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By Guillermo H. Goldsztein

In this paper, we study the collapse and rebound of a gas bubble. Our goals are
twofold: (1) we want to stress that different mathematical models may lead to
extremely different results and (2) we introduce a new class of simplified reliable
models. We accomplish our first goal by showing that the results obtained from
two of the simplest and most widely used models (the isothermal and adiabatic
approximations) are very different while the bubble is highly compressed. This
period of time is short but it is of crucial importance in most phenomena
where bubble collapses are relevant. To accomplish our second goal, we
identify a nondimensional parameter that is a quantification of the strength of
the bubble collapse and we show how to use this large parameter to obtain
new simplified models through the use of standard asymptotic techniques.
Illustrative examples and discussions on the wide range of applicability of the
approach introduced in this work are given.

1. Introduction

In this paper, we study the collapse and rebound of a gas bubble. To describe the
phenomenon to which this expression makes reference to, consider the follow-
ing situation. A gas bubble is immersed in a liquid. The pressure in the liquid
becomes and remains negative for enough time for the bubble to grow many
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times its equilibrium size. Once the bubble has expanded, the pressure in
the liquid increases to a positive value. As a consequence, the bubble (if it
still exists) decreases in size violently, overshooting its equilibrium size and
bouncing back (whenever it does not break). This process is usually referred to
as the collapse and rebound of the bubble.

Bubble collapses are frequently found in practice and easy to produce.
Cavitation damage, sonochemistry, shock wave lithotripsy, ultrasonic imaging,
and sonoluminescence are examples of technological and scientific importance
where bubble collapses play a central role.

Cavitation damage makes reference to the phenomenon that can be described
as follows. Strong pressure variations in the liquid are produced by the jet and
the shock emitted after the bubble collapses. The combined effect of several
bubbles undergoing this process is believed to cause erosion in nearby solids
(see [4, 23, 53]). This is an undesirable effect.

During a strong collapse, bubbles emit light. This phenomenon is known
as sonoluminescence. This light emission is believed to be due to chemical
reactions induced by the extremely high temperatures attained inside the bubble
during its compression. Multi-bubble sonoluminescence was observed over
half a century ago (see [4, 11, 32, 52, 53]), but it was the most recent discovery
of single bubble sonoluminescence that sparked a lot of interest within the
scientific community (see [1–3, 5, 12, 13, 16, 46]).

Chemical reactions result from the high temperatures and pressures in the
bubble during the collapse. This phenomenon is known as sonochemistry and
has a wide variety of applications (see [27, 28, 49]).

It is clear that any successful quantitative theory that describes any of the
phenomena mentioned above, should be able to predict the dynamics of the
collapse and rebound of a bubble. A large number of different mathematical
models to study the dynamics of single spherical bubbles can be found in the
literature. These models range from simple ODEs (Rayleigh–Plesset equations)
to complex systems of PDEs (Navier–Stokes equations). Some of the main
contributions to the field of bubble dynamics include [7–10, 33–41, 43, 45, 47].

Whenever we consider phenomena in which bubble collapses are relevant,
we are faced with the dilemma of choosing an appropriate model. On one hand,
we would like to use a model that can be easily implemented and produces
results easy to interpret. On the other hand, we would like to make sure that no
important physical effects are neglected by our model so that the results we
obtain are reliable. In this paper, we address some of these issues.

The goals of the present work are twofold. Our first goal is to stress that
different models can lead to extremely different results. On the other hand, we
note that the bubble collapse is a violent and fast motion. This violence of the
collapse can be quantified with a large non-dimensional parameter that we
identify. Our second goal is to show that asymptotics on this parameter is a
reliable source of new simplified models.
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To keep our analysis as simple as possible, we will assume that the liquid
under consideration is incompressible and inviscid, the gas inside the bubble is
inviscid, the mach number inside the bubble and the effect of surface tension
are negligible and the system posses spherical symmetry.

Some of the physical effects neglected in this paper become important
in the short period of time while the bubble is compressed. For example
the compressibility of the liquid slows down the speed at which the bubble
collapses. Thus, if our goal is to accurately predict the value of different
variables such as temperature or pressure during the collapse, the analysis to
be presented here has to be extended to include some of the physical effects
mentioned and possibly others.

However, the exact values of the variables in the short period of time while
the bubble is compressed is not always the goal pursued. An example is given
in Section 5, where the goal is to find the applied sound field that, while
satisfying certain restrictions, maximizes the strength of the collapse. The
model presented here leads to the correct result when applied to this example.

The objective of this work is to show how to obtain a dimensionless large
parameter that quantifies the strength of the collapse and how to use it to
obtain reduced models. Thus, to keep the analysis as clear as possible we have
chosen to make the physical assumptions mentioned above. We remark that
part of the value of this analysis is that it can be extended to include physical
effects neglected here (such as liquid compressibility). These extensions are
currently being developed.

We will study a system consisting of a single gas bubble immersed in a
liquid that extends to infinity. To model the bubble collapse and rebound, we
will simply study the evolution of this system when the initial radius R(0) is
much larger than the radius at equilibrium conditions Re (R(0) � Re), the
initial velocity of the bubble wall is 0 (Rt(0) = 0) and the pressure in the liquid
far away from the bubble remains at all times equal to the equilibrium pressure
pe. Under these conditions, the bubble behaves as follows. Because R(0) �
Re, the pressure inside the bubble at time t = 0 is smaller than the pressure in
the liquid far away from the bubble pe. As a consequence, the bubble size
starts to decrease. Because much inertia is gained, the bubble overshoots its
equilibrium size becoming very small. Once enough pressure inside the bubble
builds up due to compression, its size stops decreasing and starts to increase.
This motion occurs in two different time scales. Most of the time the bubble is
expanded and for a much shorter time the bubble is compressed. Figure 1 of
section 2 shows a typical plot of R versus t under the present conditions.

To describe the evolution of this system, it is necessary to determine the
pressure inside the bubble. In this regard, the polytropic approximation has been
widely used by models in the literature. More precisely, the pressure inside the
bubble is assumed by these models to be proportional to R−3κ , where κ is a
constant. In particular, κ = 1 corresponds to the isothermal approximation (i.e.,
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the temperature in the bubble is constant in both space and time) and κ = γ

(γ being the ratio of the specific heats of the gas) corresponds to the adiabatic
approximation (i.e., the entropy in the bubble is constant along particle paths).

In Section 2 we will use both the isothermal and the adiabatic approximation
in our modeling of the bubble collapse and rebound. We will show that both
approximations give very similar results while the bubble is expanded (which
is for most of the time). In fact, the curves R versus t obtained by both
approximations are indistinguishable to the naked eye when plotted in the
time scale that the bubble takes to go from its maximum size to its minimum
size (see Figure 1). This plot can mislead to wrong conclusions because,
by looking at it, one could be tempted to believe that both approximations
give the same results and they are both correct. However, sometimes we are
particularly interested in the behavior of the system during the short period
of time that the bubble is compressed. For example, if we are modeling the
phenomenon of sonoluminescence, we might want to predict the temperatures
attained inside the bubble. Thus, a look at Figure 1 is not enough to draw any
conclusions. In fact, we will show in Section 2 that the results obtained from
these two approximations are extremely different for a short period of time
while the bubble is compressed (see Figure 2).

