Oct 7, 2004

Math 597C Curves and Surfaces Fall 2004, PSU

Practice Problems

- 1. Show that if a closed planar curve lies inside a circle of radius r then its curvature is bigger than or equal to 1/r at some point.
- 2. Show that if the curvature of a planar curve is monotone, then it has no self intersections.
- **3.** Suppose the we have a simple closed curve $\alpha \colon I \to \mathbf{R}^2$ with curvature $\kappa(t) \leq 1$ for all $t \in I$. Show that α contains a disk of radius 1.
- 4. Show that if the principal normals of a planar curve all pass through the same point, then the curve is a circle.
- 5. Show that the tantrix of a closed curve intersects every great circle.
- 6. Let $\alpha: I \to \mathbf{R}^3$ be a unit speed curve whose torsion never vanishes. Suppose that the binormal vector $B: I \to \mathbf{S}^2$ is known. Show that we can then recover the curvature and torsion of α .
- 7. Let $\alpha: I \to \mathbf{R}^3$ be a unit speed curve whose torsion never vanishes. Suppose that the principal normal vector $B: I \to \mathbf{S}^2$ is known. Show that we can then recover the curvature and torsion of α .
- 8. Show that the curvature and torsion of a curve in Euclidean space are invariant under isometries.
- **9.** Show that the length of any simple closed curve of constant width w is equal to πw .
- **10.** Suppose that $\alpha: I \to \mathbf{R}^2$ is a closed curve such that for any constant s, $\|\alpha(t+s) \alpha(t)\|$ is constant for all $t \in I$. Show that α is a circle.