutation-

equivalent.

In the front projection, the local modification due to the mutation move is denoted in

Figure 3.8.

Lagrangian fillings corresponding to two mutation-equivalent N -graphs are related

by Lagrangian disk surgery [25].
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Figure 3.8: The mutation move in N -graphs (left), and the corresponding fronts (right).

3.3 Flag moduli Invariants of Legendrian knots and surfaces

Given a Legendrian Λ ⊂ (R2n+1, ξst), the work of [26] shows that the moduli of con-

structible sheaves on Rn+1 with singular support at Λ is a Legendrian isotopy invariant

of Λ. For this thesis, we shall not define what constructible sheaves or singular support

mean, but will use a combinatorial reformulation for Legendrian knots in (R3, ξst) due

to [27], and for Legendrian weaves in (R5, ξst) due to [21]. These works recover the as-

sociated moduli of microlocal rank one sheaves as the quotient stack of a flag variety

associated to the knot or weave. The invariant is denoted M1(Λ).
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First, we describe the general idea for how the flag moduli space arises. We caution

the reader that several subtleties regarding algebraic geometry notions are suppressed

in this section. The general discussion in [27] uses complexes of sheaves rather than

sheaves, and [21] uses compatible local systems and defines invariants for Legendrians

in J1(C) for a general surface that is not simply connected. However, since we only

work in J1(S2), and we do not have cusps in the front projections, we can work only

with vector spaces and maps between them.

The front projection of Λ defines a stratification of Rn+1 \ΠF (Λ). One first associates a

vector space to each component of Rn+1\ΠF (Λ), or the top-dimensional strata, with 0 be-

ing associated to the unbounded component (this is the notion of a constructible sheaf).

Then, across the lower-dimensional strata corresponding to Λ, the vector spaces on ei-

ther side differ in dimension by one (this corresponds to microlocal rank one), and there

are homomorphisms between them (the constraints on dimension and homomorphisms

come from the singular support condition). We shall now make this precise for n = 1

and n = 2, in the context of (−1)-closures of positive braids, and for Legendrian weaves

of N -graphs, respectively.

3.3.1 Invariants of Legendrian knots

The following theorem for (−1)-closures of positive braids is proven in [27, Section 3],

but expressed as written here in [22, Proposition 4.1].

Theorem 3.3.1. [27] For a Legendrian Λ which is the (−1)-closure of a positive braid with N

strands, the invariant M1(Λ) is the data, up to PGLN(C) equivalence, of C-vector spaces at

each connected component of R2 \ ΠF (Λ) and linear maps between the vector spaces in adjacent

components separated by an arc of ΠF (Λ) such that:
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• The vector space for the unbounded component is 0

• The dimensions of vector spaces in adjacent components, separated by an arc of ΠF (Λ),

differ by 1

• Given an arc of ΠF (Λ), there is a linear map from the vector space for the lower component

to the vector space in the higher component of R2 \ ΠF (Λ)

• At every cusp, the composition of the two maps involved is the identity, as shown in Fig-

ure 3.9

• At every crossing, the four linear maps involved form a commuting square which is exact,

as shown in Figure 3.9

Example 3.3.2. As an example, we show how to compute the sheaf moduli for the trefoil

λ(2, 3) in Figure 3.10. The conditions given above say that the images of C in C2, under

the homomorphisms fi, should be complex lines that satisfy: f1 ̸= f2, f2 ̸= f3, f3 ̸= f4,

f1 ̸= f5, f4 ̸= f5 (here ̸= means the two should be 2-vectors which form a 2 × 2 matrix

with determinant 1. Under the PGL2 action, we can fix two of the lines f1 ̸= f2 to be

(1, 0) and (0, 1). Then f3 ̸= f2 can be chosen to be (−1, x) for some x ∈ C, which means

f4 ̸= f3 should be (y,−xy − 1) for some y ∈ C. It follows that f5 ̸= f4 should be given by

f5 = (1 + yz,−x− z − xyz) for some z ∈ C. Finally, f5 ̸= f1 forces that (x+ z + xyz = 1),

which is the condition that defines all possible C-vector space valued microlocal one

constructible sheaves on R2 with singular support on λ(2, 3), and 0 on a neighbourhood

of ∞.
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Figure 3.9: The conditions near a cusp and a crossing.

3.3.2 Invariants of Legendrian surfaces

We will need the notion of flags to define the invariants for surfaces. We will consider

flags over fields, but in general it works for flags over commutative rings. Let K be the

ground field.

Definition 3.3.3. A flag F is a sequence of nested linear subspaces in KN , i.e. it is a

collection of i-dimensional subspaces F i of KN . Equivalently, a flag is also a sequence of

nested projective planes in PKN−1.

There is a natural action of GLN(K), or simply GLN , on the space of flags.
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Figure 3.10: The trefoil λ(2, 3) as a rainbow closure, and computing its sheaf moduli.

Now we will describe the moduli of flags associated to an N -graph G ⊂ C where C is

simply connected. In [21] this space is denoted M(G,C) or M(G), and then it is shown

that it is isomorphic to M1(Λ(G)). For our purpose, we will simply denote the moduli of

flags as M1(Λ(G)), since that is the invariant of the geometric surfaces we consider. De-

pending on the context, M1(Λ(G)) will either be an invariant up to Legendrian isotopy

for the Legendrian Λ(G), or an invariant up to Hamiltonian isotopy for the Lagrangian

filling π(Λ(G)) of the Legendrian knot Λ(∂G), when G is a free N -graph [21]. In this

thesis we only consider C = S2 and the Legendrians after satelliting about the standard

unknot, thus the invariants are invariants up to Legendrian isotopy in (R5, ξst) for the

38



non-free, Legendrian surface case.

Definition 3.3.4. [21, Definition 5.2] Let C be a connected, simply connected surface and

let G ⊆ C be an N -graph. Let SN denote the symmetric group on N symbols. The framed

flag moduli space M̃(C,G) associated to G is comprised of tuples of flags, specifically:

1. There is a flag F•(F ) associated to each face F of the N -graph G.

2. For each pair of adjacent faces F1, F2 ⊂ C\G, sharing an i-edge, their two associated

flags F•(F1), F•(F2) are in relative position τi ∈ SN , i.e., they must satisfy

F j(F1) = F j(F2), 0 ≤ j ≤ N, j ̸= iF i(F1) ̸= F i(F2)

The flag moduli space of Λ(G) is then the quotient stack

M1(Λ(G)) := M̃(C,G)/PGLN

From the above, it is clear that the flag moduli vanishes for loose Legendrian weaves.

Lemma 3.3.5. For a free N -graph G, the flag moduli space vanishes.

Proof. The bridge edges force self-transversality conditions on a single flag, which cannot

be satisfied.

We will do some example computations, most of which have already been worked

out in [21] and [12].

Example 3.3.6. First consider the flag moduli around an (i, i + 1)-edge in an N -graph.

By Definition 3.3.4, the data is of three flags in CN – F1, F2, and F3, which only disagree

at the i-th space, i.e., considering the two dimensional spaces F i+1
1 /F i−1

1 , F i+1
2 /F i−1

2 , and
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Figure 3.11: Computing the flag moduli around a trivalent vertex and a short I-cycle.

F i+1
3 /F i−1

3 , there are three mutually transverse lines l1, l2, and l3. So the data is of three

distinct points in P1(C). However, by the PGLN action, three mutually transverse lines

can be mapped to 0, 1,∞. Thus the local flag moduli around a trivalent vertex is just a

point.

Example 3.3.7. Following from Example 3.3.6, for a short I-cycle, we can fix the flag

moduli around one of the vertices and choose the lines to be 0, 1, and ∞ as shown in

Figure 3.11. Then, the local flag moduli depends on the choice of l1, which needs to be

distinct from 0 and ∞. Thus, the flag moduli around an I-cycle is exactly C∗. This is

what is called the microlocal monodromy and gives a cluster coordinate for the toric chart
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Figure 3.12: Computing the flag moduli for the examples in Figure 3.4

induced by a filling.

Example 3.3.8. Here we will work out the sheaf moduli, similar to above, for the exam-

ples in Figure 3.12.

1. For the unknot, we need three mutually transverse lines, hence the flag moduli is a

point, similar to Example 3.3.6.

2. For T 2
st, similar to Example 3.3.7, we need l1 ̸= l2, l1 ̸= l4, l3 ̸= l4, l2 ̸= l4. Thus we

can fix l2, l3, and l4 to be 0, 1, and ∞ respectively. Thus the flag moduli depends on

the choice of l1 which cannot be 0 or ∞, hence it is C∗.
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3. For this sphere, we can fix l1, l4, and l2 to be 1, 0, and ∞ respectively. Thus the flag

moduli depends on the choice of l3 ̸= l2, hence is isomorphic to C.

4. For the Clifford torus T 2
c , all the four lines l1, l2, l3, and l4 have to be mutually trans-

verse. Thus the flag moduli is isomorphic to C \ {0, 1}.

The computations become significantly harder when one goes from 2-graphs to 3-

graphs.

3.3.3 Point counts over finite fields

One extract easier to compute invariants for Legendrians Λ corresponding to 2-weaves.

Following the description in [12], the points in M1(Λ) can be counted over finite fields.

Proposition 3.3.9. [12, Proposition 1.2] Let Γ be a simple, cubic planar graph, Γ̂ its dual graph.

Let PΓ̂ denote the chromatic polynomial, whose value PΓ̂(c) is the number of colourings of Γ̂ with

c colours. Let Fq be a field with q elements. Then

#M1(Λ(Γ)) =
1

q3 − q
.PΓ̂(q + 1)

We can use point counts, as shown in the following examples, to distinguish cubic

planar graph Legendrians.

Example 3.3.10. 1. First, we will see how the finite field counts work for some of the

examples in 3.3.8. For T 2
st, the finite field point count is (q − 1), while for T 2

c , it is

(q − 2).

2. We can use point counts to distinguish the two genus 3 surfaces in Figure 3.13. For

the cube graph, the Legendrian on the left, the number of points in the flag moduli
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Figure 3.13: Two distinct genus 3 Legendrian surfaces represented by cubic planar
graphs.

over Fq is (q + 1)3 − 9(q + 1)2 + 29(q + 1)− 32, while for the one on the right, which

can be seen to be #3T 2
c by Theorem 3.2.6, the point count is (q − 2)3.

3.3.4 Toric charts from exact Lagrangian fillings

Given a Legendrian Λ ⊂ T ∗,∞M , an exact Lagrangian filling L induces a ”nice” chart,

isomorphic to (C∗)|b1(L)|, on the sheaf moduli of Λ. We will cite the results that establish

this, stated in the precise categorical language, even though we will not discuss the cat-

egorical background in depth. The result follows from [28, 29, 30], but is stated in full

generality in Theorem B.20 in the appendix of [31], which is what we will paraphrase as
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follows.

