1.(a) Let $\mathbf{x}_{\mathbf{1}}=\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right), \mathbf{x}_{\mathbf{2}}=\left(\begin{array}{l}2 \\ 1 \\ 3 \\ 1\end{array}\right)$ and $\mathbf{x}_{\mathbf{3}}=\left(\begin{array}{l}3 \\ 1 \\ 5 \\ 1\end{array}\right)$ and $S=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{3}}\right\}$. Find an orthonormal basis for S.
(b) Find the expansion of $\mathbf{b}=\left(\begin{array}{l}1 \\ 2 \\ 2 \\ 0\end{array}\right)$ in terms of this basis
(c) Find the orthogonal projection onto S.
2.(a) Let $\mathbf{x}_{\mathbf{1}}=\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right), \mathbf{x}_{\mathbf{2}}=\left(\begin{array}{l}2 \\ 1 \\ 3 \\ 1\end{array}\right)$ and $\mathbf{x}_{\mathbf{3}}=\left(\begin{array}{l}3 \\ 2 \\ 0 \\ 1\end{array}\right)$ and $S=\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$.
(a) Find the orthogonal complement of S. It is a subspace of what space?
(b) Let $A=\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{1}}\right]$. Decompose $A=Q R$ where the columns of Q are an orthonormal basis for S, and R is an upper triangular matrix with positive diagonal entries.

3 Let $\mathbf{x}_{\mathbf{1}}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right)$ and $\mathbf{x}_{\mathbf{1}}=\left(\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right)$. Find,
(a) $\left|\mathbf{x}_{\mathbf{1}}\right|,\left|\mathbf{x}_{\mathbf{1}}\right|$.
(b) The \cos of the angle between $\mathbf{x}_{\mathbf{1}}$ and $\mathbf{x}_{\mathbf{2}}$.
(c) $\left|\mathbf{x}_{\mathbf{1}}+\mathbf{x}_{\mathbf{2}}\right|$.

4 Consider the line L in R^{3} passing through the origin and the point $(1,2,1)$. Let $\bar{x}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$.
(a) Find $\bar{x}_{\| \mid}$the projection of \bar{x} on the line L.
(b) Find \bar{x}_{\perp}.
(c) Find the matrix representation of the orthogonal projection onto L.

5(a) If $S=\left\{\bar{u}_{1}, \ldots \bar{u}_{k}\right\}$ is a set of nonzero orthogonal vectors show that this is a lineraly independent set.
5(b) If A is an $n \times m$ matrix show $(\operatorname{Null}(A))^{\perp}=\operatorname{col} A^{T}$

