MIDTERM 2

Time: 50min

1. Find all local max and min of $f(x)=x+\frac{3}{2} x^{\frac{2}{3}}$.
2. Assuming that a soap bubble retains its spherical shape as it expands, how fast is its radius increasing when its radius is 3 inches if air is blown into it at a rate of 3 cubic inches a second?
3. State the mean value thoerem, and use it to show that the equation $2 x^{3}-9 x^{2}+1=0$ has exactly one solution on the interval $(0,1)$.
4. Sketch the graph of $f(x)=x^{3}-12 x+1$. Find all the intervals where the function is increasing, decreasing, is concave up or concave down.
5. A farmer has 80 feet of fence with which he plans to enclose a rectangular pen along one side of a 100 feet barn. What are the dimensions of the pen that has maximum area.
6. A ball is thrown upward from the surface of the earth (where the acceleration of gravity is g). If the initial velocity is v_{0} show that the maximum height is $-v_{0}^{2} / 2 g$. (Hint: first solve the differential equation $\frac{d^{2} y}{d t^{2}}=g$, where $y(t)$ denotes the height at time t.)
7. (a) Estimate the area under the curve $f(x)=3 x-1$ over the interval $(1,3)$ by dividing the interval into 4 equal subintervals and computing the area of the corresponding circumscribed polygon. (b) Find the exact value of the area under the curve by deviding the interval into n equal segments and computing the limit of the area of the corresponding polygon as $n \rightarrow \infty$.

Problems 1, 2, and 3 are worth 10 points each; 3 and 4 are worth 15 points each; and, 6 and 7 are worth 20 points each.