Theorem 3.3.11. Let L ⊂ T ∗M be an exact Lagrangian filling of a Legendrian submanifold

Λ ⊂ T ∗,∞M with zero Maslov class, whose primitive f |L is proper and bounded from below. Let

L̃ ⊂ J1(M) be the Legendrian lift of L. Then

1. there exists a fully faithful functor taking local systems on L̃ to constructible sheaves on

M × R supported on L̃

2. There exists a fully faithful functor taking constructible sheaves on M ×R supported on L̃

to constructible sheaves on M supported on Λ.

Item (2) in the above theorem describes how exact Lagrangian fillings describe ob-

jects in the sheaf moduli of the boundary Legendrian – this amounts to imposing the

additional singular support conditions coming from the exact Lagrangian. Item (1) de-

scribes how for the exact filling L, sheaves with singular support on the Legendrian lift

L̃ are in one-to-one correspondence with local systems on the L. Local systems can be

thought of as GL1(C) representations of π1(L), which, by a general fact, are in one-to-

one correspondence with locally constant sheaves on L (some literature in the field uses

the term local system interchangeably for locally constant sheaves and representations).

Also, for C∗-valued representations, those can be abelianised and thus local systems on

L can be identified with (C∗)b1(L).

Putting (1) and (2) together we get that L defines a chart on M1(λ) isomorphic to

(C∗)b1(L). Given this fact, one can obtain constraints to show that certain Legendrians

cannot be exact Lagrangian fillable. For example:

Theorem 3.3.12. [12, Theorem 1.3] Let S ⊂ T∞R3 be the genus-g Legendrian surface defined by

a simple cubic planar graph Γ. Then S has no smooth oriented graded exact Lagrangian fillings

in R6.
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3.4 Cluster structure on the space of exact Lagrangian fillings

Cluster algebras, first introduced by S. Fomin and A. Zelevinsky [32] in the context of Lie

theory, are commutative rings endowed with a set of distinguished generators that have

remarkable combinatorial structures. Cluster varieties, a geometric enrichment of cluster

algebras introduced by V. Fock and A. Goncharov [33], are affine varieties equipped with

an atlas of torus charts whose transition maps obey certain combinatorial rules. Cluster

varieties come in dual pairs consisting of a cluster K2-variety, also known as a cluster

A-variety, and a cluster Poisson variety, also known as a cluster X -variety.

Combinatorially, a cluster variety can be described by starting with an initial seed,

which is a quiver with functions associated to each vertex. The entire cluster variety is

then produced by all possible mutations on the initial seed and its mutated seeds. The

K2 and X varieties are produced by two different but related quivers and the mutation

formulas are slightly different.

In [22], Casals and Weng show that when λ is represented by a (−1)-closure of a pos-

itive braid, M1(λ) is a cluster variety. They construct the initial seeds by constructing an

initial weave filling – the quiver for the K2-variety comes from the intersection quiver of

relative cycles on the fillings, while the quiver for the Poisson variety comes from the in-

tersection quiver of absolute cycles on the filling. The functions associated to the quiver,

to produce the seed, come from microlocal merodromies in the first case, and microlocal

monodromies in the second – it amounts to recording how the sheaf changes along a rel-

ative or absolute cycle, respectively, as in Example 3.3.7 for an absolute cycle. The term

microlocal merodromy refers to how the sheaf changes while being parallel transported

along a relative cycle in the exact Lagrangian filling, and is described in Section 4.6.1 of

[22]. Mutating along the cycles in the weave result in mutations of the associated seed.
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CHAPTER 4

CONSTRUCTIONS FROM OPEN BOOKS AND ISOTOPY

In this chapter, we deal with how to understand stabilisation of open books as a surgery.

Then, we define two constructions of Legendrian spheres from Lagrangian disks in the

page, and show that these are isotopic. We further show that these are isotopic to the

standard unknot and generalise the result of Courte-Ekholm in the case of disk fillings.

4.1 Understanding stabilisation as a surgery

In this section, we will prove Theorem 1.1.4. We will need a lemma, proved in [16] that

will allow us to assume that if L is a Lagrangian disk on the page of an open book, and L′

is the associated Legendrian, the open book pages can be perturbed, without changing

the page topology or the monodromy, so that L′ is a Lagrangian on a page as well as a

Legendrian in the manifold.

Lemma 4.1.1 (Lemma 4.2 in [16]). Suppose (M, ξ) is a contact manifold of dimension greater

than 3 with a supporting open book where the pages are Σ and the monodromy is ψ, i.e. M =

Open(Σ, ψ). If L is a Lagrangian sphere in the page, then we can isotope the contact structure on

M and find a supporting open book with symplectomorphic page and isotopic monodromy such L

becomes Legendrian in M .

We will now discuss the proof of Theorem 1.1.4.
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4.1.1 Outline of the idea:

We will describe stabilisation of an open book supporting (M, ξ) by removing and reglu-

ing a (2n + 1)-ball in the manifold. The balls will have two different relative open book

decompositions. Extending the induced relative open book fibration map of the com-

plement of the first ball, over the new ball will show that after regluing, we get an open

book decomposition of the manifold that has the same abstract open book that describes

the stabilised manifold. We will glue the relative open books using Lemma 2.5.4. By

Proposition 2.7.2, we will conclude that the supported contact structure on M by this

open book is contactomorphic to ξ.

Now we discuss how we obtain the (2n + 1)-ball to surger, as described in the above

paragraph. The manifold M has the open book given by ν : (M − B) → S1, where

ν−1(pt) ≃ Σ. L is a Lagrangian disk in a page which is also a Legendrian in M . We can

also assume that B here is a tubular neighbourhood of the binding.

Also, consider the abstract open book Open(D(T ∗(Sn)), τS0) which is contactomor-

phic to (S2n+1, ξst). Here D(T ∗(Sn)) refers to the disk cotangent bundle of the sphere,

which can be parametrised as {(p, q) ∈ Rn+1 × Rn+1 | |q|2 = 1, p · q = 0, |p|2 ≤ 1}, and τS0

represents a positive Dehn twist about the sphere S0 = {pi = 0} in the page. The sym-

plectic form on the page is given by ω = dp ∧ dq. The Lagrangian disk S := {(p, q) | q =

(0, . . . , 0, 1)} is a Legendrian in the manifold. Here also, we can assume that the binding

is thickened.

By the Weinstein neighbourhood theorems, given two Legendrian disks in different

contact manifolds, they have contactomorphic neighbourhoods. We will take a (2n+ 1)-

ball neighbourhood of S and identify that with a neighourhood of L. We will call the

neighbourhood of S as DS , and that of L as DL. Assume the pages in the open books
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are indexed by S1 = R/Z. This neighbourhood D will be built by taking thickened

neighbourhoods of S (or neighbourhoods of L) in pages (0, 0.5), and neighbourhoods of

∂S in pages (0.5, 1). This givesD the structure of a relative open book, and its intersection

with the bindings of the ambient manifolds creates the binding. Hence, it makes sense

to talk about pages of D, and other than two singular ones, the pages of D will have two

kinds of topology. They will either be T ∗Dn = Dn ×Dn, or T ∗(Sn−1 × I) = Dn+1 × Sn−1.

Thus DL = NL ∪ N∂L ∪ BL, where NL is the union of the neighbourhoods of L, N∂L

is the union of the neighbourhoods of ∂L, and BL is the portion of the binding that

comes within DL. Similarly, DS = NS ∪ N∂S ∪ BS . This is the same relative open book

decomposition that was mentioned in Example 2.5.3.

Here we describe what we meant by twisting the pages. From the pages of M where

neighbourhood of Lwere removed, we glue in the complements of ∂S neighbourhood, and

the remaining pages, we glue in the complement of neighbourhood of S. Which is to say,

∂NL glues to ∂N∂S , ∂N∂L glues to ∂NS .

This gluing is done so that for the complement of ∂S neighbourhood, which is essentially

still D(T ∗Sn), a portion is identified with D(T ∗Dn), such that it seems as if L is iden-

tified with the core of this piece, and the remaining D(T ∗Dn) ∼ Dn × Dn is glued on

like attaching a Weinstein n-handle along the isotropic sphere ∂L. In the sense of Sec-

tion 2.5, the initial open book (B, ν) on M is split as the union of two relative open books

on M \ DL and DL. The abstract relative open book description of DL is the same as in

Example 2.5.3, denoted ({Si,1}4i=1, id) while the abstract relative open book description of

M \DL is ({Si,2}4i=1, ϕν), where S2j+1,2 is the complement of L, while S2j,2 is the comple-

ment of ∂L. Similarly, the open book on (S2n+1, ξst) is split into DS and S2n+1 \DS , as in

Example 2.7.4. Denote the relative open book on S2n+1 \DS as ({Si,3}4i=1, ϕν), where S2j,3

is the complement of S, while S2j+1,3 is the complement of ∂S. Then, the relative open
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S2j+1,2 S2j+1,3

S2j,2 S2j,3

Figure 4.1: This is a schematic of how the pages are being modified under the stabilisation
operation. On the left are pages of M , while the annuli represent D(T ∗Sn), their core
being S0. The blue arc in the annuli is S. In the page of M , the blue arc represents
L. The shaded portion in the top row left represents a page in NL, while that on the
top row middle is a page in N∂S . For the gluing in the top row, the complement of the
shaded region in the small rectangular portion of the annulus is first identified with the
neighbourhood of L, then the remaining region glues on as a critical Weinstein handle.
The gluing in the second row is similar, without the identification step.

books on M \ DL and S2n+1 \ DS are glued, matching the indices. The shift in indices

from DL to DS is what we refer to as twisting. A schematic of what is going on is shown

in Fig 4.1.

The rest of the section is devoted to working out the technical details of this gluing,

and proving that this operation does indeed yield the stabilised open book as defined

in Definition 2.7.1. For n = 1, this can be done using convex surfaces and foliated open

books, and is mentioned in [19] by Licata-Vertesi. To help the reader’s intuition, we
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Figure 4.2: The smooth ball DL that gets removed. The foliation is from its intersection
with the pages, and the points where the arcs meet are the binding. On the right, is a
schematic of the neighbourhoods whose intersection with D is shown in the left figure.
The top three are the neighbourhoods of L, the leftmost corresponding to two blue arcs
near the equator, the one to its right two blue arcs nearer the poles, and the rightmost
being one of the neighbourhoods contributing the black arcs. Similarly, the lower three
represent, from left to right, the neighbourhoods of ∂L contributing green arcs near the
equator, ones that go higher (or lower), and the black arcs.

describe that argument first.

Proof of Thm 1.1.4 in the case n = 1 (Example 6.6, [19]): The Legendrian L is a properly em-

bedded arc living on the page of an open book supporting (M, ξ), while S is a Legendrian

arc in (S3, ξst) is S, which is the Legendrian corresponding to a fiber in the D(T ∗S1) page

of the open book supporting (S3, ξst). This is exactly the annulus open book for (S3, ξst),

and S is the co-core arc.

