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Plugging of porous media and filters: Maximum clogged porosity
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We model porous media as two-dimensional networks of channels. As suspension flows through the
network, particles clog channels. Assuming no flow through clogged channels, we determine an
upper bound on the number of channels that clog and leave the network impervious. More precisely,
the number of channels that clog does not exceed the number of faces of the multigraph associated
with the network. In terms of d, the average coordination number of the network, the number of
channels that clog does not exceed (1—2/d) of the total number of channels. © 2008 American

Institute of Physics. [DOI: 10.1063/1.2883947]

A porous medium consists of interconnected pores (fluid
filled spaces) within a solid matrix. The medium is pervious
or permeable if fluid can flow from one side to the opposite
side of the medium through its pores. The small particles
suspended in the fluid within a porous medium are called
fines. When a suspension (fluid with fines in suspension)
flows through the medium, some of these fines may become
trapped at pore throats (narrow sections of the pores) and the
medium experiences loss in permeability.

Filters are pervious porous materials designed to selec-
tively trap migrating fines. Particle removal from fluids is of
critical importance in a wide range of natural processes (ex-
amples of biological filters include kidneys and lungs) and
industrial applications (e.g., water treatment, refinement pro-
cesses, and oil recovery).

Fines migration and entrapment can be analyzed usin%
continuum macroscale models® or pore-scale models.
Within the later group, the class of network models* is
widely used. Our work belongs to this class of models.
Works where network models were used to study particle
transport and clogging in porous media include.” Network
models have also been used to study other transport phenom-
ena in porous media (see Ref. 6 and references therein).

We start reviewing concepts of graph theory (see details
in Ref. 7). A multigraph G consists of a nonempty set of
elements, called vertices or nodes, and a list of unordered
pairs of these elements, called edges. It is convenient and a
common practice to draw graphs on the plane. Each node is
a different point and each edge a line joining its two nodes
without intersecting any other node. If e is an edge joining
the nodes a and b, we say that a and b are the end points of
e and that e connects a and b. If a=b, i.e., the end points of
an edge e are the same, we say that e is a loop. In a multi-
graph, two different edges can have the same end points. If
in a given multigraph G any two different edges do not have
the same pair of end points, we say that G is a gmph.7

We say that two nodes a and b are connected if there
exists a sequence of nodes ny,np,...,n; such that a=ng, b
=n; and for each 1=<i=<k there exists an edge e; that con-
nects n;_; and n,. In this case, the alternating sequence of
nodes and edges ng,eq,n,e,,n,, ... ,e;,n; forms a walk be-
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tween a and b and a=ng and b=n,, are the end points of the
walk. If n; # n; for all i # j, the walk is a path. If ny=n; and
n; # n; for i <j except when (i,j)=(0,k), the walk is a cycle.
We identify each walk with the trajectory it traces on the
plane.

A multigraph is connected if there is a walk between any
pair of its nodes. Every multigraph is the union of disjoint
connected multigraphs called connected components. A mul-
tigraph is planar if it can be drawn on the plane in such a
way that any two different edges may only intersect at one or
two of their end points. Any such drawing is a plane drawing
of the multigraph. In this letter, we only need to consider
planar multigraphs. We identify each planar multigraph with
one of its plane drawings. We will consider only plane mul-
tigraphs. Thus, in the rest of this letter, any multigraph that
we mention or consider is a planar multigraph (accordingly,
any drawing is a planar drawing).

A multigraph divides the plane into regions called faces,
i.e., the faces are the connected components left from the
plane once we remove the drawing of the multigraph from
the plane. Note that the faces are open sets. Any finite mul-
tigraph has exactly one unbounded face surrounding it. The
boundary of a bounded face contains a cycle. In particular, a
finite connected multigraph with no cycles has only one face,
its unbounded face. If G is a multigraph, we denote by ng,
egs fo, and € its number of nodes, edges, faces, and con-
nected components, respectively. The well known Euler
formula’ states that ng+fg=eg+{g+1.

We now describe our modeling assumptions. We model
filters as two-dimensional networks of channels, as we illus-
trate in Fig. 1. The voids are the interior of the channels. To
each filter, we associate a multigraph in a natural way, see
Fig. 1. The edges are the channels and the nodes the end
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FIG. 1. Network of channels and associated multigraph G. The black circles
are the nodes of the multigraph G and the solid lines its edges.
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points of the edges. The bottom and top boundaries of the
filter are located at y=y, and y=y,, respectively. Thus, the
multigraph is included in y,<y=<y, Note that there are
nodes in the bottom and top boundaries. For convenience, we
also include edges in the y=y, and y=y, boundaries, as
shown in Fig. 1. Precisely, there is a path of edges in y=y,
connecting the left most node in the bottom boundary with
the right most node in that boundary. We also include edges
in y=y, analogously. We refer to the nodes and edges in-
cluded in bottom or top boundaries as exterior nodes and
exterior edges, respectively. The other nodes and edges are
called interior nodes and edges. By construction, each exte-
rior node is the end point of a least one interior edge. The
solid matrix is rigid, i.e., the channels cannot be deformed.

