1. Let

$$
A=\left(\begin{array}{llll}
1 & 1 & 2 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 3
\end{array}\right) \quad \bar{b}=\left(\begin{array}{l}
1 \\
7 \\
1
\end{array}\right)
$$

(a) Row reduce A to row echolon form.
(b) Row reduce A to reduced echolon form.
(c) Find the pivotal columns of A, List the pivotal and free variables.
(d) Is the system consistent? If so find all the solutions.
2. Determine whether the vectors $\bar{v}_{1} \in \operatorname{span}\left[\bar{v}_{2}, v_{3}\right]$ where,
(a)

$$
\bar{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \quad \bar{v}_{2}=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right) \quad \bar{v}_{3}=\left(\begin{array}{c}
1 \\
-4 \\
3
\end{array}\right)
$$

(b)

$$
\bar{v}_{1}=\binom{1}{2}, \quad \bar{v}_{2}=\binom{2}{1} \quad \bar{v}_{3}=\binom{6}{2}
$$

4 Let $A=\left[\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}\right]$ with

$$
\bar{a}_{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \bar{a}_{2}=\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right) \quad \bar{a}_{3}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)
$$

Let $\bar{x}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
(a) What is $A \bar{x}$
(b) Find all \bar{x} so that $A \bar{x}=0$. Can you describe this set geometrically?
(c) If they exist find all \bar{x} so that $A \bar{x}=\bar{b}$ where $\bar{b}=\left(\begin{array}{l}2 \\ 2 \\ 6\end{array}\right)$. How is this set related to the set in (b)

5 If A is an $m \times n$ matrix whose columns span R^{m}. Explain why $m \geq n$. What can you say when $m=n$?