As discussed above, a neighbourhood of L in (M, ξ) is DL is contactomorphic to DS

which is a neighbourhood of S. The balls DS and DL can be chosen so that their bound-

aries are convex, and the leaves of the characteristic foliation correspond to their inter-

section with the pages. This is pictured in Figure 4.2. The blue represent the intersection

of ∂DS with pages that have a neighbourhood of S inside D, i.e. pages in NS , while the
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green represent the intersection with pages that have a neighbourhood of ∂S inside D,

i.e., the pages in N∂S . The foliation on ∂DL = ∂(M − DL) looks the same. Now glue

M − DL to S3 − DS by a rotation that maps the green leaves to the blue leaves. As the

leaves of the characteristic foliation are matched up, the contact structure extends over

the gluing and the new open book on M is modified exactly as described above.

4.1.2 Coordinates on the pages, and neighbourhoods of L and ∂L.

The pages D(T ∗Dn) intially are parametrised with coordinates from R2n+2, as

{(p1, p2, · · · , pn+1, q1, q2, · · · , qn+1) |
∑

p2i ≤ 1,
∑

q2i = 1,
∑

piqi = 0}

The canonical primitive of the symplectic form is λ =
∑
pidqi. The disk S, with which the

Lagrangian L in the page inM gets identified, is parametrised as: S = {q = (0, · · · , 0, 1)}.

Consider ψ : R× (T ∗Sn ∩ {qn+1 > 0}) → R2n+1, given by

ψ(z, p1, p2, · · · , pn+1, q1, q2, · · · , qn+1) = (z, x1, · · · , xn, y1, · · · , yn)

where xi = qn+1pi, yi =
qi
qn+1

This allows us to put coordinates (x1, · · · , xn, y1, · · · , yn) on a neighbourhood of S on

the page, such that D(T ∗Sn) ∩ {qn+1 > 0} is identified with

{(x, y) ∈ R2n |
(∑

x2i +
(∑

xiyi

)2
)(∑

y2i + 1
)
≤ 1}

and S becomes {yi = 0}. The following calculation verifies this is a symplectomorphism:
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ψ∗(
n∑

i=1

xidyi) =
n∑

i=1

(qn+1pi)d(
qi
qn+1

)

=
n∑

i=1

(qn+1pi)
qn+1dqi − qidqn+1

q2n+1

=
n∑

i=1

pidqi −
dqn+1

qn+1

n∑
i=1

piqi

=
n∑

i=1

pidqi + pn+1dqn+1

=
n+1∑
i=1

pidqi

The above computation uses that
∑n+1

i=1 piqi = 0 implies pn+1 = − 1
qn+1

∑n
i=1 piqi.

The boundary of D(T ∗(Sn)), which is given by |p|2 = 1, now becomes

{(x, y) | b(x, y) = 1} where b(x, y) =
(∑

x2i +
(∑

xiyi

)2
)(∑

y2i + 1
)

Figure 4.3 illustrates how this looks for n = 1 under the coordinate transformation by

ψ. The red is the binding.

The blue in Figure 4.3 is the binding ”rotated”, i.e., {(x, y) | {b(y, x) = 1}. The inter-

section of the blue and red is transverse. The yellow is the set of points ”inside the page”

that satisfy {b(x, y) = b(y, x)}. Consider the sets {b(x, y)− b(y, x) = t}, as t runs from 0 to

1
2
. Also, consider a smooth function ρ(x, y) which is 0 at {b(x, y) = b(y, x) = 1}, and 1 on

a large sphere inside the page away from the binding. Now, consider the sets

Bt := {b(y, x) = ρ(x, y)(b(x, y) + t) + (1− ρ(x, y))}

52



b(x, y) = 1, binding

b(x, y) = 1, binding

Figure 4.3: Coordinates on a piece of D(T ∗(Sn)), which is inside the red

For t nonzero, they are indicated by the green in the schematic figure. Define a 1-

parameter family of neighbourhoods of L by

νt(L) := {(x, y) | b(x, y) ≤ 1, b(y, x) ≤ ρ(x, y)(b(x, y) + t) + (1− ρ(x, y))b(x, y)}

Similarly, define a 1-parameter family of neighbourhoods of ∂L by

νt(∂L) := {(x, y) | b(x, y) ≤ 1, b(x, y) ≥ ρ(x, y)(b(y, x) + t) + (1− ρ(x, y))b(y, x)}

Here, t belongs to the interval (0, 0.5). An indicative picture for the 3 dimensional case is

Figure 4.3.

Remark 4.1.2. The neighbourhoods νt(L) and νt(∂L) are precisely the ”pages” that build

up NL and N∂L, respectively, from 4.1.1 above.
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4.1.3 Coordinates on D.

Now, we are in a position to exactly describe the parametrised smooth neighbourhood of

the Lagrangian L that will be removed for stabilisation. Note that the above coordinates

parametrise a neighbourhood of L, a Lagrangian disk, sitting on a page in an open book

decomposition of M .

InM , suppose the open book is given by ν : (M−B) → S1, while suppose the open book

on S2n+1 is given by ν1 : (S2n+1−B′) → S1. Let us first focus onD as a neigbourhood of S

on a page in S2n+1, and obtain a parametrisation of it. For the Legendrian L which is La-

grangian in the page, a neighbourhood in M , call it D, can be given standard coordinates

from I×R2n modulo some identifications and a standard binding piece, (we assume that

the monodromy effects are localised in a place away from this neighbourhood). More

precisely, if we assume that the page coordinate or S1 factor of the open book on S2n+1 is

given by t ∈ R/Z, then the monodromy affects the pages in the t ∈ [0.7, 0.8] interval, and

even in those places, it leaves substantial (as required by the next paragraph) neighbour-

hoods of ∂L unaffected, in the sense that they can be parametrised directly as standard

pieces of I × R2n. What we want is to ensure that the pieces DL or DS can be described

without the monodromy of the open book affecting them.

Suppose in M , the pages of the open book decomposition are parametrised in the S1

direction by t ∈ R/Z. Consider an interval’s worth of L-neighbourhoods parametrised

by t, given by:

NL := {(x, y, t) | (x, y) ∈ νβ(t)(L), t ∈ [0, 0.5]},
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and an interval’s worth of (∂L)-neighbourhoods parametrised by t, given by:

N∂L := {(x, y, t) | (x, y) ∈ νβ(t)(∂L), t ∈ [0.5, 1]}

Here β(t) = (0.5) sin(2πt). Also, we can assume that in this local scenario, the binding

B is thickened, which allows us to choose the standard primitive of the symplectic form,∑
xidyi on the page, giving the contact form dt +

∑
xidyi on NL ∪ N∂L and match it

up with an appropriate choice of contact form on the binding, for example as done in

Section 2.2, page 4, of [16], to get an explicit description of the contact form restricted to

NL ∪N∂L ∪BL ⊂M . The thickened binding inside DL can be parametrised as a quotient

set B = {(x, y, r, t) | (x, y) ∈ R2n, b(x, y) = 1, r ∈ [0, 1], t ∈ R/Z, (x, y, 0, t) ∼ (x, y, 0, t′)},

and in DL, the points in NL (or N∂L) and ∂B overlap as: {(x, y, t) ∈ NL | b(x, y) = 1} are

matched with {(x, y, 1, t) ∈ B} (similarly for N∂L).

We claim that DL = NL ∪N∂L ∪BL is a smooth (2n+ 1)-ball. For this, it suffices to check

that the boundary 2n-sphere ∂DL is smooth. The boundary ∂DL, in these coordinates,

can be described as: ∂NL ∪ ∂N∂L ∪ ∂BL, modulo equivalences that go into the interior of

BL. Note that νβ(0)(L) = νβ(0)(∂L), and νβ(0.5)(L) = νβ(0.5)(∂L). ∂DL can be described as:

⋃
t∈[0,0.5]

{(x, y, t) | b(y, x) = ρ(x, y)(b(x, y) + β(t)) + (1− ρ(x, y))}

∪
⋃

t∈[0.5,1]

{(x, y, t) | b(x, y) = ρ(x, y)(b(y, x) + β(t− 0.5)) + (1− ρ(x, y))} ∪ {(x, y, r, t) ∈ B | b(y, x) = 1}

Let us focus on the region where ρ = 1 and check it is smooth. In that region ∂DL can be
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described as:

⋃
t∈[0,0.5]

{(x, y, t) | b(y, x) = b(x, y) + β(t)}

∪
⋃

t∈[0.5,1]

{(x, y, t) ∈| b(x, y) = b(y, x) + β(t− 0.5)} ∪ {(x, y, r, t) ∈ B | b(y, x) = 1}

modulo the identifications mentioned above, and ||(x, y)|| everywhere sufficiently small.

Other than the binding, the set can be described as a quotient of
⋃

t∈[0,1]{(x, y, t) | b(y, x)−

b(x, y) = (0.5) sin(2πt)}. Thus this is smooth. The smoothness of the whole can be easily

checked as it is the quotient under smooth equivalences of smooth pieces. The same

holds for DS .

4.1.4 The surgery step.

The above establishes coordinates on the boundary of DL, and they work for both DL

and DS . What we will do now is remove DL from M and DS from S2n+1, then glue the

complements after shifting indices.

We will surger DL out and glue in S2n+1 \ DS by a map F which will give a contac-

tomorphism between a neighbourhoods of ∂(M \ DL) and (S2n+1 \ ∂DS). The details

follow.

Notation: Since both DL and DS are being given the same coordinates, we will drop

the subscript from D and construct F from ∂D × I1 to ∂D × I2, for two intervals I1 and

I2.

Coordinates on ∂D × I . As mentioned above, ∂D can be described as a quotient of:
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⋃
t∈R/Z

{(x, y, t) ∈ NL ∪N∂L | b(y, x) = b(x, y) + ρ(x, y)β(t))}

⋃
{(x, y, r, t) ∈ B | b(y, x) = 1, r ∈ [0, 1]}

where the points (x, y, t), when b(x, y) = b(y, x) = 1, are identified with (x, y, 1, t), and

(x, y, 0, t) ∼ (x, y, 0, t′).

On a collar neighbourhood of the boundary in S2n+1 − D, call it ∂D × [0, 1], where

s represents the I direction, a contact form is given by dt + es
∑
xidyi on the page part,

i.e., (∂D × [0, 1]) ∩ (NL ∪ N∂L), which is extended to the interior of the binding part,

i.e., (∂D × [0, 1]) ∩ B, as esh1(r)
∑
xidyi + h2(r)dt, where h1 and h2 are described in the

following figure. The s = 1 end represents the boundary of the manifold.

h1 h2

1
2

1
2

Figure 4.4: The functions h1 and h2 for the contact form near the binding.
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4.1.5 Gluing the complements of D.