In our model, edges are either open or clogged. Suspen-
sion can only flow through open edges. There is no flow
through clogged edges. Within an open edge, suspension
flows from the end point with higher pressure to the opposite
end point. If both end points are at the same pressure, there is
no flow through the edge. We assume that suspension can
only flow into the filter through the bottom boundary, and
can flow out of the filter only through the top boundary. Both
fluid and particles are incompressible and thus, volume of
suspension enters the filter through the bottom boundary at
the same rate it exits the filter through the top boundary. We
assume that the bottom boundary is held at constant pressure
p=p, and the top boundary at p=p,, where p;, > p,. Note that
the filter is permeable if and only if there is a path of open
edges connecting the bottom boundary with the top bound-
ary. Due to the difference in pressure between the top and
bottom boundaries, there is flow through the filter if and only
if it is permeable.

Initially, all the edges are open. As the suspension flows
through the filter, particles are trapped causing edges to
change from open to clogged. A key assumption is that dif-
ferent edges do not clog simultaneously. Note that an open
channel can only clog if there is flow through it. Since there
is no pressure difference between the end points of any ex-
terior edge—at the upper and lower boundaries—exterior
edges never clog.

We say that a sequence of edges ej,e,,...,e, is a fea-
sible clogging sequence if, for each i, there is flow through
the edge e; when ej,e,,...,e;,_; are clogged and all other
edges of the network are open.

The above definition can be described in more math-
ematical terms as follows: assuming that the average velocity
of the fluid within an edge is proportional to the difference
between the pressure at the end points of that edge, mass
conservation at a given node a leads to the equation
2k.(py—p.)=0, where the sum is over all edges e that are
open and have a as an end point, and b is the end point of e
that is not a. In that equation, k, is a constant that depends on
the geometry of the channel (proportional to the conductivity
of the channel). Then, e;,e,,...,e, is a feasible clogging
sequence if and only if, all these edges are different and, for
each i, the pressures at the ends of ¢; are different, where the
pressures at the nodes are found solving the above system
when only ey,e,,...,e;_; are clogged and subjected to the
boundary condition that the pressures at the nodes in the
bottom boundary are p, and at the nodes in top boundary are
p, (with p,>p, any pair of fixed numbers).

According to our modeling assumptions, if eq,e,, ..., e
are the edges that actually clog and they do so in that order
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FIG. 2. d€) is in dashed lines. The arrows next to the edges that intersect d€)
indicate the flow direction. No arrow next to an edge that intersects d{)
means that there is no flow through that edge. A plausible example is shown
in (a). The situation of (b) is impossible since we would have a net flow into

Q.

(e, first, e, second, etc.), then e;,e,, ... e, is a feasible clog-
ging sequence. While there are many feasible clogging se-
quences that make the filter nonpermeable, only one actually
realizes. The flow conditions, conductivity of the channels as
well as other factors determine the feasible clogging se-
quence that realizes, which generally has less edges than
other feasible clogging sequences. It is not our goal to find
the sequence that realizes. Below, we will obtain an upper
bound on the number of edges in any feasible clogging se-
quence and, in particular, in the number of edges that do clog
(i.e., the number of edges in the sequence that does realize).

Next, we proceed with the analysis leading to our bound.
The following observation will play a key role in our analy-
sis. Here, as in the rest of this letter, G is a fixed multigraph
that corresponds to one of our filters, such as the one in Fig.
1. We work at a fixed time and assume that certain edges

ey,e,,...,e, have clogged. In fact, as discussed before, we
will only use the fact that e;,e,, ...,e, is a feasible clogging
sequence.

Observation 1: Let ) be an open bounded set in the
plane such that (1) any edge of G intersects ), the bound-
ary of Q), at most at one point, (2) if an edge e intersects ),
then an end point of e is in () and the other outside (), (3) ()
does not contain any of the exterior nodes of G, and (4) )
does not contain any node of G. Then, the following hold: (1)
The rate at which suspension flows into ) is equal to the rate
at which suspension flows out of Q). (2) Let e be an edge that
intersects ). If all the other edges that intersect ) are
clogged, then there is no flow through e. (3) If there is an
edge that intersects 9}, then there is an edge that intersects
Q) that is not clogged.

