## FINAL

Time: 180min

1. Find the following limits:
a) $\lim _{x \rightarrow 1} \frac{x^{2}-2 x+1}{x-1}$
b) $\lim _{x \rightarrow \infty} \frac{2 x+1}{x^{2}+4}$
2. (a) State the $\epsilon-\delta$ definition of limit. (b) Use this definition to prove that $\lim _{x \rightarrow-21}(3 x-1)=-64$.
3. Use the definition of the derivative to find the derivative of $f(x)=x^{2}$.
4. Find the maximum and minimum values of $f(x)=x^{2}+2 x+5$ over the interval $[-2,1]$.
5. Sketch the graph of $f(x)=2 x^{3}-3 x-10$. Find all the intervals where the function is increasing, decreasing, is concave up or concave down.
6. Find the following integrals:
a) $\int \sin (2 x-4) d x$
b) $\int_{0}^{1} x^{2}\left(x^{3}+5\right)^{9} d x$
7. (a) Estimate the area under the curve $f(x)=3 x-1$ over the interval $(1,3)$ by dividing the interval into 4 equal subintervals and computing the area of the corresponding circumscribed polygon. (b) Find the exact value of the area under the curve by dividing the interval into $n$ equal segments and computing the limit of the area of the corresponding polygon as $n \rightarrow \infty$.
8. Find the area trapped between $y=x+4$ and $y=x^{2}-2$.
9. Let $R$ be the region trapped by $y=x^{3}, x=3$, and $y=0$. Find the volume of the solid generated by revolving $R$ about the $x$-axis.
10. Find all the work done in pumping all the oil (density $\delta=2$ pounds per cubic foot) over the edge of a cylindrical tank that stands on one of its bases. Assume that the radius of the base is 4 feet, the height is 10 feet, and the tank is full of oil.

Each problem is worth 10 points.

