Practice Problems

1. Show that if a closed planar curve lies inside a circle of radius r then its curvature is bigger than or equal to $1 / r$ at some point.
2. Show that if the curvature of a planar curve is monotone, then it has no self intersections.
3. Suppose the we have a simple closed curve $\alpha: I \rightarrow \mathbf{R}^{2}$ with curvature $\kappa(t) \leq 1$ for all $t \in I$. Show that α contains a disk of radius 1 .
4. Show that if the principal normals of a planar curve all pass through the same point, then the curve is a circle.
5. Show that the tantrix of a closed curve intersects every great circle.
6. Let $\alpha: I \rightarrow \mathbf{R}^{3}$ be a unit speed curve whose torsion never vanishes. Suppose that the binormal vector $B: I \rightarrow \mathbf{S}^{2}$ is known. Show that we can then recover the curvature and torsion of α.
7. Let $\alpha: I \rightarrow \mathbf{R}^{3}$ be a unit speed curve whose torsion never vanishes. Suppose that the principal normal vector $B: I \rightarrow \mathbf{S}^{2}$ is known. Show that we can then recover the curvature and torsion of α.
8. Show that the curvature and torsion of a curve in Euclidean space are invariant under isometries.
9. Show that the length of any simple closed curve of constant width w is equal to πw.
10. Suppose that $\alpha: I \rightarrow \mathbf{R}^{2}$ is a closed curve such that for any constant s, $\|\alpha(t+s)-\alpha(t)\|$ is constant for all $t \in I$. Show that α is a circle.