This discrepancy rises the following question: which one of these two
approximations (if anyone) is giving us the correct results? To answer this
question, we note that the gas is isothermal while the bubble is expanded, but
as the bubble collapses, this approximation eventually breaks down. In fact,
the gas is adiabatic while the bubble is compressed. Thus, each approximation
is valid during different periods of time but neither is valid at all times. This
behavior suggests the use of the isothermal approximation while the bubble is
expanded and the adiabatic approximation while the bubble is compressed. In
Section 3, we prescribe an informal approach following these ideas. We say
that this procedure of Section 3 is informal because we use an ad-hoc rule
to decide when the motion ceases to be isothermal and becomes adiabatic.
However, the presentation of this analysis is justified because it is simple and
it introduces some of the main ideas behind the more formal procedure that is
presented later in this work.

In Section 4 we undertake a more formal analysis. Our starting point is the
complete set of PDEs (conservation of mass, momentum, and energy both
in the liquid and the gas). As it has been recognized independently by two
different groups (see [30, 31] and [43, 42]), under the conditions we consider
in this work, this complete set of equations can be reduced to a nonlinear
PDE coupled with the Rayleigh–Plesset equation. We nondimensionalize these
equations and observe that two parameters characterize our problem. One of
them can be considered a measure of the strength of the collapse and the other
one is the nondimensional coefficient of thermal diffusion inside the bubble.
We profit from the fact that the first of these two parameters is large to simplify
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the system with the use of asymptotic techniques (boundary layers in time).
As a result we split the time domain in three. While the bubble is expanded, it
behaves isothermally and the dynamics of the bubble radius is not affected by
the pressure in the gas. As the bubble becomes small, we need to introduce a
boundary layer in time where the isothermal approximation is no longer valid.
Eventually, once the bubble becomes small enough, the evolution of the bubble
radius is affected by the high pressures inside the bubble. Thus, a new boundary
layer (inside the one we already had) develops. There, the gas is adiabatic.

The value of our analysis becomes clear when we compare our approach
with computing the evolution of the system numerically without the use of
asymptotics. A first advantage of our approach is that its results are easier to
interpret. More precisely, the dependence of the solution as a function of the
nondimensional parameters of the system (the strength of the collapse and the
coefficient of thermal diffusion in the bubble) is explicitly shown. This is not
surprising because the result of the use of asymptotic techniques is to reduce
the original system to simpler systems that do not contain the expansion
parameters. Another advantage of our method is that it is computationally
cheaper. Our simplified model requires the solution of two ODEs and the
computation of a constant. The computation of this constant requires the
numerical solution of a simple PDE. These equations are very inexpensive to
solve and they do not depend on the parameters of our original system. On
the other hand, performing numerical computations on the original system
becomes extremely expensive as the collapse becomes stronger. (Two are the
reasons for this increase in computational times. The first one is the presence
of different time scales in the problem. The difference in these time scales
increases with the strength of the collapse. The second reason is that the
thickness of the boundary layer in space developed inside the bubble while
it is compressed decreases as the strength of the collapse increases.) As an
example supporting our discussion, we mention that the authors of [19] were
faced with these difficulties to resolve the bubble collapse numerically in their
study of single bubble sonoluminescence. As a consequence, they had a limit
on the size of the forcing sound amplitude that they could use in their numerical
computations. Our approach does not have these limitations. In fact, the
problem studied in [19] is a typical example where our method can be used.

In Section 5 we show that our approach can be used in any situation
involving bubble collapses (not just in the examples presented in this paper).
In this regard, we mention that our asymptotic analysis could be a component
of a numerical code that simulates the dynamics of a system composed of
one or several bubbles in a liquid. This code would detect when a bubble
is collapsing, use our asymptotic results and then continue the numerical
calculation after the rebound, avoiding the computationally expensive task of
resolving the bubble collapse numerically. In Section 5 we also present two
illustrative examples. In the first example the system is initially in equilibrium.
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Suddenly, at time equal 0 t = 0, the pressure in the liquid away from the bubble
p∞ becomes negative and remains constant for a period of time [0, t0]. This
period of time is long enough so that the bubble size at t = t0 is many times
its equilibrium value. At this time t = t0, the pressure p∞ becomes positive
again. In our second example, the pressure away from the bubble p∞ is not
constant but is of the form p∞ = pe(1 + a sin(ωt) + b sin(2ωt + φ)), where
pe is the equilibrium pressure. We use our method to find the constants a, b,
and φ that maximize the strength of the bubble collapse under the condition
that the acoustic intensity and frequency are constant (i.e., a2 + b2 and ω are
constants). These two examples illustrate the general applicability and some of
the advantages of our method.

Bubble collapses are sometimes desirable. In sonochemistry for example,
chemical reactions are produced by the extremely high temperatures generated
in the interior and in the vicinity of bubbles when they collapse. In these
situations, bubble collapses are induced by ultrasound. Clearly, it is desirable to
be able to induce bubble collapses with low acoustic intensities. Efforts in this
direction have been undertaken (see [17, 20, 50] for example). In particular,
the objective of the work in [20, 50] is to develop a sonodynamic approach to
cancer therapy. These authors found experimentally that the acoustic intensity
required to produce some chemical reactions can be much lower if the
ultrasound has two frequency components instead of one. This work is the
motivation of our second example of Section 5.

To conclude the introduction we mention that while a large number of studies
on the dynamics of collapsing bubbles exists (including the works previously
mentioned and [14, 18, 21, 22, 24–26, 29, 42–44, 48, 51]), the analysis
introduced here is new and will lead to new simplified and reliable models.

2. The polytropic approximations

In this Section we will use both the adiabatic and the isothermal approximations
and we will compare the results obtained.

Here and in the rest of this paper, we assume that the liquid is incompressible
and inviscid, the gas inside the bubble is ideal and inviscid, the effect of surface
tension is negligible, the mach number inside the bubble is negligible (i.e., the
bubble wall speed is much smaller that the sound speed inside the bubble), and
the system possesses spherical symmetry. Under these conditions, the evolution
of a gas bubble immersed in a liquid that extends to infinity is described by the
Rayleigh–Plesset equation

ρ�

(
RRtt + 3

2 R2
t

) + p∞(t) = p(t) (1)

where ρ� is the density of the liquid, R is the radius of the bubble, t is the
time, p∞(t) is the pressure in the liquid at infinity, and p(t) is the pressure at



Collapse and Rebound of a Gas Bubble 107

the bubble wall on the side of the gas. This equation was first obtained by
Rayleigh (see [47]) and its derivation can be found in many books on bubble
dynamics (see [4, 53]).

In this Section we also assume that the gas is polytropic (i.e., the pressure is
proportional to a power of the density), which, under the present conditions,
implies

p(t) = cteR−3κ (2)

for some constant cte. Equation (2) reduces to the isothermal approximation
when κ = 1 and to the adiabatic approximation when κ = γ (γ being the ratio
of the specific heats of the gas). If the gas is isothermal and the temperature is
the equilibrium temperature, the constant cte in Equation (2) is given by peR3

e
(where pe and Re are the pressure and bubble radius at equilibrium conditions,
respectively). If the gas is adiabatic, the constant cte depends on the total
amount of entropy inside the bubble. In other words, this constant depends
on the initial conditions. Following most models in the literature, we choose
cte = peR3γ

e if κ = γ .
To model the bubble collapse and rebound, we assume the pressure far

away from the bubble to be equal to the equilibrium pressure, the initial radius
to be much larger than the equilibrium radius, and the initial bubble wall
velocity to be 0. Thus, we are interested in the solutions of the system

ρ�

(
RRtt + 3

2
R2

t

)
+ pe = pe

(
Re

R

)3κ

R(0) = R0 and Rt (0) = 0 , (3)

where R0 � Re, for κ = 1 and κ = γ . In our calculations we have chosen
R0 = 10Re and γ = 1.4 (these values are commonly found in practice).
Figure 1 shows the two curves R/Re versus t/te obtained with the adiabatic
and isothermal approximations. The constant te is the natural time scale

te = Re

√
ρ�

pe
. (4)

Figure 1. Plots of R/Re versus t/te obtained with both the isothermal and the adiabatic
approximations. The two curves are indistinguishable.
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Figure 2. A closer look at the plots R/Re versus t/te (with the origin of the horizontal
axis shifted) corresponding to the isothermal (left figure) and the adiabatic (right figure)
approximations for times where the radius is close to its minimum value. R attains its minimum
at t = t i and t = ta when the isothermal and adiabatic approximations are used, respectively.

These curves looked like one. They are indistinguishable to the naked eye.
However, a closer look at these curves reveals that these approximations give
extremely different results for a short period of time while the radius is close
its minimum (see Figure 2). This disagreement applies not only to the bubble
radius R but also to the other variables in the problem (temperature, pressure,
velocity, etc.).

Amoreprecisequantificationof thediscrepancybetween theseapproximations
can be easily obtained. In Appendix A we show that the asymptotic behavior
of Rmin (the minimum of R) as δ, the ratio between the equilibrium and the
initial radius

δ = Re

R0
, (5)

becomes small, is given by

Rmin ≈ Re

δ
exp

(
− 1

3δ3

)
or Rmin ≈ Re

(γ − 1)
1

3(γ−1)

δ
1

γ−1 (6)

depending whether the isothermal or the adiabatic approximation is used,
respectively. Thus, evaluating these expressions at δ = 0.1 and γ = 1.4, we
obtain that Rmin ≈ 1.7 × 10−144 Re and Rmin ≈ 6.8 × 10−3 Re in the isothermal
and the adiabatic case, respectively.

In the class of phenomena that motivates the present study (cavitation
damage, sonoluminescence, sonochemistry, etc.), we are particularly interested
in the behavior of the system while the bubble is compressed. In this regard, the
calculations of this section show that different models can lead to extremely
different results.
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3. Failure of the polytropic approximations: An informal solution

The disagreement found between the isothermal and the adiabatic approximations
raises doubts on their validity. In this section we address this issue and we
prescribe an informal procedure to describe the evolution of the bubble. The
purpose of this section is to gain insight on the behavior of our system and to
introduce the main ideas of the more formal asymptotic analysis of Section 4.

3.1. Thermal diffusion time scale

We start by discussing the criteria of the validity of the isothermal and adiabatic
approximations. To this end, we need to consider the energy equation inside
the bubble, which, under our present conditions, takes the form

cvρ(Tt + vTr ) + (r2v)r

r2
p =

(
λr2Tr

)
r

r2
, (7)

where ρ is the density of the gas, T its temperature, v its velocity, λ its thermal
conductivity, cv its specific heat at constant volume, and r is the radial spatial
variable (i.e., the distance to the center of the bubble). We assume that both cv

and λ are constants. Making use of the estimates

∂

∂r
= O(R−1) and ρ = O

(
ρg R3

e R−3
)
, (8)

where ρg is the density of the gas at equilibrium conditions, we obtain
(comparing the first term of (7) with its right-hand side) the thermal diffusion
time scale

td = cvρg R3
e

λR
. (9)

Thus, the gas is isothermal while any other time scale in the problem is much
larger than td, and it behaves adiabatically for any period of time much shorter
that td. Note that the thermal diffusion time scale depends on the bubble size
td = td(R).

3.2. An informal model for the bubble evolution

We now go back to our description of the bubble collapse and rebound (i.e.,
the solution of (1) with p∞(t) = pe and initial conditions R(0) = R0 � Re

and Rt(0) = 0). While the bubble is expanded, the pressure in the gas is
small and as a consequence, it does not affect the evolution of the bubble
radius. Accordingly, p(t) can be initially neglected from Equation (1). Thus,
we replace our system (1) by

ρ�

(
RRtt + 3

2 R2
t

) + pe = 0 R(0) = R0 and Rt (0) = 0. (10)
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The solution R(t) of this equation decreases monotonically and it becomes 0 at a
finite time tc. In fact, the asymptotic behavior of R as t approaches tc is given by

R ∼ ARet
− 2

5
e (tc − t)

2
5 with A =

(
25

6

) 1
5

δ− 3
5 , (11)

where te and δ were introduced in (4) and (5), respectively. This asymptotic
formula is due to Rayleigh (see [47]) and its derivation is given in the
Appendix B.

As the bubble decreases in size, the pressure in the gas increases. Thus,
once the bubble is small enough, this built up in pressure affects the evolution
of our system preventing the bubble radius to become 0. As a consequence,
the assumption under which Equation (10) was obtained (p(t) being negligible)
is no longer valid. This implies that, for a period of time while the bubble is
compressed, we cannot neglect the pressure inside the bubble. To evaluate p(t),
we should, in principle, integrate the energy Equation (7) coupled with the
Rayleigh–Plesset Equation (1). To avoid this and motivated by our knowledge
of the qualitative behavior of our system, that is, the motion is isothermal
while the bubble is expanded and adiabatic while the bubble is compressed,
we prescribe the following rule.

3.2.1. Rule. We use the isothermal approximation in the time interval
[0, tα] and the adiabatic approximation in [tα, tmin], where tmin denotes the
time at which R attains its minimum and tα is determined next.

To select tα, we argue as follows. We expect that p(t) affects the evolution
of our system for a period of time so small that the following assumption
holds:

ASSUMPTION 1: The effect of p(t) on R(t) is negligible in the time interval
[0, tα].

Accordingly, we take R to be the solution of (10) in [0, tα]. On the other hand,
we expect that the bubble decreases in size substantially before the isothermal
approximation fails and thus, we expect that the following assumption is also
valid:

ASSUMPTION 2: Equation (11) is valid at t = tα.

Now the choice of tα is natural, namely, because the characteristic time
scale of (10) is t c − t , the isothermal approximation fails when tc − t is not
much larger than the thermal diffusion time scale td (see (9)), thus, we take tα
to be the solution of

tc − tα = td(R(tα)), (12)
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where td is given by (9) and R is given by (11). Once we solve (12), we have

tα = tc −
(

6

25

) 1
7

teµ
− 5

7 δ
3
7 , (13)

where µ denotes the nondimensional coefficient of thermal diffusion inside
the bubble

µ = λ

cvρg Re

√
ρ�

pe
. (14)

Having chosen tα, it only remains to prescribe p(t) in the time interval [tα,
tmin]. According to our rule, the gas behaves adiabatically during this period of
time and thus, the pressure inside the bubble is given by

p(t) = CR(t)−3γ if t ∈ [tα, tmin] (15)

for some constant C. To compute this constant C we simply require the
pressure p(t) to be continuous at t = tα. Thus, because our rule assumes the
isothermal approximation (p(t) = pe(Re/R)3) for t < tα and Equation (15)
for t > tα, we have

p = CR−3γ = pe

(
Re

R

)3

at t = tα, (16)

from where C can be easily computed once R is replaced by its asymptotic
approximation (11)

C =
(

25

6

) 3
7 (γ−1)

δ− 9
7 (γ−1)µ− 6

7 (γ−1) pe R3γ
e . (17)

To conclude our informal description of the bubble collapse and rebound,
we should verify the Assumptions 1 and 2. In this regard, we note that a
typical value of µ (corresponding to the liquid being water, the gas being
air, the equilibrium radius, temperature and pressure being 10 µm, 300 K and
1 atm respectively) is 0.5. Thus, we assume that µ is a parameter of order 1,
and as a consequence, because δ is small, we have that Equation (13) implies
that t c − tα � t c (because t c = O(δ−1t e)), which confirms the validity of
Assumptions 2. On the other hand, to verify assumption 1, we note that it is
only necessary to confirm this assumption at t = tα which can be easily done
using the asymptotic formula for R (Equation (11)).

