1a. Find the eigenvalues and corresponding eigenvectors to the matrix

$$
A=\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right)
$$

b. Find an invertible matrix V so that $V^{-1} A V=D$ where D is a diagonal matrix. Describe D.
d. Suppose B is a 4×4 matrix with three distinct eigenvalues. One eigenvalue has geometric multiplicity one and one has geometric multiplicity two. Is it possible that B is not diagonalizable?

2a Problem 27 in section 3.2.
2 b Why is it A is invertible if and only if $\operatorname{det}(A) \neq 0$
3a. Two matrices A and B are similar if $B=P^{-1} A P$ where P is an invertible matrix. Show that A and B have the same determinant.
3b. Show that A and B have the same characteristic polynomial.
3c. Find the characteristic polynomial of the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2 \\
0 & 3 & 2
\end{array}\right)
$$

4a Problem 9 in section 3.2
4 b Show by example that $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$.
5 Find the eigenvalues and corresponding eigenvectors to the matrix

$$
A=\left(\begin{array}{lll}
3 & 0 & 1 \\
0 & 4 & 0 \\
1 & 0 & 3
\end{array}\right)
$$