Extend the collar neighbourhood of ∂(M−D) to look like ∂D×[−2, 0], with the coordinate

s representing the interval direction, and so, on [−2,−1], the contact form on the page

part is given by esdt + λs, and on the binding part by esh1(r)λs + h2(r)dt. Here λs :=

(−1 − s)(
∑
xidyi) + (s + 2)(

∑
(−yi)dxi), and the s = 0 end represents the boundary of

the manifold. On s ∈ [−1, 0], the contact structure is given by esdt+λ−1 on the page part,

and by esh1(r)λ−1+h2(r)dt on the binding. The s = 0 end represents the boundary of the

manifold.

Now, define the contactomorphism between a neighbourhood of ∂(S2n+1 − D) and

∂(M −D) as follows:

F : ∂D × [0, 1] → ∂D × [−1, 0]

(x, y, t, s) 7→ (−y, x, t+ 0.5,−s)

Using this, we will show in the following section that we can apply Lemma 2.5.4

to glue S2n+1 − D to M − D, to get back M . We will see that this gives an open book

decomposition of M .

4.1.6 An open book decomposition of M .

We would like to show that the above operation induces an honest open book decompo-

sition ofM that supports the contact structure onM . The fact that the operation smoothly

does not change M is because we removed a ball and glued it back in by a map on the
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boundary (rotation) which is smoothly isotopic to the identity. We need to ensure that

the conditions for Lemma 2.5.4 are met.

The contact manifold M originally has an open book fibration given by ν : (M −

B) → S1. In the neighbourhood of L we called D, the map ν was given on D \ B by

(x, y, t) 7→ t. The standard (2n + 1)-sphere S2n+1 originally has an open book fibration

given by ν1 : S2n+1 −B′ → S1, which in the neighbourhood (D−B′) was again given by

(x, y, t) 7→ t.

Call the fibers of ν to be all 2n-dimensional Liouville domains symplectomorphic to

X . Then, L is a Lagrangian n-disk in X , and ∂L is a Legendrian (n− 1)-sphere in ∂X . To

index the different pages, call ν−1(t) = Xt. For t ∈ (0, 0.5), Xt −D is a smooth manifold

from which a neighbourhood of L has been removed. For t ∈ (0.5, 1), Xt −D is a smooth

manifold from which a neighbourhood of the (n − 1)-sphere ∂L has been removed. A

neighbourhood of L that contains Xt ∩D is parametrised as {(x, y) ∈ R2n | b(x, y) ≤ 1},

where locally the symplectic form is dx ∧ dy and L is given by {y = 0}.

The fibers of ν1 are disk cotangent bundles of the n−sphere, call them Y and index

them as Yt as above. Recall that they can be described as subsets of R2n+2 in the following

way: Y = {(p, q) ∈ Rn+1 × Rn+1 | |q|2 = 1, p · q = 0, |p|2 ≤ 1} with the symplectic form

dp∧dq. As in Section 4.1.2, we can parametrise a part of Y , i.e., where qn+1 > 0, as subsets

of R2n with the symplectic form dx ∧ dy, as S = Y |qn+1>0 = {(x, y) ∈ R2n | b(x, y) ≤ 1}.

This region contains the Lagrangian disk S = {q = (0, . . . , 0, 1)} which becomes {y = 0}

in S. For t ∈ (0, 0.5), Yt \DS = Yt \νβ(t)(S) has a neighbourhood of S removed, thus is the

unit cotangent bundle over the disk. For t ∈ (0.5, 1), Yt \DS = Yt \ νβ(t)(∂L) is obtained

from Yt by removing a neighbourhood of the (n − 1)-knot ∂S from ∂Yt, and the core Sn

stays. Thus it is still symplectic deformation equivalent to Yt.

After gluing in S2n+1 \DS , we want to define an open book fibration on the manifold
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(M \DL)∪ (S2n+1 \DS). On the two pieces, we had the restrictions of the fibrations ν and

ν1, defined on the complements of the respective bindings B and B′.

Define the open book fibration on ((M \DL) \B) ∪ ((S2n+1 \DS) \B′), denoted νnew,

by ν on ((M \DL) \B) and (ν1 − 0.5) on ((S2n+1 \DS) \B′). The map extends smoothly.

In the following we verify that it is a fibration. i.e., ν−1
new(t) are symplectomorphic for all

t. For that, we need to check that Xt ∪F Yt+0.5 are symplectomorphic for all t.

Consider U1 ⊂ X to be the region described by our coordinates as {b(x, y) ≤ 1} ∩

{b(y, x) ≤ 1}. In Y identify a similar neighbourhood of S and call it U1,S . Both U1 and

U1,S are diffeomorphic to Dn ×Dn, with symplectic form ω =
∑
dxi ∧ dyi, with Liouville

forms
∑
xidyi and

∑
(−yidxi) respectively, and respective Liouville vector fields

∑
xi∂xi

and
∑
yi∂yi . The Liouville vector field points out of the boundary of U1.

Now, Y −U1,S can be regarded as a Weinstein n-handle, with the same Liouville vector

field, with its attaching region being Y ∩ {b(y, x) = 1}.

Near ∂(Y − U1,S) we have the coordinates (x1, . . . , xn, y1, . . . , yn) ∈ R2n, the attaching

sphere being given by {xi = 0,
∑
y2i = 1}, and the attaching boundary of the handle is

given by {xi = 0, b(y, x) = 1}. Consider now G : ∂(Y − U1,S) → ∂(X ∩ U1) given by

G(x, y) = (−y, x). Using G, one can attach the Weinstein n-handle Y − U1,S to X along

∂L. Call this manifold XL.

Consider the following: Yt+0.5−D attaching toXt−D. Suppose the gluing of Yt+0.5−D

to Xt − D happens in two steps. First the gluing under the restriction of F of (Yt+0.5 −

D)∩U1,S to Xt −D, and then the remainder of Yt+0.5 −D is glued on. After the first step,

for every t, we get back X . Then the second step is gluing Y − U1,S to it via G. Thus, for

every t, we get X with a Weinstein handle attached along ∂L.

By construction, the contact structure on M post gluing is supported by this open

book. The monodromy of the new open book decomposition, by construction, changes
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by a positive Dehn twist along the sphere L ∪ C in the page, where C is the core of the

n-handle attached to the page. As this open book has the same pages and monodromy

as the stabilisation of the open book ν supporting (M, ξ), the contact structure on M is

still contactomorphic to ξ, by Theorem 2.4.4.

This finishes the proof of Theorem 1.1.4.

4.2 Constructions from open books and isotopies

In this section, we will first rigorously define the constructions Sjoin and Sstab in open

books supporting (M, ξ). Then, we shall establish an isotopy between them, after first

ensuring that there is a manifold contactomorphic to (M, ξ) where both the constructions

make sense.

At various points in this section, we will do some perturbations by using Legendrians

defined by piecewise functions. For that we need to carefully understand how to read

the coordinates of such Legendrians in J1(Sn), which we will address in the following

lemma.

Lemma 4.2.1. Consider J1(Sn) parametrised as {(z, q, p) | q2 = 1, p · q = 0}. Given a function

f ∈ C∞
R (Sn), j1(f) defines a Legendrian in J1(Sn), whose coordinates are given by (z, q, p) such

that z = f(q) and pi = − ∂f
∂qi

+ (df · q)qi, where df is the vector given by (df)i =
∂f
∂qi

.

Proof. The idea here is simply that when a function f is defined on the coordinates

(q1, . . . , qn+1) ∈ Rn+1, the vector df |Rn+1 := ( ∂f
∂q1
, . . . , ∂f

∂qn+1
) belongs to T ∗(Rn+1). Thus

for f ∈ C∞
R (Sn) but defined on the coordinates (q1, . . . qn+1), df ∈ T ∗(Sn) is given by the

projection of df |Rn+1 from T ∗(Rn+1) to T ∗(Sn).
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4.2.1 Making sense of join Legendrian.

The join Legendrian L1 ∪ L2 is described in M (pre-stabilisation) in the following way.

Suppose L1 is a Lagrangian n-disk on the page, and is also a Legendrian in the manifold.

By Lemma 4.1.1, this can be arranged. Consider two copies L1 and L2 in two pages.

They can be glued through the binding. The details follow, and the schematic is given in

Figure 4.5.

L1,ϵ

Sstab in page containingL1

L2,ϵ

qn+1

f(qn+1)
Sjoin

region where boundary of
thickened binding meets
the boundary of a page
(pre-stabilisation)

→

Figure 4.5: The above schematic will describe both pre- and post-stabilisation scenar-
ios. Before stabilisation, the left of the vertical represents the thickened binding near
J1(L) ⊂ M . The horizontal lines represent (z = c) slices, and the qn+1 coordinate is
plotted horizontally. After stabilisation, the page extends to the left, and the picture rep-
resents J1(SStab(L)).

The open book onM before stabilisation, by definition, has identity monodromy near

the boundaries of the pages. In particular, if we consider all the pages and look near ∂L1,

we can parametrise it as J1(Dn), where {z = c} represents the pages and the Legendrians

{(z, q, 0) | z constant} represent copies of L near the boundary in different pages. Once

two copies of L enter the binding, they can be joined up using the 1-jet of functions
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defined on qn+1 as depicted in Figure 4.5. Here we are assuming that the contact form

on the binding is adjusted so that it still looks like J1(Dn) near the boundaries of the

pages. This amounts to a careful choice of the functions h1 and h2 in Figure 4.4. This

joined up sphere is Sjoin(L). The portion to the left of the vertical dotted line in Figure

4.5 is the binding, while to the right are the pages. We will parametrise the n-disk as

{q ∈ Rn+1 | q2 = 1, qn+1 ≥ 0}.

Now, the way stabilisation is described in Section 4.1, the pages are modified in a

small neighourhood of ∂L. Thus, we can interpret in these coordinates as saying that

as long as
∑
p2i is large enough, the part of the page is unchanged after stabilisation. In

more precise terms, we make the assumption that {(z, q, p) ∈ T ∗Sn | q ≤
√
1 + ϵ} is the

region that is affected. Also, we can assume that this ϵ is the same for the Legendrian

surgery that happens during stabilisation, as described in Section 2.3.

This is the choice of ϵ that will be used for the remainder of this section.

Thus, we can modify Sjoin(L) by choosing 1-jets of appropriate functions. At the final

stage of this modification, we get Sjoin(L) obtained by gluing two copies of L ”through

the pages”. Since by Lemma 4.2.1 the pi coordinates depend on this slope, by choosing

a high enough slope for the function we can ensure that the pi coordinates are large

enough, and hence this perturbation of Sjoin(L) lives completely outside the region which

is cut out and replaced by stabilisation, and thus is well-defined after stabilisation as well.

Also, to make it easier for us to define the isotopy later, we can ensure that Sjoin(L) does

not intersect the interior of the region which is identified with S−1 and replaced with S1.