3.3. Summary and characteristics of the informal model

In summary, according to the method presented in this section, the bubble
radius R is given by

R(t) =
{

Ri (t) if 0 ≤ t ≤ tα,

Ra(t) if tα ≤ t ≤ tmin,
(18)
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where tα was defined in (13), tmin is the time at which Ra(t) attains its
minimum, Ri(t) is the solution of (10) and Ra(t) is the solution of

ρ�

(
Ra Ratt + 3

2 R2
at

) + pe = C R−3γ
a , (19)

with C given by (17) and (because (11) is valid at t = tα) the initial conditions
to integrate (19) are

Ra(tα) = ARet
− 2

5
e (tc − tα)

2
5 and Rat (tα) = − 2

5 ARet
− 2

5
e (tc − tα)−

3
5 (20)

(where A is given in (11)). Note that given our conditions, we have R(2tmin −
t) = R(t) for any 0 ≤ t ≤ tmin.

The nondimensional parameters of our system are δ defined in (5), and the
nondimensional thermal diffusion coefficient inside the bubble µ, which was
introduced in (14). Figure 3 shows a plot of R/Re versus t/te (R given by (18))

Figure 3. Plots R/Re versus t/te corresponding to δ = 0.1, γ = 1.4, and µ = 0.5 obtained
by Equation (18).
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with δ = 0.1, µ = 0.5, and γ = 1.4. As expected, the plot in Figure 3(a) looks
exactly like the one in Figure 1. The time range of the plot in Figure 3(b) is
[tα, 2tmin − tα]. During this period our present model assumes the adiabatic
approximation. The plot in Figure 3(c) shows a closer look of the curve R/Re

versus t/te around the time where the radius attains its minimum. These plots
clearly indicate the presence of three different time scales: (1) most of the time
the gas inside the bubble is isothermal and its pressure does not affect the
radius evolution (Figure 3(a)); (2) the time interval [tα, 2tmin − tα], where
the isothermal approximation fails (Figure 3(b)); and (3) a shorter period of
time where the pressure inside the bubble affects the dynamics of the radius
(Figure 3(c)).

To compare the results of this approach with the ones obtained in the
previous section, we remind that the values of the minimum radius are Rmin ≈
1.7 × 10−144 Re and Rmin ≈ 6.8 × 10−3 Re when the isothermal and adiabatic
approximations are used, respectively (with δ = 0.1 and γ = 1.4). On the
other hand, we show in Appendix C that the asymptotic behavior of Rmin as
δ → 0 according to the present model is

Rmin ≈ Re

(
25

6µ2

) 1
7 1

(γ − 1)
1

3(γ−1)

δ
1

γ−1 − 3
7 . (21)

Thus, for the example under consideration (δ = 0.1, γ = 1.4, and µ = 0.5),
we have Rmin ≈ 0.027Re.

We end this section with some comments. Although our rule to compute the
pressure inside the bubble is not a formally correct approximation, our results
have the right order of magnitude (this will be confirmed later in this paper).
Finally, we mention that two key characteristics of our system make possible
the present analysis and its more formal version that will follow, namely, δ is a
small parameter and the transition from isothermal to adiabatic motion occurs
while the pressure inside the bubble p(t) does not affect the dynamics of the
radius R(t).

4. Formal asymptotic analysis

In this section we undertake a more formal analysis of the bubble collapse
and rebound. We will first present the system of equations that govern the
evolution of our system, then we will solve this system with the use of
asymptotic techniques, and finally we will discuss some of the characteristics
of the solution obtained.

4.1. Governing equations

We assume that the liquid under consideration is incompressible and inviscid,
the gas inside the bubble is ideal and inviscid, the mach number inside the
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bubble is negligible (i.e., the bubble wall speed is much smaller than the sound
speed inside the bubble), the system possesses spherical symmetry, effects due
to vaporization, condensation, and surface tension, as well as variations in the
temperature of the liquid are negligible and the thermal diffusion coefficient
and the specific heats of the gas are constants.

We remind the reader that to model the bubble collapse and rebound, we
simply study the evolution of our system when the initial radius R(0) is much
larger than the radius at equilibrium conditions Re(R(0) � Re), the initial
velocity of the bubble wall is 0 (Rt(0) = 0) and the pressure in the liquid far
away from the bubble remains at all times equal to the equilibrium pressure pe.

Under these conditions, and introducing the change of variables

u = ρ

ρg

(
R

Re

)3

and x = r

R
, (22)

the complete the complete set of equations governing the dynamics of our
system reduces to the Rayleigh–Plesset equation

ρ�

(
RRtt + 3

2
R2

t

)
+ pe = pe

(
Re

R

)3

u(x = 1) R(0) = R0, Rt (0) = 0

(23)
coupled with the nonlinear partial differential equation

ut = (x2 f )x

x2
f (x = 0) = f (x = 1) = 0, (24)

where f is given by

f =
[

1

3γ

ut (x = 1)

u(x = 1)
+ (γ − 1)

γ

Rt

R

]
xu + λ

γ cvρg R3
e

R
ux

u
. (25)

The system (22–25) was obtained independently by two different groups (see
[30, 31] and [42, 43]). For completeness, we include its derivation in the
Appendix D.

4.2. The asymptotic model

The fact that the initial bubble radius is much larger than the radius at
equilibrium conditions (R0 � Re), makes it possible to solve the system
(23–25) by means of asymptotic techniques. While this analysis is one of
the main results of this paper, it can be somewhat technical for the reader
not familiar with asymptotic methods. Thus, we have chosen to display and
discuss the results here, and describe their derivation in the Appendix E.

The asymptotic behavior of the bubble radius as δ → 0 is given by

R(t)

Re
∼




δ−1 Ri (τ ) if τ ≤ τc and δ
10
7 + 5

2(γ−1) � τc − τ

K δ
1

(γ−1) − 3
7 Ra(θ ) if θ ≤ 0 and −θ � δ

− 10
7 − 5

2(γ−1) ,
(26)
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where Ri satisfies

Ri Riττ + 3
2 R2

iτ + 1 = 0 Ri (0) = 1, Riτ (0) = 0; (27)

Ra is the solution of

Ra Raθθ + 3
2 R2

aθ = R−3γ
a Ra(0) =

(
25

6(γ − 1)

) 1
3(γ−1)

, Raθ (0) = 0; (28)

the parameter δ was defined in (5); τ is related to t through

t = R0

√
ρ�

pe
τ ; (29)

τ c is the time at which Ri becomes 0 (i.e., Ri(τ c) = 0); θ is given by

τ = a− 5
7 − 25

6(γ−1) b
5

6(γ−1) µ− 5
7 δ

10
7 + 5

2(γ−1) θ + τc; (30)

the constant b is defined in Appendix E; µ is given by (14); we have defined

a =
(

25

6

) 1
5

(31)

and the constant K is given by

K = a
5
7 − 5

3(γ−1) b
1

3(γ−1) µ− 2
7 . (32)

(We mention here that in the Appendix E we have used a different notation.)
Formula (26) describes R for t ∈ [0, tmin], where tmin is the time at which R
attains its minimum. Given our conditions, we have R(t) = R(2tmin − t) if
tmin ≤ t ≤ 2tmin.

