Since $Q = Q_N \ge Q_n \ge Q$ $\forall n \ge N$, $Q_n = Q \forall n \ge N$.

Lat
$$I = \{n \in \mathbb{N} : x_n = \alpha\}$$
.
 $\bigcirc If \#(I) = \infty$, then let $n_1 < n_2 < \cdots$, $n_i \in I$.
So, $x_{n_i} = x_{n_2} = \cdots = x_{n_r} = \cdots = \alpha$ is a decreasing
subsequence of x_n .
 $\oslash If \#(I) < \infty$, then
let $M = \max_{n \in I} n$, then $x_n \neq q \quad \forall n > M$.
let $L = \max \{N, M+i\}$. then if $n \ge L$, $a_n = a$
and $x_n < a$.
Lat $L = \max \{N, M+i\}$. then if $n \ge L$, $a_n = a$
and $x_n < a$.
Lat $n_i = L$, $C_i = a_{n_i} - x_{n_i} > 0$, $a_{n_i} = a$
so, we can select $n_2 > n_i$, s.t $x_{n_i} < x_{n_2}$
be cause $a_{n_i} = lub \{x_{n_i}, x_{i+1}, \cdots\}$.
We can keep doing it for x_{n_i} such that
 x_{n_i} is an increasing subsequence of x_n
 $Case 2: a_n > a$, $\forall n \in \mathbb{N}$.

$$a_{n_{n_{1}}} \xrightarrow{\alpha_{r_{1}}} a_{r_{1}} \xrightarrow{n} a_{r_{1$$

Corollary. If
$$X_n \in \mathbb{R}$$
, X_n is bounded, then
 $\exists X_{n}$; converges.
Proof. By the proposition, $\exists X_{n}$; that is

increasing or decreasing. But since it is also bounded. Ani converges.

Lemma SCR, S is bounded and closed. $S \subset \bigcup_{i \in I} U_i$ Ui open, $\forall i \in I$. Then $\exists \delta > 0$ s.t. $\forall x \in S$, $\exists i x \in I$ s.t. $(x - \delta, x + \delta) \subset U_{ix}$. poof: If the lemma is not true, $\exists x_n \in S$, s.t. $(x_n - h, x_n + h)$ is not included in one of the open sets Ui.

Since S is bounded, $x_n \in S$, $\underline{X_n}$ is bounded. Then, $\exists X_{n_i} \rightarrow x$

Since S is closed and $\chi_{ni} \in S$, $\chi \in S$. Since $\chi \in S \subset \bigcup_{i \in I} U_i$, $\exists i_0 s.t. \chi \in U_{i_0}$ Since U_{i_0} is open, $\exists E > 0$, $s.t. (\chi - \varepsilon, \chi + \varepsilon)$ $\subset U_{i_0}$. $\chi_{-\varepsilon} \qquad \chi_{+\varepsilon} \qquad \chi_{+\varepsilon} \qquad \chi_{+\varepsilon}$

Since
$$\chi_{n_i} \rightarrow \chi$$
, $\exists n_{i_0} \quad \text{s.t.} \quad |\chi_{n_{i_0}} - \alpha| < \frac{\varepsilon}{z}$.
and $\frac{1}{n_{i_0}} < \frac{\varepsilon}{z}$.
Then, $(\chi_{n_{i_0}} - \frac{1}{n_{i_0}}, \chi_{n_{i_0}} + \frac{1}{n_{i_0}}) \subset (\chi - \varepsilon, \chi + \varepsilon) \subset U_{i_0}$.
This contradicts with that $(\chi_n - \frac{1}{n}, \chi + \frac{1}{n})$ is not
included in one of the $U_i \quad \forall i \in I$.

Theorem If
$$S \subset \mathbb{R}$$
, S is closed and bounded.
Then, S is compact.
Proof Let $\bigcup_{i \in I} U_i > S$ where U_i is open VieI.
From lost lemma, $\exists \delta > 0$, s.t. $\forall x \in S$, \exists
 $i_x \in I$ s.t. $(x - \delta, x + \delta) \subset U_{ix}$

Let
$$\chi_1 = \min S = glb(S) \operatorname{since} S$$
 is closed
and $S_1 = S - (\chi_1 - \delta, \chi_1 + \delta)$ is closed.
Let $\chi_2 = \min S_1 = glb(S_1) \operatorname{since} S_1$ is closed.
and $S_2 = S_1 - (\chi_2 - \delta, \chi_2 + \delta)$ is closed.

Thus,
$$\chi_n - \chi_i \ge (n-1)\delta$$
 if $S_n \neq \emptyset$.
Since S is bound, S_n is ϕ for some n .
Thus, $S \subseteq \bigcup_{j=1}^{n-1} (\chi_j - \delta, \chi_j + \delta)$
Since each $(\chi_j - \delta, \chi_j + \delta) \subseteq \bigcup_{j=1}^{n-1} (\chi_j - \delta, \chi_j + \delta) \subset \bigcup_{j=1}^{n-1} (\chi_j - \delta) \subset \bigcup_{j=1}^{n-1} (\chi_j - \delta) \subset \bigcup_{j$