We can choose a Legendrian using a function that depends only on qn+1. By Lemma 4.2.1,

for a Legendrian j1(H(qn+1)) ⊂ J1(Sn), pi = dH
dqn+1

qn+1qi for i = 1, . . . , n, and pn+1 =
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dH
dqn+1

(−1 + q2n+1). Thus,

z2+
n+1∑
i=1

p2i = H2+

(
dH

dqn+1

)2

q2n+1(1−q2n+1)+

(
dH

dqn+1

)2

(1−q2n+1)
2 = H2+

(
dH

dqn+1

)2

(q2n+1+1)

By choosing H defined on {qn+1 ≥ ϵ} such that H2 + ( dH
dqn+1

)2(q2n+1 + 1) > (1 + ϵ), and

such that H(ϵ) = H ′(ϵ) = 0, we can join it with the disk {qn+1 ≥ ϵ} in the zero section to

get a perturbed Sjoin. Such an H would need to satisfy

(
dH

dqn+1

)2

≥
√
1 + ϵ(1− t)

1 + q2n+1

whenever H = t
√
1 + ϵ

Such an H can be found, e.g. as shown in Figure 4.5. Consider a real valued function

H(x) on [0, 1] that starts at 0 with value −
√
1 + ϵ and slope 0, then increases fast enough

so that its slope beats the above inequality, and then reduces to 0 when the value of the

function reaches
√
1 + ϵ at x = 1

2
.

This perturbed Sjoin can be seen to be the union of two disks, all described in Fig-

ure 4.5, namely:

• L1,ϵ, the disk corresponding to j1(H), i.e., the top portion of Figure 4.5

• L2,ϵ := {(c2, q, 0) | qn+1 ≥ ϵ} in page that contains L2

The isotopy from Sjoin as originally defined to this can be done in M before stabilisa-

tion.
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4.2.2 The stabilisation Legendrian

Our goal is to show that in the stabilised manifold, Sjoin(L) is isotopic through smooth

Legendrians to Sstab(L). Recall that when M is stabilised, each page is modified by

adding a Weinstein n-handle along ∂L, and the core of this handle glues to L to give

a Legendrian sphere, which we call Sstab(L).

First note that locally, a neighbourhood of Sstab(L) can be identified with J1(Sn) with

coordinates {(z, q, p) | q2 = 1}, where Sstab(L) is given by (0, q, 0). By the description of

stabilisation in Section 4.1, we can assume that the disk L is exactly the part of Sstab(L)

corresponding to qn+1 ≥ 0, and that the page outside a small neighboourhood of the

sphere {qn+1 = 0} is exactly the page of the open book before stabilisation.

In Figure 4.5, Sstab(L) built from the same page that contained L1 (above), is seen as

the union of the following two disks:

• Lϵ := {(c1, q, 0) | qn+1 ≥ −ϵ}

• Cϵ := {(c2, q, 0) | qn+1 ≤ −ϵ}

4.2.3 Proof of isotopy.

In the stabilised manifold, we now have the perturbed Sjoin(L) and the Sstab(L), as de-

scribed in Sections 4.2.1 and 4.2.2 respectively. The perturbed Sjoin(L) can be seen as

the union of two disks as described in Section 4.2.1, while the perturbed Sstab(L) can be

seen as the union of two disks as described in Section 4.2.2. The proof of the isotopy

will involve moving Cϵ to L2,ϵ and Lϵ to L1,ϵ, while taking care that their overlaps move

consistently. The following subsection is a reading guide for the rest of the proof.
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4.2.4 Proof outline

1. We will be using different local models at different parts of the argument. As shown

in Figure 4.6, a neighbourhood of Sstab(L) can be thought of as I × T ∗(Sn) with a

piece cut out and replaced. The orange region is like a portal that represents the

”surgery torus” that gets glued in. Recall from Section ??, that Legendrian surgery

is done by identifying a neighbourhood of the Legendrian sphere with S−1, then

replacing S−1,c by S1,c. We will use a perturbed region called Sst
1 to construct the

first half of the isotopy, then move the pieces to S1,c. What will be important is that

S−1 ∩ S1 = S−1 ∩ Sst
1 .

Using the contactomorphisms ψW : J1(Sn) → S−1, and ψ : Sst
1 → J1(Sn), we

will get local coordinates from J1(Sn) on the two pieces (J1(Sn) \ ψ−1
W (S−1,c)), and

ψ(Sst
1 ). We carefully constructed Sjoin(L) = L1,ϵ∪L2,ϵ so that L1,ϵ lives on ∂(J1(Sn)\

ψ−1
W (S−1,c)). The map ψ ◦ ψW and its inverse makes sense on ψ−1(S−1 ∩ S1.

2. In Section 4.2.5 we will construct a family of Legendrian disks that live in Sst
1 , with

boundary on S−1 ∩ Sst
1 , that define an isotopy between ψW (Cϵ) and ψW (L2,ϵ). We

first construct the disks in ψ(Sst
1 ), and then bring them to Sst

1 using ψ−1. A nice

observation is that in ψ(Sst
1 ), these two are disks that appear in the front projection

as shown in Figure 4.7, and the isotopy is essentially twisting their front projections

once to a point and then back to the opposite orientation. In some sense, these are

a pair of Reidemeister 1-moves.

3. In Section 4.2.5 we show that the above disks can be used to get a family of Leg-

endrian disks in S1,c, with boundary on S−1 ∩ S1, that define an isotopy between

ψW (Cϵ) and ψW (L2,ϵ). One can imagine that at this point, in Figure 4.6, we have a
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1-parameter family of disks indexed by t ∈ [−1, 1], such that for t ∈ (−1, 1), they

live inside the orange portal, but we can see their boundaries at the boundary of

the orange region. At {t = 1} we get Cϵ, while at {t = −1} we get L2,ϵ.

4. The last step, done in Section 4.2.5, is to define a family of disks that will give an

isotopy between the other halves of Sstab(L) and Sjoin(L), i.e., Lϵ and L1,epsilon. What

we want is a family of disks, that in Figure 4.6, will have their boundaries match up

with the boundaries of the disks living inside the orange, and their interiors will be

disjoint. The way we do that is ensure we can define disks with the boundary con-

dition of smoothly matching up with the boundaries of the disks found in Section

4.2.5, such that their interiors live in (J1(Sn) \ ψ−1
W (S−1,c)).

4.2.5 Modelling the Legendrian surgery:

We will assume that in the stabilised manifold the Legendrian surgery corresponding

to the Dehn twist about Sstab(L) happens away from the other monodromy of the open

book. Stabilisation can be thought of as a two step process happening on the top convex

boundary of the symplectisation (I ×M), where the first step is attaching an index (n)

Weinstein handle along the isotropic sphere ∂L living in the binding, and the next step

is attaching an (n + 1)-handle along L ∪ C. After the first step, on the boundary, we get

a manifold M ′ presented by an open book νint (as in the open book in the intermediate

step) whose pages have been modified by adding an n-handle to each, while the mon-

odromy has been extended by identity over this handle. Then, the next step modifies the

monodromy by adding a Dehn twist. We can call L ∪ C inside M ′ as S ′
stab(L). After the

surgery, we get to M and the Legendrian sphere S ′
stab(L) becomes Sstab(L).

Recall that the identification of S−1 with the standard neighbourhood of a Legendrian
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sphere, R× T ∗Sn, in Section 2.3, is done via the following map:

ψW : R× T ∗Sn → S−1

(z, q, p) → (zq + p, q) which implies

ψ−1
W (z1, w1) = (z1 · w1, w1, z1 − (z1 · w1)w1)

Locally, we can think of a neighbourhood [−
√
1 + ϵ,

√
1 + ϵ]× T ∗Sn of S ′

stab(L) ⊂ M ′,

across pages indexed by t ∈ [0.4, 0.6] which is removed and reglued to achieve the above,

i.e., under the contactomorphism between R× T ∗(Sn) and S−1, [−
√
1 + ϵ,

√
1 + ϵ]× T ∗Sn

is the region that corresponds to {S−1 | z2 ≤ 1 + ϵ}, and this corresponds to the neigh-

bourhoods of L in pages in [0.4, 0.6]. As the same indexing of pages outside t ∈ (0.4, 0.6)

carries over to M , the following sentence makes sense. We will consider Sstab(L) living

in t = 0.4 and Sjoin(L) formed by joining copies of L in t = 0.4 and t = 0.6.

Now, we will perturb both Sjoin(L) and Sstab(L) as described in 4.2.1 and 4.2.2 re-

spectively, and see them both as unions of two pieces. We will construct the isotopy by

constructing isotopies between the two pieces and matching them up along their over-

laps. The main idea will be to construct families of functions whose 1-jets will build the

isotopies piecewise and ensure they glue together.

Isotopy of Cϵ to L2,ϵ

Here we first isotope half of Sjoin(L) to half of Sstab(L). These halves are seen described

in Figure 4.5. Cϵ is the part of Sstab(L) that lives to the left of the picture. It is part of

the core of the Weinstein handle that was attached to the page during the stabilisation

procedure for the open book.
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L2,ϵ = {(z, q, p) ∈ (−
√
1 + ϵ,

√
1 + ϵ)× T ∗Sn | z = −

√
1 + ϵ, qn+1 ≥ ϵ, p ≡ 0}

Cϵ = {(z, q, p) ∈ [−
√
1 + ϵ,

√
1 + ϵ]× T ∗Sn | z =

√
1 + ϵ, qn+1 ≤ −ϵ, p ≡ 0}

The idea will be to construct an isotopy between L2,ϵ and Cϵ inside the piece that is

glued in during the Legendrian surgery. A schematic is shown in Fig 4.6.

Cϵ Lϵ

L2,ϵ

xz

Figure 4.6: This is a schematic representing the region where the Legendrian surgery
happens. This is a J1(Sn) neighbourhood of Sstab(L), and is a 3-D representation of Fig-
ure 4.5. The orange is a cross section at {q = c} of ψ−1

W (S−1,c), which is removed during
Legendrian surgery. So only the closure of the complement of the orange and the solid
torus it sweeps out is actually part of the manifold M . The cores of the annuli represent
isotopic copies of the Legendrian Sstab(L). The purple lines and their union with a part of
the blue arc represents L1,ϵ. The purple is chosen to lie in the closure of the complement
of the orange region, which represents the fact that this copy of Sjoin(L) was constructed
to lie out of the interior of the Legendrian surgery region.

We will follow the convention and notation from 2.3 for Legendrian surgery. First,

we consider S ′
stab(L) lying on a page of M ′ with the open book νint. A neighbourhood

of S ′
stab(L) is contactomorphic to S−1 = {(z, w) ∈ R2n+2 | |w|2 = 1} with the contact

form 2zdw + wdz, induced by the symplectic dilation X = 2z∂z − w∂w. This is a contact
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hypersurface of (R2n+2, ωst). The surgery will be replacing S−1 by S1, another contact

hypersurface, given by S1 = {(z, w) ∈ R2n+2 | f(|w|2) − g(|z|2) = 0}, with a similarly

induced contact form by X . The intersection of S1 with S−1 is {(z, w) ∈ R2n+2 | |z|2 ≥

1 + ϵ, |w|2 = 1}. The surgery replaces {S−1 | |z|2 ≤ 1 + ϵ} with {S1 | |z|2 ≤ 1 + ϵ}. We will

call these S−1,c and S1,c respectively.