Our analysis provides us not only with the asymptotic form of the bubble
radius R, but also with the asymptotic behavior of the other variables in the
problem (such as density, pressure, and temperature of the gas, etc.). These
expressions can be obtained following our analysis in the Appendix E. The
constant b that appears in the above formulae, does not depend on δ. This
constant has to be computed numerically and, when the thermal diffusion
coefficient inside the bubble is constant, we obtained b = 0.30. If the thermal
diffusion coefficient of the gas depends on the temperature, the value of b
changes, but it is always an order 1 constant independent of δ.

Figure 4 shows plots of R/Re versus t/t e (t e was defined in (4) and R is
given by (26)) corresponding to the parameter values δ = 0.1, µ = 0.5, and
γ = 1.4. We have plotted the inner and outer solutions. As expected the left
plot looks exactly equal as the ones obtained in Section 2 with the polytropic
approximations and in Section 3 with our informal model.

In agreement with our observations of Section 3, the analysis of Appendix
E shows the presence of three different time scales in our problem. While the
outer solution is valid (most of the time) the gas is isothermal and the bubble
radius evolution is not affected by the gas pressure. For a shorter period of
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Figure 4. Plots R/Re versus t/te corresponding to δ = 0.1, γ = 1.4, and µ = 0.5.

time, once the bubble has decreased in size substantially, the gas inside the
bubble is neither isothermal nor adiabatic (the gas pressure does not affect
the radius dynamics during this period). Finally, for a much shorter period, while
the bubble is highly compressed, the gas is adiabatic and the pressure inside
the bubble does affect the evolution of the radius, preventing it to become 0.

To compare the results of our asymptotics with the ones obtained in the
previous sections, we remind that values of the minimum radius are Rmin ≈
1.7 × 10−144 Re and Rmin ≈ 6.8 × 10−3 Re when the isothermal and adiabatic
approximations are used respectively and Rmin ≈ 0.027Re when the informal
approach of Section 3 is used (these values are obtained when δ = 0.1, γ = 1.4,
and µ = 0.5). On the other hand, we show in the Appendix E that the asymptotic
behavior of Rmin as δ → 0 according to the present model (Equation (26)) is

Rmin ≈ Re

(
25

6µ2

) 1
7
(

b

γ − 1

) 1
3(γ−1)

δ
1

γ−1 − 3
7 . (33)

Thus, our asymptotic analysis gives Rmin ≈ 0.01Re.
Note that our informal approach gave the right order of magnitude of Rmin

(compare Equations (21) and (33)). Also note the explicit dependence of our
results on the parameters of the system (i.e., δ and µ). If we change our initial
conditions or the fluids, we do not have to solve the Equations (27) and (28)
again (unless γ changes). Another convenient feature of our approach is that
the results obtained are easy to interpret, for example, formula (33) shows
explicitly the dependence of Rmin on δ and µ.

5. Applications, examples, and extensions

Thus far we have only considered a simple example in which we have a bubble
collapse. In this Section we will show that the analysis of Section 4 can be
applied to most situations where bubble collapses are relevant, and we will
present two illustrative examples.
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5.1. General applicability of the asymptotic expansions

In any situation (not only in the example of Section 4), while the bubble size
decreases fast, the dynamics of the bubble radius is governed only by inertia
(i.e., the first two terms of the Rayleigh–Plesset Equation (1)). Thus, during
this period of time, R satisfies

R ∼ ARet
− 2

5
e (tc − t)

2
5 (34)

for some constant A. The dimensionless constant A is large and depends on
the history of the bubble evolution. This parameter A is a measure of the
strength of the bubble collapse. In our example of Section 4, we have A =
(25/6)1/5δ−3/5.

For the short period of time while the bubble is highly compressed, its
dynamics is independent of the pressure in the liquid at infinity. Thus, the
asymptotic behavior of R during this short period of time depends only on A
and it can be easily obtained from our analysis of Section 4 and Appendix E.
We just have to replace (25/6)1/5δ−3/5 by A. As a result, we obtain

R(t) ∼ Re A
5
7 − 5

3(γ−1) b
1

3(γ−1) µ− 2
7 Ra(θ ) for |θ | � A

5
7 + 25

6(γ−1) (35)

where Ra is the solution of (28) and θ is now given by

t = A− 5
7 − 25

6(γ−1) b
5

6(γ−1) µ− 5
7 teθ + tc. (36)

In this sense our analysis is very general. The constant A of Equation (34)
depends on the particular problem under consideration, but once A is obtained,
the behavior of R while the bubble is highly compressed is given by
Equations (35) and (36).

5.2. Slowly varying external pressure

We now illustrate our discussion with an example. More precisely, we will
assume that the pressure in the liquid at infinity is not constant, but it is given by

p∞(t) =
{

pe − p if 0 < t < t0

pe otherwise,
(37)

where p > pe, t0 � t e, p/pe − 1 = O(1) and the system is at equilibrium
initially (i.e., R(0) = Re and Rt(0) = 0).

This external pressure p∞ becomes negative at t = 0 and remains negative
for a period of time t0 much longer than te. Thus, the bubble size will be many
times its equilibrium value by the time p∞ becomes positive again (t = t0) and
as a consequence, the bubble will experience a collapse and rebound. In the
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Appendix F we derive the asymptotic behavior of R for large values of t0/t e,
obtaining

R(t)

Re
∼




ε−1
√

2(p − pe)
3pe

τ if τ ≤ 1 and ε � τ

ε−1 Ri (τ ) if 1 ≤ τ ≤ τc and ε
10
7 + 5

2(γ−1) � τc − τ

K ε
1

(γ−1) − 3
7 Ra(θ ) if θ ≤ 0 and −θ � ε

− 10
7 − 5

2(γ−1) ,

(38)

where Ri satisfies

Ri Riττ + 3

2
R2

iτ + 1 = 0 Ri (1) = Riτ (1) =
√

2(p − pe)

3pe
; (39)

Ra is the solution of (28); the parameter ε is defined as

ε = te
t0

; (40)

τ is related to t through

t = t0τ ; (41)

τ c is the time at which Ri becomes 0 (i.e., Ri(τ c) = 0); θ is now given by

τ = k− 5
7 − 25

6(γ−1) b
5

6(γ−1) µ− 5
7 ε

10
7 + 5

2(γ−1) θ + τc (42)

(where b = 0.30 was defined in Appendix E and µ in (14)); k denotes the
constant

k = 9p − 5pe

8pe

√
3

2

(
p − pe

pe

) 3
2

; (43)

and the constant K is now given by

K = k
5
7 − 5

3(γ−1) b
1

3(γ−1) µ− 2
7 . (44)

(We mention here that in Appendix F we have used a different notation.)
Figure 5 shows a plot of R/Re versus t/te, where R is given by (38), ε = 0.05,
γ = 1.4, and µ = 0.5.

