Proposition: $X_{n} \in \mathbb{R}, X_{n}$ is bounded. Then, there exists a subsequence of X_{n} that is decreasing or increasing.
Proof: Let $a_{n}=\ln b\left\{x_{n}, x_{n+1}, \cdots\right\}$

$$
\Rightarrow a_{n} \geqslant a_{n+1} \geqslant a_{n+2} \cdots \text {. }
$$

$\Rightarrow a_{n}$ is an upper bound of $\left\{x_{n+1}, x_{n+2}, \cdots\right\}$
but a_{n+1} is the lub of $\left\{x_{n+1}, x_{n+2}, \cdots\right\}$.
$\Rightarrow \quad a_{n+1} \leqslant a_{n}$. So a_{n} is a decreasing sequence.
Since x_{n} is bounded, $\exists C \in \mathbb{R}$, s.t. $x_{n} \geqslant c, \forall n$.
But, $a_{n} \geqslant x_{n} \Rightarrow a_{n} \geqslant c, \forall n$
Thus, $a_{n} \rightarrow a=g l b\left\{a_{1}, a_{2}, \cdots\right\}$.
Case 1, $\exists N \in \mathbb{N}$, st. $a_{N}=a$.

since $\quad a=a_{N} \geqslant a_{n} \geqslant a \quad \forall n \geqslant N, \quad a_{n}=a \quad \forall n \geqslant N$.

Let $I=\left\{n \in \mathbb{N}: x_{n}=a\right\}$.
(1) If $\#(I)=\infty$, then let $n_{1}<n_{2}<\cdots, n_{i} \in I$.

So, $x_{n_{1}}=x_{n_{2}}=\cdots=x_{n_{r}}=\cdots=a$ is a decreasing subsequence of x_{n}.
(2) If $\#(I)<\infty$, then

Let $M=\max _{n \in I} n$, then $x_{n} \neq a \quad \forall n>M$.
Let $L=\max \{N, M+1\}$. then if $n \geqslant L, a_{n}=a$ and $x_{n}<a$.

Lot $n_{1}=L, \quad \varepsilon_{1}=a_{n_{1}}-x_{n_{1}}>0, \quad a_{n_{1}}=a$
so, we can select $n_{2}>n_{1}$, s.t $x_{n_{1}}<x_{n_{2}}$
because $a_{n_{1}}=\operatorname{lub}\left\{x_{n}, x_{n+1}, \cdots\right\}$.
We can keep doing it for $x_{n i}$ such that $x_{n_{i}}$ is an increasing subsequence of x_{n}

Case 2: $a_{n}>a, \forall n \in \mathbb{N}$.

Then, $\exists n_{1}$, s.t. $x_{n_{1}}>a$
since $a_{n} \rightarrow a$ and decreasing, $\exists r_{1}>n$, s.t.

$$
x_{n_{1}}>a_{r_{1}} \geqslant x_{r_{1}}
$$

Select $n_{2} \geqslant r_{1}>n_{1}$, s.t. $a<x_{n_{2}} \leqslant a_{r_{1}}<x_{n_{1}}$ We can keep doing that and have $n_{3}>n_{2}$ s.t. $a<x_{n_{3}} \leq a_{r_{2}}<x_{n_{2}}$.

So, such $X_{n i}$ is a subsequence of x_{n} that is decreasing to a.

Corollary: If $x_{n} \in \mathbb{R}, x_{n}$ is bounded, then $\exists x_{n_{i}}$ converges.

Proof. By the proposition, $\exists x_{n_{i}}$ that is
increasing or decreasing. But since it is also bounded, $x_{n i}$ converges.

Lemma $S \subset \mathbb{R}, S$ is bounded and closed. $S \subset \bigcup_{i \in I} u_{i} u_{i}$ open, $\forall i \in I$. Then $\exists \delta>0$ s.t. $\forall x \in S, \exists i_{x} \in I$ sit. $(x-\delta, x+\delta) \subset U_{i x}$.
proof: If the lemma is not true, $\exists x_{n} \in S$, s.t. $\left(x_{n}-\frac{1}{n}, x_{n}+\frac{1}{n}\right)$ is not included in one of the open sets U_{i}.

Since S is bounded, $x_{n} \in S, x_{n}$ is bounded. Then, $\exists X_{n_{i}} \rightarrow x$

Since S is closed and $x_{n} \in S, x \in S$.
Since $x \in S \subset \bigcup_{i \in \mathrm{I}} u_{i}, \exists$ io st. $x \in U_{i 0}$
Since $U_{i 0}$ is open, $\exists \varepsilon>0$, s.t. $(x-\varepsilon, x+\varepsilon)$
$\subset U_{i 0}$.

Since $x_{n_{i}} \rightarrow x, \exists n_{i_{0}}$ s.t. $\left|x_{n_{i 0}}-x\right|<\frac{\varepsilon}{2}$. and $\frac{1}{n_{i_{0}}}<\frac{\varepsilon}{2}$
Then, $\left(x_{n_{0}}-\frac{1}{n_{i 0}}, x_{n_{i 0}}+\frac{1}{n_{i 0}}\right) \subset(x-\varepsilon, x+\varepsilon) \subset \cup_{i_{0}}$. This contradicts with that $\left(x_{n}-\frac{1}{n}, x+\frac{1}{n}\right)$ is not included in one of the $U_{i} \forall i \in I$.

Theorem If $S \subset \mathbb{R}, S$ is closed and bounded.
Then, S is compact.
Proof Let $\bigcup_{i \in I} U_{i}>S$ where U_{i} is open $\forall i \in I$. From last lemma, $\exists \delta>0$, sit. $\forall x \in S, \exists$ $i_{x} \in I$ s.t. $(x-\delta, x+\delta) \subset U_{i x}$

Let $x_{1}=\min S=g l b(S) \sin a S$ is closed and $S_{1}=S-\left(x_{1}-\delta, x_{1}+\delta\right)$ is closed.

Let $x_{2}=\min S_{1}=g^{\prime b}\left(S_{1}\right)$ since S_{1} is closed. and $S_{2}=S_{1}-\left(x_{2}-\delta, x_{2}+\delta\right)$ is closed.

Thus. $\quad x_{n}-x_{1} \geqslant(n-1) \delta$ if $S_{n} \neq \varnothing$.
Since S is bound, S_{n} is ϕ for some n.
Thus, $S \subset \bigcup_{j=1}^{n-1}\left(x_{j}-\delta, x_{j}+\delta\right)$
since each $\left(x_{j}-\delta, x_{j}+\delta\right) \subset U_{i x_{j}}$

$$
S \subset \bigcup_{j=1}^{n-1}\left(x_{j}-\delta, x_{j}+\delta\right) \subset \bigcup_{j=1}^{n-1} U_{i x_{j}} .
$$