The disks we are interested in are described as follows in S−1:

ψW (L2,ϵ) = {(−
√
1 + ϵ)q, q) | qn+1 ≥ ϵ}

ψW (Cϵ) = {(
√
1 + ϵ)q, q) | qn+1 ≤ −ϵ}

Clearly, they can be seen as living in S−1∩S1 = {(z, w) ∈ R2(n+1) | |z|2 = (1+ ϵ), |w|2 =

1}.

Finding isotopy inside S1: Define Sst
1 := {(z, w) | |z|2 = 1 + ϵ}. Clearly, Sst

1 is also

transverse to X and hence inherits a contact structure. Now, consider the following

contactomorphism

ψ : Sst
1 → R× T ∗(Sn)

given by

ψ(z, w) =

(
2z.w√
1 + ϵ

,− z√
1 + ϵ

, w − (z.w)z

1 + ϵ

)
(4.1)

Using this, we can see the disks we are interested in inside J1(Sn) = R× T ∗(Sn).

ψ ◦ ψW (L2,ϵ) = {(−2, q, 0) | qn+1 ≥ ϵ}
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ψ ◦ ψW (Cϵ) = {(2,−q, 0) | qn+1 ≤ −ϵ}

Remark 4.2.2. At this point, one could scale the z and q coordinates to get the above

two isotopic as sets. However, for our purpose, we need the isotopy to respect the

parametrisation and the induced orientation, i.e., under the isotopy, we want the point

(−2, q, 0) ∈ ψ ◦ ψW (L2,ϵ) to flow to (2,−q, 0) ∈ ψ ◦ ψW (Cϵ). So some more work needs

to be done. The rest of the isotopy is essentially two Reidemeister twists in J1(Sn). A

schematic is shown in Figure 4.7.

D1 = ψ ◦ ψW (Cϵ)

D0

D−1 = ψ ◦ ψW (L2,ϵ)

D1 = ψ ◦ ψW (Cϵ)

D0

D−1 = ψ ◦ ψW (L2,ϵ)

Figure 4.7: This is a schematic of what happens in ψ(Sstd
1 ). The vertical direction is the

z direction, and the figure represents what happens in the isotopy, and how it is really a
Reidemeister 1-move. The right hand side represents the front projection, by projecting
out the p coordinates.

Consider the unit n-disk Dmodel := {(x1, . . . , xn) |
∑
x2i ≤ 1}.

For notational convenience, we will define the following

ϵt := (ϵ− 1)|t|+ 1

Also, for t ∈ (0, 1], consider a sequence of smooth functions Ft defined on the 1-

parameter family of disks {(2t, q, 0) | qn+1 ≥ ϵt} in [−2, 2]×T ∗Sn, that satisfy the piecewise

properties
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Ft ≡ 2t− δ when qn+1 > ϵt + δ

=

√
1− t2√

1− ϵ2tKϵ(t)

n∑
i=1

q2i
2
+Rt near qn+1 = ϵt

F1 is the constant function 2. Rt is there to ensure that at the boundary, the value of

Ft is exactly 2t. Kϵ(t) will be defined to satisfy a boundary condition for the disks. δ is

small and arbitrary.

Now, define a 1-parameter family of maps Dt : Dmodel → [−2, 2]× T ∗Sn by

qi(Dt(x1, . . . , xn)) := xi
√

1− ϵ2t

for i = 1, . . . , n and

qn+1(Dt(x1, . . . , xn)) :=

√√√√1−
n∑

i=1

q2i

z(Dt(x1, . . . , xn)) := Ft(q)
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pi(Dt(x1, . . . , xn)) = −∂Ft

∂qi
+ (dFt.q)qi when qn+1 ≥ ϵt

=⇒ when qn+1 = ϵt

pi = −
√
1− t2√

1− ϵ2tKϵ(t)
qi +

√
1− t2√

1− ϵ2tKϵ(t)
(1− ϵ2t )qi

= −
√
1− t2

Kϵ(t)
ϵ2txi

for i = 1, . . . , n, and

pn+1 =

√
1− t2√

1− ϵ2tKϵ(t)
(1− ϵ2t )ϵt

From 4.1, we can see that

ψ−1(z, q, p) =

(
(−

√
1 + ϵ)q, p− zq

2

)
(4.2)

So ψ(S1 ∩ S−1) is exactly the set z2

4
+
∑n+1

i=1 p
2
i = 1. Setting this condition for the disks

at the extremes, i.e. when qn+1(Dt) = ϵt, we will derive the value of Kϵ(t), as follows.

(Note that at these points
∑n

i=1 x
2
i = 1):
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z2

4
+

n+1∑
i=1

p2i = 1 =⇒
n+1∑
i=1

p2i = 1− t2

plugging in the values of pi’s, we get
n∑

i=1

(−
√
1− t2√

1− ϵ2tKϵ(t)
qi +

√
1− t2√

1− ϵ2tKϵ(t)
(1− ϵ2t )qi)

2 + (

√
1− t2√

1− ϵ2tKϵ(t)
(1− ϵ2t )ϵt)

2 = 1− t2

which implies
1− t2

(1− ϵ2t )Kϵ(t)2
(ϵ4t

n∑
i=1

q2i + (1− ϵ2t )
2ϵ2t ) = 1− t2

which implies
1

Kϵ(t)2
(ϵ4t

n∑
i=1

x2i + (1− ϵ2t )ϵ
2
t ) = 1 from which we see that Kϵ(t)

2 = ϵ2t

By Lemma 4.2.1, the Dt’s define a 1-parameter family of smooth Legendrian disks in

[−2, 2]× T ∗Sn. Further, if we define D0 : Dmodel → [−2, 2]× T ∗Sn by

z(D0) = qi(D0) = 0 for i = 1, . . . , n, qn+1(D0) = 1, pi(D0) = −xi for i = 1, . . . , n, pn+1(D0) = 0

then we have a smooth family of disks Dt for t ∈ [0, 1]. D1 is exactly the disk ψ ◦ ψW (Cϵ).

The above thus defines an isotopy from ψ ◦ψW (Cϵ) to D0, which one can see in Figure

4.7 as being an isotopy from the top disk which is part of the core of T ∗Sn, to the disk

”transverse” to the core. One can think of this as one Reidemeister-1 move, as suggested

in Figure 4.7. Now extend by an isotopy fromD0 toD−1 whereD−1 is exactly ψ◦ψW (L2,ϵ),

defined as follows:
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For t ∈ (0,−1], define the functions as follows:

Ft =


2t+ δ when qn+1 > ϵt + δ

= −
√
1−t2√

1−ϵ2tKϵ(t)

∑n
i=1

q2i
2
+Rt when qn+1 = ϵt

Now, analogous to above, for t ∈ (0,−1]) define a 1-parameter family of maps Dt :

Dmodel → [−2, 2]× T ∗Sn by

qi(Dt(x1, . . . , xn)) := −xi
√

1− ϵ2t

for i = 1, . . . , n and

qn+1(Dt(x1, . . . , xn)) :=

√√√√1−
n∑

i=1

q2i

z(Dt(x1, . . . , xn)) := Ft(q)

pi(Dt(x1, . . . , xn)) = −∂Ft

∂qi
+ (dFt.q)qi when qn+1 ≥ ϵt

This will define an isotopy from D0 to ψ ◦ ψW (L2,ϵ), and putting everything together,

we have defined a smooth 1-parameter family of Legendrians that give an isotopy be-

tween ψ ◦ ψW (Cϵ) and ψ ◦ ψW (L2,ϵ), with their boundaries on ψ(S1 ∩ S−1). This family

can be pulled back via ψ−1 to an isotopy in Sstd
1 between ψW (Cϵ) and ψW (L2,ϵ), with

their boundaries on S1 ∩ S−1. We will denote this family of disks in Sst
1 by Dst

t , where

Dst
1 = ψW (Cϵ) and Dst

−1 = ψW (L2,ϵ).
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Contact isotopy from Sstd
1 to S1

Consider a sequence of subsets of R2n+2 defined by S1,t = {(z, w) ∈ R2n+2 | ft(|w|2) −

gt(|z|2) = 0, |z|2 ≤ 1 + ϵ}, where f1 = f and g1 = g are the functions pictured in Fig

4.4, f0(x) ≡ 1 + ϵ, g0(x) = x, and ft and gt are endpoint preserving smooth homotopies

between f0 and f1, and g0 and g1, respectively, in the region {|z|2 ≤ 1 + ϵ}. Thus, S1,0 =

{(z, w) ∈ R2n+2 | |z|2 = 1 + ϵ} = Sst
1 , and S1,1 = S1. As ft and gt have the same values

when their arguments take the extremal values 1 and 1 + ϵ respectively, so all the S1,t

have the same boundary at S1 ∩ S−1. All the S1,t are transverse to the symplectic dilation

X , thus are a smooth family of contact embeddings of I × D(T ∗Sn) in R2n+2, that agree

on the boundary Sn × Sn. Pulling the contact form on S1,t back via the embedding to

Sn ×Dn+1, we get a 1-parameter family of contact forms that agree on the boundary, call

them αt. Now, Moser’s method constructs on Sn × Dn+1 a vector field that is 0 where

the forms agree, and flowing along this vector field gives a contactomorphism between

(Sn × Dn+1, ker(α0)) and (Sn × Dn+1, ker(α1)), since the support of the vector field is

compact. This gives a contact isotopy taking Sst
1 to S1, and we can use that to get a family

of disks that live in S1.

This means that the isotopy in Sst
1 can be identified with an isotopy in S1. Thus, we

have a family of disks D1
t in S1 such that ∂D1

t = ∂Dst
t for all t. Moreover, D1

1 = Dst
1 =

ψW (Cϵ) and D1
−1 = Dst

−1 = ψW (L2,ϵ).

Our next step will be to build a family of disks to isotope Lϵ to L2,ϵ, but ensuring

that the boundaries of these disks match up with the boundaries of the ψ−1
W (D1

t ) we have

found till now.
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Isotopy of Lϵ to L1,ϵ

In this subsection we will construct an isotopy between the remaining halves of Sjoin(L)

and Sstab(L). We will have to be extra careful, as the family of Legendrian disks we

will construct will have to join up with the family of Legendrian disks found above in

subsections 4.2.5 and 4.2.5, to give a family of spheres between Sjoin(L) and Sstab(L).