In this example, the strength of the bubble collapse is A = kε−3/5. In fact, it
is easy to check that Equations (35) and (38) give the same results. This agrees
with our previous discussion, namely, the calculation of the outer solution (and
thus the constant A) depends on the particular problem under consideration,
but the behavior of R in the boundary layer around its minimum is always
given by (34–36). We remark that this example also illustrates another feature
of our analysis that applies in general, namely, our asymptotics gives us the
explicit dependence of the solution on the properties of the fluids and on the
external pressure.
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Figure 5. Plot R/Re versus t/te where R is given by (38), µ = 0.5, ε = 0.05, and γ = 1.4.

5.3. Two frequency forcing pressure

Bubble collapses can be easily produced by applying an acoustic field. The
experiments in [20, 50] suggest that cavitation can be more efficiently induced
if the acoustic field has two frequencies instead of one. Motivated by these
experiments, we will consider the following example. We now assume that the
pressure in the liquid at infinity is given by

p∞(t) = pe(1 + a sin(ωt) + b sin(2ωt + φ)). (45)

Our goal is to find a, b, and φ that maximize the violence of the bubble
collapses (and thus they also maximize the rate of chemical reactions that we
want the cavitating bubbles to produce), given that the acoustic intensity and
frequency are constant (i.e., a2 + b2 and ω are constants).

The first step toward the solution of this problem is to state it mathematically.
This is naturally done thanks to our asymptotic analysis. Namely, the strength
of the bubble collapse (the constant A of Equation (34)) is now a function of
a, b, and φ. Thus, our problem is to maximize A = A(a, b, φ) under the
restriction a2 + b2 = r2, with r and ω constant. For convenience, we have
parameterized a and b as a = r cos(β) and b = r sin(β). Thus, our problem in
hand reduces to find β and φ that maximize A, i.e., solve the problem

Amax = max
0≤β≤ π

2

Ā(β) where Ā(β) = max
0≤φ≤2π

A(β, φ). (46)

For definiteness, we have used the values r = 1.5pe and w = 0.05/t e. The
calculation of Ā(β) and Amax is done in Appendix G. We found that Amax =
10.8 and A is maximized at β = 0.19π and φ = 0.4π . Figure 6(a) shows a plot
of Ā versus β. This plot clearly shows that the use of single frequency acoustic
pressures is not optimal. Figure 6(b) shows a plot of R/Re versus t/te when the
external pressure is the one that maximizes A. Figure 6(c) shows a plot of this
optimal pressure p∞/pe versus t/te. This plot shows that the valleys of p∞ are
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Figure 6. (a) Plot of Ā versus β (see Equation (46)). (b) Plot of R/Re versus t/te when p∞ is
the one that maximizes A. (c) Plot of p∞/pe versus t/te

deep. This feature of p∞ is expected, because the bubble growths while p∞ is
negative and thus, the longer p∞ remains negative and the more negative it is,
the larger the bubble is before it collapses and consequently the stronger it will
collapse.

6. Discussion

We have shown that different models lead to extremely different results during
a short but important period of time while the bubble is compressed.

We have quantified the strength of the bubble collapse by detecting a large
nondimensional parameter (i.e., the constant A of Equation (34)) that is present
whenever we are in the presence of a bubble collapse. We have presented two
examples (one in Section 4 and the other one in Section 5.2) where we were
able to find A analytically, but in general, the evaluation of A may require
numerical computations. This was the case in our example of Section 5.3.

We have shown how to use this large parameter to simplify our system
of equations with the use of asymptotic techniques. This asymptotic analysis
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divides the time domain in 3 regions. The outer solution (while the bubble is
expanded), depends on the particular problem under consideration. The other
two regions in time correspond to two nested boundary layers around the time
where the bubble radius attains its minimum. There, the evolution of the
bubble radius is given by Equations (34–36) and the specific conditions of the
particular problem under consideration enter only through the constant A.

We have discussed the general applicability and advantages of our method
and we have also presented some illustrative examples. Our analysis can be
extended to include effects neglected here (such as liquid compressibility).
These extensions and applications of our method to the study of different
problems where bubble collapses are relevant will be pursued in the future.

Appendix A: The isothermal and adiabatic approximations

In this appendix we derive the formulae in (6). To this end, we multiply
equation (3) by R2Rt and integrate once to obtain

ρ�

R3 R2
t

2
+ pe

R3

3
= pe

R3
0

3
+ pe R3

e log

(
R

R0

)
(A.1)

and

ρ�

R3 R2
t

2
+ pe

R3

3
+ pe R3

e

3(γ − 1)

(
Re

R

)3(γ−1)

= pe
R3

0

3
+ pe R3

e

3(γ − 1)

(
Re

R0

)3(γ−1)

(A.2)
in the isothermal and adiabatic case, respectively.

At the time where R attains its minimum, we have R = Rmin and Rt = 0.
Evaluating Equation (A.1) at this time, neglecting the left-hand side because
Rmin � R0, and using the identity R0 = Re/δ, we immediately obtain the first
formula in (6).

Similarly, replacing R by Rmin and Rt by 0 in Equation (A.2) and, keeping
only the third term of the left-hand side and the first term of the right-hand
side (because the remaining terms are negligible in comparison), we obtain the
second approximation in (6).

Appendix B: Collapse of an empty cavity

In this Appendix we derived the formula (11). We first multiply Equation (10)
by R2Rt and integrate the result to obtain

ρ�

R3 R2
t

2
+ pe

R3

3
= pe

R3
0

3
. (B.1)

Then we plug the ansatz R = ARet
− 2

5
e (tc − t)α into Equation (B.1) and take

the limit t → t c to conclude that α = 2/5 and that A is given by (11).
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Appendix C: Asymptotics on the informal model

In this Appendix we derive Equation (21). To do so we multiply Equation (19)
by R2Rt, integrate the result and use the information from the initial conditions
(20) to obtain

ρ�

R3 R2
t

2
+ pe

R3

3
+ C

3(γ − 1)
R−3(γ−1) ≈ ρ�

R3(tα)R2
t (tα)

2

= ρ�

3
R5

e t−2
e δ−3. (C.1)

In the derivation of this equation we have used the fact that both peR3(tα) and
CR−3(γ−1)(tα) are much smaller than ρ� R3(tα)R2

t (tα). Finally, evaluating this
expression at R = Rmin and Rt = 0, and noticing that the first two terms
of the left-hand side are negligible when R attains its minimum, we obtain
Equation (21).

Appendix D: Derivation of the system (23–25)

In this Appendix we derive the system of equations (22–25). Under our
assumptions (stated in Section 4), the complete set of Navier–Stokes equations
(both in the liquid and the gas) reduce to the Rayleigh–Plesset equation

ρ�

(
RRtt + 3

2 R2
t

) + p∞(t) = p(t) (D.1)

(where p∞ is the pressure in the liquid at infinity) coupled with the conservation
equations inside the bubble (this coupling is through the pressure in the bubble
p(t))

ρt + (r2ρv)r

r2
= 0 (D.2)

cvρ(Tt + vTr ) + (r2v)r

r2
p =

(
λr2Tr

)
r

r2
. (D.3)

Equations (D.2) and (D.3) are the conservation laws of mass and energy,
respectively and we have not displayed the conservation of momentum because
it reduces to pr = 0 under the zero mach number approximation. Given
that the gas is ideal, it satisfies the equation of state p = RρT , where
R = cp − cv = (γ − 1)cv. This system of equations is completed once we
prescribe the boundary conditions

T (r = R) = T� Tr (r = 0) = 0 v(r = R) = Rt , (D.4)

where T� is the temperature of the liquid.
To derive the Equations (22–25), we make use of the equations of state and

mass conservation, and the fact p is spatially uniform to rewrite the energy
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equation as

pt + γ
(r2v)r

r2
p = (γ − 1)

(
λr2Tr

)
r

r2
. (D.5)

This equation can be integrated once to obtain the velocity as a function of the
pressure and the temperature

v = (γ − 1)

γ

λTr

p
− r pt

3γ p
. (D.6)

Using the equation of state and the boundary condition for the temperature
T (r = R) = T � we can express the temperature and pressure inside the bubble
as functions of the gas density

p = (γ − 1)cvT�ρ(r = R) and T = ρ(r = R)

ρ
T�. (D.7)

Thus, we can now write the velocity as a function of the density

v = − λρ

γ cvρ2
− [ρt (r = R) + Rtρr (r = R)]

3γρ(r = R)
r. (D.8)

Finally, plugging this expression for the velocity into the equation of
conservation of mass and making the change of variables (22), we obtain, after
some algebraic manipulations, the system (22–25).