This observation is illustrated in Fig. 2. Suspension en-
ters () through some edges that intersect d€) and leaves ()
through some other edges [see Fig. 2(a)]. Point (1) of Obser-
vation 1 is mass conservation coupled with the fact that the
fluid and particles are incompressible. Point (2) is a particu-
lar case of point (1) [see Fig. 2(b)]. If all the edges that
intersect J{) but one are clogged, there cannot be flow
through the open edge since otherwise point(1) would be
violated. Point(3) is a consequence of point(2). Assume that
all the edges that intersect dQ) clog. Let e be the last of the
edges that intersect €} to clog. Once the rest of the edges are
clogged, point(2) implies that there is no more flow through
e. Thus, e cannot clog since one of our modeling assump-
tions is that an edge cannot clog if there is no flow through it.

We now construct a multigraph C* that is associated
with the set of clogged edges. This construction has its simi-
larities with standard duality but also its differences. Note
that the bounded connected components of the set {y,<y

Downloaded 22 Dec 2008 to 130.207.50.192. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp



084101-3 Kampel, Goldsztein, and Santamarina
F Fy
F3  |Fy
A1 X A2
F
F6 7 Fg

FIG. 3. The edges of G are the solid lines. The dashed lines are not part of
G. F; (1<i=<8) and A, and A, are the connected components of {y,<y
<y}-G.

<y}—G are the bounded faces of G (where {y,<y<y}
—G is obtained by removing the edges and nodes of G from
{y,<y<y}). In addition, {y,<y<y}-G has two un-
bounded connected components, one to the left of G and the
other to its right. An example is shown in Fig. 3.

Select a point inside each connected components of the
set {y, <y<y,}—G. Call N* this set of points. For each edge
of G that is clogged, draw exactly one edge of C* as follows:
let e be a clogged edge of G. It can be shown that e is
included in the boundary of two connected components of
{y,<y<y}-G. Let a* and b* be the points of N* that are
included in these components. We draw exactly one edge e*
of C* connecting a* and b* in such a way that ¢* intersects e
in exactly one point and e* does not intersect any other edge
of G. This construction is carried out in such a way that
edges of C* may only intersect at their end points. The nodes
of C* are the end points of the edges in C*. Note that the set
of nodes of C* is a subset of A*. In Fig. 4, we show an
example of a set of clogged edges and the associated C*.

Observation 2: C* has only one face.

Since every multigraph has exactly one unbounded face,
to prove Observation 2, we need to show that C* does not
have any bounded faces. We proceed by contradiction. As-
sume () is a bounded face of C*. From the definition of C*,
the edges of G that intersect C* are clogged. Thus, all the
edges of G that intersect J{) are clogged. Note also that )
satisfies the conditions in Observation 1 and the number of
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FIG. 4. The clogged edges are the thick solid lines. The open edged in thin
solid lines. The thick dashed lines are the edges in C*. The white circles are
the nodes of C*.
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edges of G that intersect () is equal to the number of edges
of C* in 9€), and this is a positive number. However, this is
a contradiction because point 3 in Observation 1 states that
there should be at least one edge that intersects d{) and that
is not clogged.

We are now ready to obtain the sought upper bound. Let
Nexs ecx, fox, and €+ be the number of nodes, edges, faces,
and connected components of C*. From Observation 2, we
have fe»=1. Since, in addition, €= 1, Euler’s formula,
ecx=nes+fer—Lox—1 implies eq»<ne+—1. It is also easy to
see that e~ is the number of clogged edges and nc«
<number of connected components of {y,<y<y}-G=1
+number of faces of G, and thus, we have the main theorem
of this letter.

Theorem 1. Let G be the multigraph associated to a fil-
ter. Then, the number of clogged edges is less or equal to
number of faces of G.

The degree d, of a node n is the number of edges that
have n as end point, where the loops are counted twice. The
average degree d; of a multigraph G is the average of the
degrees d, of the nodes of G. Since dg=2e5/ng, where eg
and ng are the number of edges and nodes of G, respectively,
(see Ref. 7), Euler’s formula allow us to rewrite the upper
bound as the number of clogged edges <[(d;-2)/dleg,
when e;>1 and dg;>2.

In many situations of interest, G is a graph, i.e., no two
edges have the same end points. For example, if all the edges
in a multigraph are straight segments, then the multigraph is
really a graph. It is a well known fact from graph theory that,
if G is a planar graph, the average degree of G is bounded by
6, i.e., d;=06. Thus, we have that, if G is a graph, e;>1 and
d;>?2, then, the number of clogged edges <(2/3) the num-
ber of all edges.
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