SOLUTIONS FOR MIDTERM 1

(1) (a)

$$
\begin{gathered}
-1 \leq \cos x \leq 1 \\
\frac{-1}{x} \leq \frac{\cos x}{x} \leq \frac{1}{x} \\
\lim _{x \rightarrow \infty} \frac{-1}{x} \leq \lim _{x \rightarrow \infty} \frac{\cos x}{x} \leq \lim _{x \rightarrow \infty} \frac{1}{x}
\end{gathered}
$$

(By the Squeeze Theorem)

$$
\begin{aligned}
0 \leq & \lim _{x \rightarrow \infty} \frac{\cos x}{x} \leq 0 \\
& \lim _{x \rightarrow \infty} \frac{\cos x}{x}=0
\end{aligned}
$$

(b) If $x \leq 0$, then $|x|=-x$.

$$
\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{-}} \frac{x}{-x}=\lim _{x \rightarrow 0^{-}}-1=-1
$$

(c)

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)}=\lim _{x \rightarrow 2}(x+2)=4
$$

(d)

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{\sqrt{2 x+1}}{x+4}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{2 x+1}}{x}}{\frac{x+4}{x}} \\
=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2 x}{x^{2}}+\frac{1}{x^{2}}}}{\frac{x}{x}+\frac{4}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2}{x}+\frac{1}{x^{2}}}}{1+\frac{4}{x}}=\frac{\sqrt{0+0}}{1+0}=0
\end{gathered}
$$

$$
\begin{gather*}
f(x)=\frac{\cos x}{\sin x} \tag{2}\\
f^{\prime}(x)=\frac{\cos ^{\prime} x \sin x-\cos x \sin ^{\prime} x}{\sin ^{2} x} \\
(\text { by the Quotient Rule }) \\
=\frac{-\sin x \sin x-\cos x \cos x}{\sin ^{2} x} \\
=\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x}=\frac{-1}{\sin ^{2} x}=-\csc ^{2} x
\end{gather*}
$$

(3) We need to show that for every $\epsilon>0$, there is a $\delta>0$ such that $0<$ $|x+4|<\delta \Longrightarrow|(3 x-7)-5|<\epsilon$. Preliminary Analysis:

$$
\begin{aligned}
|(3 x-7)-5| & <\epsilon \\
|3 x-12| & <\epsilon \\
3|x-4| & <\epsilon \\
|x-4| & <\frac{\epsilon}{3}, \text { so set } \delta \leq \frac{\epsilon}{3} .
\end{aligned}
$$

Formal Proof:

$$
\begin{aligned}
|x-4| & <\delta \\
|x-4| & <\frac{\epsilon}{3} \\
3|x-4| & <\epsilon \\
|3 x-12| & <\epsilon \\
|(3 x-7)-5| & <\epsilon
\end{aligned}
$$

So, if we need $\epsilon<0.01$, we set $\delta \leq \frac{0.01}{3}$.
(4)

$$
\begin{aligned}
f(x) & =x^{5}+4 x^{3}-7 x+14 \\
f(1) & =1+4-7+14=12>0 \\
f(-2) & =-32-32+14+14=-36<0
\end{aligned}
$$

So, since f is continuous, there exists $1 \leq c \leq-2$ such that $f(c)=0$, by the Intermediate Value Theorem (IVT).
(5)

$$
\begin{aligned}
f(x) & =\frac{1}{x} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x-x-h}{x(x+h)}}{\frac{h}{1}} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x^{2}+x h}=\frac{-1}{x^{2}}
\end{aligned}
$$

(6)

$$
\begin{array}{rlrl}
y & =x^{2}-2 x+2, & & (1,1) \\
\frac{d y}{d x} & =2 x-2 & & m=2(1)-2=0 \\
y-1 & =m(x-1) & & \Longrightarrow y-1=0(x-1) \\
& & \Longrightarrow y-1=0 \\
& \Longrightarrow y=1
\end{array}
$$

(7) Let x denote the position of the car, and $V(x)$ be the velocity of the car at x.

Set

$$
f(x)=V(x)-x)
$$

Then,

$$
f(0)=V(0)-0=V(0) \geq 0
$$

and

$$
f(100)=V(100)-100 \leq 0
$$

because, by assumption, $V(x) \leq 100$. So, since f is continuous, there exists $0 \leq c \leq 100$ such that $f(c)=0$, by IVT. In particular, $V(c)=c$ for some $0 \leq c \leq 100$.