Appendix E: Derivation of the asymptotic model of Section 4.2

In this Appendix we will reduce the set of Equations (23–25) to its
asymptotic approximation. We will first introduce nondimensional variables.
As a consequence, the parameter δ will appear in the dimensionless equations.
The fact that δ is small, will naturally lead us to an asymptotic analysis. More
precisely, we will introduce two nested boundary layers and as a result we will
distinguish three regions in time. In a first region (where the outer solution
is valid) the gas is isothermal and the evolution of the bubble radius is not
affected by the pressure inside the bubble. A second region corresponds to a
boundary layer in time where the isothermal approximation is no longer valid.
And a third region corresponds to another boundary layer (inside the one where
the gas is not isothermal) where the pressure inside the bubble affects the
evolution of the bubble radius. We now proceed with the details of the analysis.

E.1. Outer solution: Isothermal behavior

Given the initial conditions, the choice of the dimensionless variables is natural:

R = R0 R̄ and t = R0

√
ρ�

pe
t̄ . (E.1)
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In these new variables, our system (23–25) becomes

R̄ R̄t̄ t̄ + 3
2 R̄2

t̄ + 1 = δ3 R̄−3u(x = 1) R̄(0) = 1 and R̄t̄ = 0 (E.2)

and

ut̄ = (x2 f̄ )x

x2
f̄ (x = 0) = f̄ (x = 1) = 0, (E.3)

where f̄ is given by

f̄ =
[

1

3γ

ut̄ (x = 1)

u(x = 1)
+ (γ − 1)

γ

R̄t̄

R̄

]
xu + µ

γ δ2
R̄

ux

u
. (E.4)

As previously mentioned, we will assume that µ is a parameter of order 1
and δ is small. Thus, we can simplify our system (E.2–E.4) by keeping only
the dominant terms. More precisely, we approximate R̄ and u by R̄0 and u0,
respectively, where these new variables satisfy

R̄0 R̄0t̄ t̄ + 3
2 R̄2

0t̄ + 1 = 0 R̄0(0) = 1 and R̄0t̄ = 0 (E.5)

and

0 =
(

x2 u0x

u0

)
x

with u0x (x = 0) = u0x (x = 1) = 0. (E.6)

From this last equation we infer that u0 is a constant and, going back to
the relation between u and the gas density (Equation (22)), we immediately
conclude that this constant should be 1

u ∼ u0 = 1. (E.7)

On the other hand, as already discussed in Section 3, R̄0 decreases monotonically,
it becomes 0 at a finite time t̄ c and the asymptotic behavior of R̄0 as t̄
approaches t̄ c is given by

R̄0 ∼ a(t̄ c − t̄ )
2
5 , where a =

(
25

6

) 1
5

. (E.8)

E.2. Boundary layer: Failure of the isothermal approximation

As the bubble becomes small, the approximation (E.4) fails because some
neglected effects become important. To take these effects into account, we need
to introduce a boundary layer in time. Let α be the boundary layer thickness
(α is yet to be determined). Then, given the equation (E.8), we introduce the
change of variables.

R̄ = aα
2
5 R̂ and t̄ = t̄ c + αt̂ . (E.9)

Thus, plugging these expressions into equations (E.2–E.4), our system becomes

R̂ R̂t̂ t̂ + 3
2 R̂2

t̂
+ a−2α

6
5 = a−5δ3 R̂−3u(x = 1) (E.10)
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and

ut̂ = (x2 f̂ )x

x2
f̂ (x = 0) = f̂ (x = 1) = 0, (E.11)

where

f̂ =
[

1

3γ

ut̂ (x = 1)

u(x = 1)
+ (γ − 1)

γ

R̂t̂

R̂

]
xu + aµ

γ δ2
α

7
5 R̂

ux

u
. (E.12)

From these equations it is clear that the approximation for u (equation (E.7))
is the first one to fail. This fact leads us to the natural choice of α that makes
the coefficient multiplying R̂ux/u in the formula (E.12) an order one quantity

α =
[

δ2

aµ

]5/7

. (E.13)

To solve (E.10), note that a is an order one constant and both δ and α are
small parameters. Then, neglecting the small terms in Equation (E.10) (i.e., we
only keep the first two terms of the left-hand side), solving for R̂ and matching
the result with the outer solution, we obtain the asymptotic behavior of R̂ (for
small values of δ)

R̂ ∼ (−t̂ )2/5 (for negative t̂ ). (E.14)

This approximation fails as t̂ → 0. Thus, we will need to include a new
boundary layer. To this end, we first need to study the behavior of u as t̂ goes
to 0. In this limit, the motion becomes adiabatic. This means that the pressure
becomes proportional to R−3γ and the entropy becomes constant along particle
paths. These facts and the asymptotic behavior of R̂ (Equation (E.14)) imply
that u satisfies

u(x = 1) ∼ b(−t̂ )−
6(γ−1)

5 and u ∼ u0(x) (for x �= 1 ) as t̂ → 0 (E.15)

for some constant b and some function u0(x). To compute the constant b and
the function u0, we need to replace R̂ by its asymptotic approximation (−t̂)2/5

in Equation (E.11) and solve that equation with u subject to the asymptotic
behavior u ∼ 1 as t̂ → −∞. We have computed b numerically and we obtained

b = 0.30 (E.16)

(The details of the numerical code to compute b and u0(x) will not be discussed
here).