We will first identify the boundaries of the disks Dt for t ∈ [−1, 1]. By the description

above, we can see that for t ∈ [0, 1],

∂(Dt) = {(zt, qt, pt)} where

zt = 2t

qi,t = qi(St(x1, . . . , xn)) = xi
√

1− ϵ2t , for i = 1, . . . , n

qn+1,t = ϵt

pi,t = pi(St(x1, . . . , xn)) = −ϵt(
√
1− t2)xi where

∑
x2i = 1, for i = 1, . . . , n,

pn+1,t =
√

(1− t2)(1− ϵ2t )
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while for t ∈ [−1, 0]

∂(Dt) = {(zt, qt, pt)} where

zt = 2t

qi,t = qi(St(x1, . . . , xn)) = −xi
√
1− ϵ2t , for i = 1, . . . , n

qn+1,t = ϵt

pi,t = pi(St(x1, . . . , xn)) = −ϵt(
√
1− t2)xi where

∑
x2i = 1, for i = 1, . . . , n,

pn+1,t = −
√

(1− t2)(1− ϵ2t )

We will want to build a family (Dn)t for t ∈ [−1, 1] living in S−1, such that (∂Dn)t =

∂Dt as described above, (Dn)1 = ψW (Lϵ), (Dn)−1 = ψW (L2,ϵ). We will first see these

boundaries in ψ−1
W (S−1), and for that we will see the images of the above via ψ−1

W ◦ ψ−1 :

R× T ∗Sn | z2
4
+p2=1

→ R× T ∗Sn, which is given by:

ψ−1
W ◦ ψ−1(z, q, p) =

(
z
√
1 + ϵ

2
, p− zq

2
,−q

√
1 + ϵ− z

√
1 + ϵ

2
(p− zq

2
)

)
The coordinates of ψ−1

W (∂Dt) are as follows:

for t ∈ [0, 1],
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ψ−1
W ◦ ψ−1(∂Dt) = {(zt, qt, pt)} where

zt = t
√
1 + ϵ

qi,t = −ϵt(
√
1− t2)xi − t(

√
1− ϵ2t )xi

qn+1,t =
√
(1− t2)(1− ϵ2t )− tϵt

pi,t = (
√
1 + ϵ)xi

(
−
√

1− ϵ2t − t(−ϵt(
√
1− t2)− t(

√
1− ϵ2t ))

)
pn+1,t = (

√
1 + ϵ)

(
− ϵt − t(

√
(1− t2)(1− ϵ2t )− tϵt)

)

for t ∈ [−1, 0],

ψ−1
W ◦ ψ−1(∂Dt) = {(zt, qt, pt)} where

zt = t
√
1 + ϵ

qi,t = −ϵt(
√
1− t2)xi + t(

√
1− ϵ2t )xi

qn+1,t = −
√
(1− t2)(1− ϵ2t )− tϵt

pi,t = (
√
1 + ϵ)xi

(√
1− ϵ2t − t(−ϵt(

√
1− t2) + t(

√
1− ϵ2t ))

)
pn+1,t = (

√
1 + ϵ)

(
− ϵt − t(−

√
(1− t2)(1− ϵ2t )− tϵt)

)

By choosing functions appropriately we can define an isotopy from Lϵ to L1,ϵ, by

constructing a family of disks whose boundaries match up with the above. First, note

that we can extend the disks by a function that depends only on qn+1. Now, note that

Lϵ lives on ψ−1
W ({S1 | |z|2 = (1 + ϵ)}), while L1,ϵ meets ψ−1

W ({S1 | |z|2 ≤ (1 + ϵ)}) only at

∂L1,ϵ. We will choose the family of disks going between them such that their interiors
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are disjoint from the interior of ψ−1
W (S1). This will automatically ensure that when these

disks are joined with D1
t , we get a family of embedded Legendrians.

The boundary conditions above will ensure that the boundaries live on ψ−1
W (S1), so in

order that the interior of the disks do not, we need {z2+p2 ≥ 1+ϵ} for (z, q, p) coordinates

on the interiors of the disks.

By Lemma 4.2.1 and the discussion in 4.2.1, the required family of Legendrians can

be described by Ht(qn+1) defined on {qn+1 ≥ qn+1,t} which satisfy Ht(qn+1,t) = t
√
1 + ϵ,

H ′
t(qn+1,t) =

√
1−t2

ϵt
√
1−t2+|t|

√
1−ϵ2t

, H2
t + ( dHt

dqn+1
)2(q2n+1 + 1) ≥ (1 + ϵ). Also, H−1 = H from 4.2.1,

while H1 ≡ 0, so as to give L2,ϵ and Lϵ, respectively.

These initial points are plotted in Figure 4.8 for ϵ = 0.1, while the initial slopes are

plotted in Figure 4.9.

Figure 4.8: Plot of qn+1,t vs t when ϵ = 0.1.
qn+1,t = ±

√
(1− t2)(1− ϵ2t )− tϵt

The choice of generating functions Ht that will now work, i.e. j1(Ht) will describe an

isotopy between Lϵ and L2,ϵ, can be described by the following method.

Similar to the function H that was chosen at the end of 4.2.1, consider a smoothly

varying familyHt(X) of functions defined on [qn+1,t, 1] that start with the specified slopes,

that increase fast enough, beating the required inequality, and then reduce to 0 when the

function value reaches
√
1 + ϵ.
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Figure 4.9: Plot of H ′
t vs t when ϵ = 0.1.

H ′
t(qn+1,t) =

√
1−t2

ϵt
√
1−t2+|t|

√
1−ϵ2t

.

A schematic of the graphs of Ht can be seen in Figure 4.10.

4.3 The constructions give the standard unknot

In this section we show that Sjoin(L) is isotopic to the standard Legendrian unknot, thus

completing the proof of Theorem 1.1.3. Then we connect our constructions and results

to Courte-Ekholm’s work in [11] and prove Corollary 1.1.6. We will show that via a

sequence of contactomorphisms and isotopies, Sjoin(L) in (S2n+1, ξst) can be identified

with Λ(L,L).

4.3.1 Isotoping Sjoin to the unknot

Proof of Theorem 1.1.3. In Section 4.2, we established that Sjoin(L) and Sstab(L) are iso-

topic. All that remains now is to show that Sjoin is the unknot. Using generating func-

tions as described in Figure 4.5, Sjoin(L) can be isotoped to L2,ϵ joined with a pushoff

arbitrarily close to it. In the figure, that amounts to bringing the top strand labelled L1,ϵ
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H−1

H1

Figure 4.10: Here we can see the familyHt that will be used to describe the family of disks
isotoping Lϵ to L1,ϵ, drawn near their boundary so the picture does not get cluttered.
Plotted are the initial points and slopes, following how qn+1,t and pn+1,t change as per
the plotted graphs. Now, to describe the full disks, we can pick any family of homotopic
functions that start at H1, which is the constant 0 function at the top, then plot functions
such that their slopes are large enough to ensure z2 + p2 ≥ 1, and then H−1 is the purple
graph plotted.

arbitrarily close to the lower one. Thus Sjoin(L) is described in a standard neigbourhood

of the Legendrian disk L, and hence the isotopy class of the sphere depends on the iso-

topy class of the disk. By Gromov’s h-principle for Legendrian immersions, any two

Legendrian disks are isotopic. Thus we can consider the same construction in a Darboux

neighbourhood for the standard Legendrian disk, for which this construction gives the

standard Legendrian unknot. This proves that Sjoin(L) is isotopic to the unknot.

4.3.2 Identifying with Λ(L,L) in the (S2n+1, ξst) case

We will quickly review Ekholm’s [6] construction and Courte-Ekholm’s proof strategy

[11]. To start with, one considers a codimension 1 spaceWρ = {z = ( ρ(xn)
ρ′(xn)

)yn}∩{0 < xn <

1} in (R2n+1, ξst) which is transverse to the Reeb flow. The function ρ can be considered
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a smoothing of the function (1 − |x|). A Lagrangian disk L with a cylindrical end can

be embedded in Wρ with its cylindrical end approaching xn = 0. Reflecting the xn, yn

coordinates, another copy of L, L−, can be similarly embedded with its cylindrical end

approaching that of L. Taking the Legendrian lift of these and joining along the ends

gives the Legendrian sphere Λ(L,L). Deforming the hypersurface Wρ to {z = 0}, while

staying transverse to ∂z, recovers the construction of Λ(L,L) as originally described in

[6].

To show that this is the unknot, they describe the construction in (R2n+1, ker(dz −∑n−1
i=1 yidxi + r2ndθn). Then, they modify the contact structure so that two halves of the

sphere can be brought close to each other by flowing along ∂θn , sketching out a pre-

Lagrangian (n+ 1)-disk foliated by Legendrian disks in the process.

Proof of Corollary 1.1.6. By a contactomorphism (refer Example 2.1.10 in [34]), we can

identify a hemisphere of (S2n+1, ξst) with (R2n+1, ker(dz+
∑
r2i dθi)). Under this, the modi-

fied Sjoin(L), as in the proof above, which is the Legendrian lift of L in a page, joined with

a pushoff, is identified with the Legendrian lift of a disk in {z = 0}∩{0 < xn < 1}, joined

with a pushoff. (Note that in the proof above we have modified the open book pages so

that the Lagrangian in the page is a Legendrian, but for the contactomorphism we want

to respect the open book structure given by θn, and hence have to use Legendrian lifts.)

Then, by a further sequence of contactomorphisms, we can get to (R2n+1, ker(dz −∑n−1
i=1 yidxi+ r

2
ndθn), where the Legendrian sphere is still given by the Legendrian lift of a

disk in {z = 0} joined with its pushoff. Now deforming the hypersurface {z = 0} ∩ {0 <

xn < 1} to Wρ, and tracing back through Courte-Ekholm’s proof, it is clear that this

sphere is in fact isotopic to Λ(L,L). Since it is the image under a contactomorphism of

the unknot, Λ(L,L) is in fact the unknot. This completes the proof of Corollary 1.1.6.
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Remark 4.3.1. Courte and Ekholm also use the h-principle for their proof. Hence, the

proof here does not use a radically different argument. The point is to see their result as

a part of a more general picture.

84



CHAPTER 5

LEGENDRIAN SURFACES AND THEIR INVARIANTS

All the results and observations in this chapter are joint work with J. Hughes. In this

chapter, we describe how to obtain weave descriptions of doubles obtained from fillings

described by weaves. Then, we discuss specific results about doubles of certain torus

links, and also some work in progress.

5.1 Doubling Legendrian weaves

Definition 5.1.1. Consider two properly embedded N -graphs G1 ⊂ D2 and G2 ⊂ D2

with the same boundary. Then the doubled N -graph G1 ∪ G2 is defined to be the N -

graph obtained on S2 by gluing the two disks via their boundaries and identifying the

boundaries of G1 and G2.

Consider the following elementary observation. Note that we did not need to assume

embedded to define the doubled Legendrian in Section 2.8.

Proposition 5.1.2. LetG1,G2, beN -graphs describing two exact Lagrangian fillings π(Λ(G1), π(Λ(G2))

of a linkK. Then the Legendrian Λ(π(Λ(G1)), π(Λ(G2))) is the Legendrian weave corresponding

to the doubled N -graph (G1 ∪G2) ⊂ S2.

Proof. This is easy to observe after choosing the right D2 ⊂ R5 to satellite the weave

along. Consider the Legendrian disk (call it D1) whose front projection is the left half

the Legendrian unknot pictured in the top left of Figure 3.5 (by Gromov’s h-principle,

there is a unique Legendrian D2 in R5
st but this helps in identifying with the setup in
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Section 2.8). Suppose the boundary of the disk is along x2 = −1, and the interior of disk

extends into {x2 ≤ −1}. Similarly choose the other half of the Legendrian unknot (call

it D2) and translate it to live in {x2 ≥ 1}. Interpolate between them with a Legendrian

annulus whose front is the cylinder in the x2 direction of the front for the 1-dimensional

Legendrian unknot in (x1, z). Now, considering the Legendrians Λ(Gi) after satelliting

over Di, and gluing them as in the doubling construction, is exactly the same as consid-

ering the Legendrian weave in J1(S2) over the graph G1∪G2 ⊂ S2, and satelliting it over

the standard unknot in R5.

For simplifying notation, henceforth we will denote the double coming from weaves

by Λ(G1, G2), instead of π(Λ(G1), π(Λ(G2)). In the following, we show a refinement of

Theorem 2.8.1 of [11] for weaves. In particular, for an exact Lagrangian filling Λ(G) of a

link given by a Legendrian weave G, we describe exactly the symmetric double Λ(G,G).

Theorem 5.1.3. For an N -graph G, the double Λ(G,G) is Legendrian isotopic to #kT
2
st, where

k is the number of trivalent vertices in G.

Proof. The proof will apply Theorem 3.2.6 to G to decompose G into bigons, but we

might have to do a number of candy twists (refer, Figure 3.3) to simplify the graph first

and remove hexagonal vertices. It is clear that any hexagonal vertex near ∂G (i.e. 3 of

its edges end at ∂G) gives rise to a local picture like the left picture corresponding to the

candy twist move and can be undone. Any trivalent vertex near the boundary, i.e. two

of its edges end at ∂G, contribute a bigon to the doubled graph G ∪ G, and hence a T 2
st.

Inductively removing the bigons results in a simplified graph and proves the result.

The main technical tool for understanding isotopy classes of asymmetric doubles is

the computation of the sheaf moduli of Λ(L1, L2) in terms of the sheaf moduli of the
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fillings L1 and L2. Suppose the flag moduli invariant of Λ is M1(Λ). Let CL1 ⊆ M1(Λ)

and CL2 ⊆ M1(Λ) be the toric charts induced by L1 and L2 respectively.

Theorem 5.1.4. The flag moduli M1(Λ(L1, L2)) is given by the intersection CL1 ∩ CL2 .

Proof. The flag moduli M1(Λ(L1 ∪ L2)) is obtained by imposing the additional singular

support conditions coming from both L1 and L2 on M1(λ). However, as the discussion

in appendix B of [31] makes clear, especially in Theorem B.20, the toric charts CLi are

obtained by imposing the singular support conditions coming from Li.

5.2 Doubles of torus link fillings

Call Linit the weave filling of λ(2, n) corresponding to the graph with all trivalent vertices

on the ”outside” edge; analogous to the topmost graph on the right of Figure 3.6. The

Legendrians obtained by doubling these fillings of λ(2, n) correspond to 2-graphs that

were characterised in Theorem 2 of [35] by Whitney, and also called ”two-tied trees” by

Kauffmann [36].

5.2.1 Doubles of λ(2, n) fillings

Theorem 5.2.1. Let L1 and L2 be two exact Lagrangian fillings of λ(2, n) obtained as above.

Then,

1. The double Λ(Linit, L1) is Hamiltonian isotopic to #kT2
std#

lT2
c for some k and l such that

k + l = n− 1

2. GivenL1, and j such that 0 ≤ j ≤ n−1, there existsL2 such that Λ(L1, L2) is Hamiltonian

isotopic to #jT2
std#

n−1−jT2
c

87



3. The double Λ(L1, L2) is Hamiltonian isotopic to #n−1T2
std if and only if L1 and L2 are

Hamiltonian isotopic.

Proof. The proof of items (1) and (2) will be using Theorem 3.2.6.

For (1), start with the ”highest” or ”interiormost” trivalent vertex in the weave repre-

sentation of L1 (if there are none, then it has to be Linit and l = 0). The two edges of this

vertex that go to the boundary of the graph continue into the weave for Linit and meet

the outside edge at two trivalent vertices, thus creating a triangle. This corresponds to a

connect summed Tc, doing the reverse operation as in the third row of Figure 3.7 takes

that summand out. The resulting 2-graph is the double of the initial filling of λ(2, n− 1)

and some other weave filling. By induction, (1) is proved.

For (2), observe that given any filling L1 of λ(2, n), there are (n − 1) short I-cycles

visible in the 2-graph. Mutating along one of them keeps the others intact. If we take

Λ(L1, L1), this is isotopic to #n−1T 2
st. Now, mutate along an I-cycle connected to the

”highest” trivalent vertex of L1, call that L′
1. Locally, the mutation operation causes the

bigon in Λ(L1, L1) corresponding to the highest trivalent vertex to become a triangle in

Λ(L1, L
′
1), thus Λ(L1, L

′
1) is isotopic to #n−2T 2

st#T
2
c . However, we can see the remaining

(n−2) I-cycles of L1 still in L′
1, call them the ”surviving cycles”, along with the newly cre-

ated I-cycle. Mutating along the surviving I-cycles successively in order of their height

allow us to produce up to (n− 1) T 2
c summands, by changing all bigons to triangles (the

triangles might become visible only after removing triangles in their interior).

For (3), note that by Theorem 5.1.4, the sheaf moduli of Λ(L1, L2) is isomorphic to

(C∗)n−1 iff L1 = L2, since otherwise M1(Λ) is a proper subvariety of CLi , as L1 and L2

induce distinct toric charts in M1(λ(2, n).
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5.2.2 Some computations for doubles of λ(3, 6) fillings

The torus link λ(3, 6) admits infinitely many exact Lagrangian fillings, which was shown

by Casals-Gao [37]. The fillings are described by Legendrian weaves coming from 3-

graphs, consisting of two parts, an initial filling of λ(3, 6), call it L0 and a cobordism from

λ(3, 6) to itself, call it C, stacked on top of it a number of times. These pieces are drawn

as weaves in Figure 5.1. Schematically, if the infinite family of fillings is {Li}∞i=1, then

Li = L1 ∪ Ci−1, i.e., the initial filling and (i− 1) copies of the cobordism on top.

Figure 5.1: The initial filling of λ(3, 6) on the left, and the infinite order self-cobordism on
the right.

A natural question to ask is, what are the isotopy classes of the doubles Λ(L1, Li)?

Using the first three moves for 3-graphs in Figure 3.3, we can show the following.

Theorem 5.2.2. The Legendrian surface Λ(L1, L2) is isotopic to the connect sum of standard and

Clifford tori with a knotted link.

Proof. The proof is purely diagrammatic. Some of the steps are shown in Figure 5.2. The

first arrow is after applying some push-throughs along the top and bottom. The second
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arrow shows a flop, and some more flops and push-throughs after that lead to a triangle

showing up, which is a Clifford torus summand. Taking this summand out to simplify

the picture, we continue applying the equivalence moves. Every time a bigon (as shown

in the fifth picture in the sequence) or Clifford torus shows up, it is taken out. Ultimately,

we are left with the knotted link represented in the sixth picture.

Similarly, by working with these diagrams, it can be shown that Λ(L1, Li) for i =

2, 3, 4 are all isotopic to cubic planar Legendrian surfaces connect summed with the same

knotted sphere. Also, the cubic planar Legendrians for i = 1, 2, 3, 4 are all non-isotopic.

We expect that the family {Λ(L1, Li)}∞i=1 will all be pairwise non-isotopic, which should

follow from explicit computations of point counts of their flag moduli, along the lines of

Section 6.4 in [21]. This is work in progress.

Figure 5.2: Decomposing a double of two fillings of λ(3, 6) into a connect sum of a link of
spheres with standard and Clifford tori.

5.3 Future directions

In this section we will mention the ideas behind work in progress, to prove Theorems 1.2.6,

1.2.9, 1.2.8, and 1.2.7.
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5.3.1 Fillings and Invariants of Twist-spun Legendrians

Let λ ⊆ (R3, ξst) be a Legendrian link and φ be a Legendrian loop of λ. That is, φ =

{φθ}θ∈[0,1] is a Legendrian isotopy with φ1 fixing λ pointwise. The image {φθ(λ)} := {λθ}

is an S1 family of Legendrians, and we can form the mapping torus of φ to obtain a

Legendrian surface in contact (R5, ξst). More explicitly, we define Σφ(λ) by observing

that an S1 family of Legendrians {λθ} ⊆ T ∗Rx × S1 × Rz lifts uniquely to a Legendrian

Σφ(λ) ⊆ T ∗Rx×T ∗S1×Rz with contact structure dz−pθdθ−pxdx. We can then canonically

identify T ∗R× T ∗S1 with T ∗R2 by the map R× S1 → R×R\{0} defined by (x, θ) 7→ exθ,

giving a (strict) contact embedding (T ∗R2 ×T∗S1 ×Rz, dz− pθdθ− pxdx) ↪−→ (R5, ξst). See

[38, Section 1.3] for more details. In this sense, we can give the following definition.

Definition 5.3.1. Given a Legendrian loop φ of a Legendrian link λ, the twist-spun Leg-

endrian Σφ(λ) is the union of Legendrian tori

λ× [0, 1]/(φ(λ)× {0} ∼ λ× {1})

embedded in (R5, ξst).

Considering a Lagrangian filling L of λ, it gives rise to an exact filling of Σφ(λ) if it is

”well-behaved” under the loop φ. On the sheaf moduli and cluster side, starting with a

(−1)-closure, the cluster variety of M1(Σφ(λ)) is obtained by folding the cluster variety of

λ along ϕ.

Understanding this procedure for the cases mentioned will allow us to prove Theo-

rems 1.2.8 and 1.2.7.
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5.3.2 General doubles of N-graph Legendrians

Similar to Theorem 3.3.12 by Treumann-Zaslow, we expect to show that the nontrivial

intersection of two toric charts is a variety that is not large enough to accomodate a toric

charts. This will allow us to show that an asymmetric double is never exact Lagrangian

fillable, which is Theorem 1.2.6. The precise proof will need to be argued using point

counts over some finite fields, which is work in progress.

We will sketch the proof of Theorem 1.2.9. The sheaf moduli of the associated link is

the braid variety, which is known to be an irreducible variety. Any two exact Lagrangian

fillings induce toric charts for the variety, which are Zariski open subsets of the braid

variety, and are hence dense. Thus, their intersection will always be non-empty, hence

the double will be non-loose, since it has non-vanishing sheaf moduli, by Lemma 1.2.2.
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