1) Let A be a 4×4 matrix and \tilde{A} be a matrix in echelon form obtained from A by row reduction. Show that \tilde{A} is either an upper triangular matrix with nonzero diagonal entires, or the last row must be a row of zeros.
2) Find $\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}$ form a basis for there span. Is \bar{x} in the $\operatorname{span}\left\{\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}\right\}$ if so find its coordinate vector.

$$
\bar{y}_{1}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right) \quad \bar{y}_{2}=\left(\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right) \quad \bar{y}_{3}=\left(\begin{array}{l}
3 \\
2 \\
2 \\
0
\end{array}\right) \quad \bar{x}=\left(\begin{array}{c}
1 \\
-2 \\
0 \\
-1
\end{array}\right)
$$

3) Determine whether the following set of vectors is linearly independent or not, $\bar{v}_{1}=$ $\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 3\end{array}\right), \bar{v}_{2}=\left(\begin{array}{l}3 \\ 1 \\ 1 \\ 1\end{array}\right), \bar{v}_{3}=\left(\begin{array}{c}1 \\ -3 \\ 1 \\ -5\end{array}\right)$
4) Consider the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 1 & -1 & 0 & -1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & -1 & 1 & -2 \\
1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

The $\operatorname{Col}(A)$ is a subspace of what vector space? Write down the definition of $\operatorname{Col}(A)$ Find a basis for $\operatorname{Col}(A)$. Write down the definition of the $\operatorname{Nul}(A)$. It is a subspace of what vector space? Find a basis for $\operatorname{Nul}(A)$. What is rank A? For an $m \times n$ matrix A why do the pivotal columns form a basis for $\operatorname{Col}(A)$?
5) Find the inverse if it exists of the following matrices

$$
\begin{gathered}
A=\left(\begin{array}{ll}
4 & 2 \\
1 & 5
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) \\
C=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 2 & 1 & 0 \\
1 & 0 & 1 & 1 \\
2 & 2 & 0 & 1
\end{array}\right)
\end{gathered}
$$

6) Let A be a 4×3 matrix. Find the matrix representation of the elementary row operation that would take 3 times the 2 nd row of A and subtract it from the 4 th row of A