E.3. Thinner boundary layer: Adiabatic behavior

Equations (E.14) and (E.15) imply that the right-hand side of (E.10) becomes
of the same order of the left-hand side of that equation when t̂ = O(δ5/(2(γ−1)))
and thus, the approximation used to obtained (E.14) fails for such small values
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of t̂ . Consequently, we need to introduce a new boundary layer (inside the one
we already have). To do so we define

β = (δ3ba−5)
5

6(γ−1) (E.17)

and make the change of variables

R̂ = β2/5 R̃, t̂ = β t̃ (E.18)

and, for convenience, we introduce the function h(t̃ ) defined by

u(x = 1) = bβ− 6
5 (γ−1)h. (E.19)

Equations (E.15–E.17) now become

R̃ R̃t̃ t̃ + 3
2 R̃2

t̃ + a−2(αβ)
6
5 = R̃−3h (E.20)

ut̃ = (x2 f̃ )x

x2
f̃ (x = 0) = f̃ (x = 1) = 0 (E.21)

f̃ =
[

1

3γ

ht̃

h
+ (γ − 1)

γ

R̃t̃

R̃

]
xu + β

7
5

γ
R̃

ux

u
. (E.22)

Thus, matching the solutions in both boundary layers as t̃ goes to −∞ and t̂
goes to 0 and neglecting the small terms in (E.20–E.22) we obtain the following
approximations for R̃ and u

R̃ ∼ R̃0, u ∼ u0(x) and h̃ ∼ R̃−3(γ−1)
0 (E.23)

where R̃0 satisfies

R̃0 R̃0t̃ t̃ + 3
2 R̃2

0t̃ = R̃−3γ

0 and R̃0 ∼ (−t̃)2/5 as t̃ → −∞. (E.24)

Note that the asymptotic behavior of R̃0 does not uniquely determine R̃0. To
implement our results, it is convenient to have R̃0 uniquely determined and
have initial conditions instead of its asymptotic behavior. Thus, we arbitrarily
choose R̃0t̃ (0) = 0 and to determine R̃0(0), we note that

E(t̃ ) = R̃3
0 R̃2

0t̃

2
+ R̃3(γ−1)

0

3(γ − 1)
(E.25)

is constant and consequently E(0) = E(−∞) from where R̃0(0) can be
obtained. In summary, R̃0 satisfies

R̃0 R̃0t̃ t̃ + 3

2
R̃2

0t̃ = R̃−3γ

0 R̃0(0) =
(

25

6(γ − 1)

) 1
3(γ−1)

and R̃0t̃ (0) = 0,

(E.26)
which completes our asymptotic analysis.
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Appendix F: Asymptotics for the example of Section 5.2

In this Appendix we show how to extend our asymptotic analysis to the case in
which the external pressure is given by (37) and the initial conditions are
R(0) = Re and Rt(0) = 0. The equations to solve now are

ρ�

(
RRtt + 3

2
R2

t

)
+ p∞(t) = pe

( Re

R

)3
u(x = 1);

R(0) = Re, Rt (0) = 0 (F.1)

and equations (24–25). Our first step is to nondimensionalize these equations.
Given the external pressure, the natural choice of the dimensionless variables is

t = t0 t̄ = te
ε

t̄ and R = t0

√
pe

ρ�

R̄ = Re

ε
R̄, (F.2)

where we have introduced the notation

ε = te
t0

. (F.3)

Thus our system becomes

R̄ R̄t̄ t̄ + 3

2
R̄2

t̄ + p∞
pe

= ε3 u(x = 1)

R̄3
R̄(0) = ε and R̄t̄ (0) = 0 (F.4)

and

ut̄ = (x2 f̄ )x

x2
f̄ (x = 0) = f̄ (x = 1) = 0 (F.5)

where f̄ is given by

f̄ =
[

1

3γ

ut̄ (x = 1)

u(x = 1)
+ (γ − 1)

γ

R̄t̄

R̄

]
xu + µ

γ ε2

ux

u
. (F.6)

A simply asymptotic analysis with ε as the small expansion parameter,
shows that

R̄ ∼
√

2(p − pe)

3pe
t̄ and u ∼ 1 for ε � t̄ ≤ 1. (F.7)

To solve these equations for t̄ > 1, we follow similar arguments of Appendix
E. We approximate R̄ and u by R̄0 and u0 respectively, where these new
variables satisfy

R̄0 R̄0t̄ t̄ + 3

2
R̄2

0t̄ + 1 = 0 R̄0(1) = R̄0t̄ (1) =
√

2(p − pe)

3pe
(F.8)
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and

0 =
(

x2 u0x

u0

)
x

with u0x (x = 0) = u0x (x = 1) = 0. (F.9)

Equation (F.9) implies

u ∼ u0 = 1. (F.10)

On the other hand, R̄0 becomes 0 at a finite time t̄0 and the asymptotic behavior
of R̄0 as t̄ approaches t̄0 is now given by

R̄0 ∼ k(t̄0 − t̄ )
2
5 where k = 9p − 5pe

8pe

√
3

2

(
p − pe

pe

) 3
2

. (F.11)

To obtain k, we used the fact that

E(t̄ ) = R̄3
0 R̄2

0t̄

2
+ R̄3

0

3
(F.12)

is constant and thus, k can be obtained from the equation E(1) = E(t̄0). Note
that we are now in exactly the same situation as in the Appendix E once we
replace δ by ε and the constant a of equation (E.8) by k (see Equation (F.11)).
Thus, the remaining asymptotic analysis follows from that Appendix.

Appendix G: Asymptotics for the example of Section 5.3

In this Appendix we complete the calculations of Section 5.3.

G.1. Positive slowly varying external pressure

If the external pressure p∞ is positive and varies slowly (i.e., p∞ = p∞(ωt)
with ωt e � 1) and the initial radius R(0) is of the order of the equilibrium
radius Re, the bubble will behave quasitalically after a transient time of the
order te. More precisely, the gas will be isothermal and the bubble radius will
approximately satisfy

p∞(ωt) = pe

(
Re

R

)3

. (G.1)

G.2. Nonpositive slowly varying external pressure

Suppose now that p∞ is of the form p∞ = p∞(ωt) with ωt e � 1 and that p∞
is positive for t satisfying 0 < t < t0 or t1 < t but it is negative for t in the
time interval (t0, t1). In this case, the bubble radius will satisfy (G.1) for 0 <

t < t0, but for larger values of t the bubble will grow. If we further assume
that ω(t1 − t0) = 0(1) and that the minimum of p∞ is of the order of pe, the
evolution of R for t > t0 can be described follows.
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We first introduce the dimensionless variables

τ = ωt = ε
t

te
and Ri = ε

R

Re
. (G.2)

where ε = ωt e. The Rayleigh–Plesset equation (see (23)) now becomes

Ri Riττ + 3

2
R2

iτ + P(τ ) = ε3 u(x = 1)

R3
i

, (G.3)

where P(τ ) = p∞(τ )/pe. Since ε � 1, we neglect the right-hand side of
(G.3). To find the initial conditions of Ri at τ = τ 0 = ωt0, we need to match
the behavior of R for t < t0 (Equation (G.1)) and t0 < t . Clearly, in the limit
of small values of ε, this matching leads to the initial conditions Ri(τ 0) =
Riτ (τ 0) = 0. In summary, in the limit ε → 0, the asymptotic behavior of the
bubble radius is given by

Ri Riττ + 3
2 R2

iτ + P(τ ) = 0 and Ri (τ0) = Riτ (τ0) = 0. (G.4)

for τ > τ 0.
Since P becomes positive, Ri eventually becomes 0 at a finite time τ = τ c.

In fact, the behavior of Ri as τ → τ c is given by

Ri ∼ B(τc − τ )
2
5 (G.5)

for some constant B. In other words, if we define t c = τ c/ω, the asymptotic
behavior of R as t → t c in the limit ωt e → 0 is

R ∼ ARet
− 2

5
e (tc − t)

2
5 , (G.6)

where the constants B and A of equations (G.5) and (G.6), respectively are
related by

A = ε−3/5 B. (G.7)

It is clear that this constant B depends only on P(τ ).

G.3. Slowly varying two frequency external pressure

We are now ready specialize our analysis to the example of Section 5.3.
Namely, we set P(τ ) = 1 + a sin(τ ) + b cos(2τ + φ), where a = r cos(β)
and b = r sin(β), we choose r = 1.5 and ε = 0.05 and we now follow the
procedure described above to compute A = A(β, φ) numerically.
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