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(3) We need to show that for every � > 0, there is a Æ > 0 such that 0 <

jx+ 4j < Æ =) j(3x� 7)� 5j < �.
Preliminary Analysis:
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Formal Proof:
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So, if we need � < 0:01, we set Æ � 0:01
3 .

(4)

f(x) = x5 + 4x3 � 7x+ 14

f(1) = 1 + 4� 7 + 14 = 12 > 0

f(�2) = �32� 32 + 14 + 14 = �36 < 0

So, since f is continuous, there exists 1 � c � �2 such that f(c) = 0, by
the Intermediate Value Theorem (IVT).
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(6)

y = x2 � 2x+ 2; (1; 1)

dy

dx
= 2x� 2 =) m = 2(1)� 2 = 0

y � 1 = m(x� 1) =) y � 1 = 0(x� 1)

=) y � 1 = 0

=) y = 1

(7) Let x denote the position of the car, and V (x) be the velocity of the car at
x.

Set
f(x) = V (x)� x):

Then,
f(0) = V (0)� 0 = V (0) � 0

and
f(100) = V (100)� 100 � 0;

because, by assumption, V (x) � 100. So, since f is continuous, there exists
0 � c � 100 such that f(c) = 0, by IVT. In particular, V (c) = c for some
0 � c � 100: �


