On a version of the slicing problem for the surface area of convex bodies

Silouanos Brazitikos (joint work with Dimitris Liakopoulos) University of Athens

AGA Seminar, March 2022

Classical Slicing Problem

The classical slicing problem asks if there exists an absolute constant $C_{2}>0$ such that for every $n \geqslant 2$ and every centered convex body K in \mathbb{R}^{n} one has

$$
|K|^{\frac{n-1}{n}} \leqslant C_{2} \max _{\xi \in S^{n-1}}\left|K \cap \xi^{\perp}\right|
$$

Classical Slicing Problem

The classical slicing problem asks if there exists an absolute constant $C_{2}>0$ such that for every $n \geqslant 2$ and every centered convex body K in \mathbb{R}^{n} one has

$$
|K|^{\frac{n-1}{n}} \leqslant C_{2} \max _{\xi \in S^{n-1}}\left|K \cap \xi^{\perp}\right|
$$

It is well-known that this problem is equivalent to the question if there exists an absolute constant $C_{3}>0$ such that

$$
L_{n}:=\max \left\{L_{K}: K \text { is isotropic in } \mathbb{R}^{n}\right\} \leqslant C_{3}
$$

for all $n \geqslant 1$, where L_{K} is the isotropic constant of K.

Classical Slicing Problem

The classical slicing problem asks if there exists an absolute constant $C_{2}>0$ such that for every $n \geqslant 2$ and every centered convex body K in \mathbb{R}^{n} one has

$$
|K|^{\frac{n-1}{n}} \leqslant C_{2} \max _{\xi \in S^{n-1}}\left|K \cap \xi^{\perp}\right|
$$

It is well-known that this problem is equivalent to the question if there exists an absolute constant $C_{3}>0$ such that

$$
L_{n}:=\max \left\{L_{K}: K \text { is isotropic in } \mathbb{R}^{n}\right\} \leqslant C_{3}
$$

for all $n \geqslant 1$, where L_{K} is the isotropic constant of K.
Koldobsky proved the following variants for the surface area. If K is an intersection body in \mathbb{R}^{n}, then

$$
a s(K) \leq c_{n} \max _{\xi \in S^{n-1}} a s\left(K \cap \xi^{\perp}\right)|K|^{1 / n}
$$

Classical Slicing Problem

The classical slicing problem asks if there exists an absolute constant $C_{2}>0$ such that for every $n \geqslant 2$ and every centered convex body K in \mathbb{R}^{n} one has

$$
|K|^{\frac{n-1}{n}} \leqslant C_{2} \max _{\xi \in S^{n-1}}\left|K \cap \xi^{\perp}\right|
$$

It is well-known that this problem is equivalent to the question if there exists an absolute constant $C_{3}>0$ such that

$$
L_{n}:=\max \left\{L_{K}: K \text { is isotropic in } \mathbb{R}^{n}\right\} \leqslant C_{3}
$$

for all $n \geqslant 1$, where L_{K} is the isotropic constant of K.
Koldobsky proved the following variants for the surface area. If K is an intersection body in \mathbb{R}^{n}, then

$$
a s(K) \leq c_{n} \max _{\xi \in S^{n-1}} a s\left(K \cap \xi^{\perp}\right)|K|^{1 / n}
$$

and

$$
S(K) \geq c_{n} \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}} K\right)|K|^{1 / n}
$$

where $\operatorname{as}(K)=\int_{S^{n-1}}\left|K \cap \xi^{\perp}\right| d \sigma(\xi)$.

Koldobsky asked if this is true if we replace projections with sections.

Koldobsky asked if this is true if we replace projections with sections.

Question

Is it true that there exists a constant α_{n} depending (or not) on the dimension n so that

$$
S(K) \leqslant \alpha_{n}|K|^{\frac{1}{n}} \max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

for every centrally symmetric convex body K in \mathbb{R}^{n} ?

Koldobsky asked if this is true if we replace projections with sections.

Question

Is it true that there exists a constant α_{n} depending (or not) on the dimension n so that

$$
S(K) \leqslant \alpha_{n}|K|^{\frac{1}{n}} \max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

for every centrally symmetric convex body K in \mathbb{R}^{n} ?
In general, for any $2 \leqslant k \leqslant n-1$, one may ask for a constant $\alpha_{n, k}$ such that

$$
S(K) \leqslant \alpha_{n, k}^{k}|K|^{\frac{k}{n}} \max _{H \in G_{n, n-k}} S(K \cap H) .
$$

Koldobsky asked if this is true if we replace projections with sections.

Question

Is it true that there exists a constant α_{n} depending (or not) on the dimension n so that

$$
S(K) \leqslant \alpha_{n}|K|^{\frac{1}{n}} \max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

for every centrally symmetric convex body K in \mathbb{R}^{n} ?
In general, for any $2 \leqslant k \leqslant n-1$, one may ask for a constant $\alpha_{n, k}$ such that

$$
S(K) \leqslant \alpha_{n, k}^{k}|K|^{\frac{k}{n}} \max _{H \in G_{n, n-k}} S(K \cap H)
$$

Theorem. B.-Liakopoulos

The answer to both questions is negative.

Our examples will be given by ellipsoids. They will based on

Theorem

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^{n} and write $a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n}$ for the lengths and $e_{1}, e_{2}, \ldots, e_{n}$ for the corresponding directions of its semi-axes. If $1 \leqslant k \leqslant n-1$ then for any $H \in G_{n, k}$ and any $0 \leqslant j<k$ we have that

$$
W_{j}\left(\mathcal{E} \cap F_{k}\right) \leqslant W_{j}(\mathcal{E} \cap H) \leqslant W_{j}\left(P_{H}(\mathcal{E})\right) \leqslant W_{j}\left(\mathcal{E} \cap E_{k}\right)
$$

where $F_{k}=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$ and $E_{k}=\operatorname{span}\left\{e_{n-k+1}, \ldots, e_{n}\right\}$. In particular, for every $\xi \in S^{n-1}$,

$$
S\left(\mathcal{E} \cap \xi^{\perp}\right) \leqslant S\left(P_{\xi^{\perp}}(\mathcal{E})\right) \leqslant S\left(\mathcal{E} \cap e_{1}^{\perp}\right) .
$$

Our examples will be given by ellipsoids. They will based on

Theorem

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^{n} and write $a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n}$ for the lengths and $e_{1}, e_{2}, \ldots, e_{n}$ for the corresponding directions of its semi-axes. If $1 \leqslant k \leqslant n-1$ then for any $H \in G_{n, k}$ and any $0 \leqslant j<k$ we have that

$$
W_{j}\left(\mathcal{E} \cap F_{k}\right) \leqslant W_{j}(\mathcal{E} \cap H) \leqslant W_{j}\left(P_{H}(\mathcal{E})\right) \leqslant W_{j}\left(\mathcal{E} \cap E_{k}\right)
$$

where $F_{k}=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$ and $E_{k}=\operatorname{span}\left\{e_{n-k+1}, \ldots, e_{n}\right\}$. In particular, for every $\xi \in S^{n-1}$,

$$
S\left(\mathcal{E} \cap \xi^{\perp}\right) \leqslant S\left(P_{\xi^{\perp}}(\mathcal{E})\right) \leqslant S\left(\mathcal{E} \cap e_{1}^{\perp}\right) .
$$

The proof relies on Cauchy interlacing Theorem and comparison with a spheroid.

We shall use the next formula of Rivin:

We shall use the next formula of Rivin: If \mathcal{E} is an ellipsoid in \mathbb{R}^{n} with semi-axes $a_{1} \leqslant \cdots \leqslant a_{n}$ in the directions of e_{1}, \ldots, e_{n} then

$$
S(\mathcal{E})=n|\mathcal{E}| \int_{S^{n-1}}\left(\sum_{i=1}^{n} \frac{\xi_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2} d \sigma(\xi)
$$

We shall use the next formula of Rivin:
If \mathcal{E} is an ellipsoid in \mathbb{R}^{n} with semi-axes $a_{1} \leqslant \cdots \leqslant a_{n}$ in the directions of e_{1}, \ldots, e_{n} then

$$
S(\mathcal{E})=n|\mathcal{E}| \int_{S^{n-1}}\left(\sum_{i=1}^{n} \frac{\xi_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2} d \sigma(\xi)
$$

Now assume that there exists a constant $\alpha_{n}>0$ such that we have the following inequality for ellipsoids:

$$
S(\mathcal{E}) \leqslant \alpha_{n}|\mathcal{E}|^{1 / n} \max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)
$$

We know that the maximum is attained for the section $\mathcal{E} \cap e_{1}^{\perp}$. Then we have

$$
\max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)=S\left(\mathcal{E} \cap e_{1}^{\perp}\right)=(n-1)\left|\mathcal{E} \cap e_{1}^{\perp}\right| \int_{S^{n-2}}\left(\sum_{i=2}^{n} \frac{\xi_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2} d \sigma(\xi)
$$

We may assume that $\prod_{i=1}^{n} a_{i}=1$. Then, we can rewrite

$$
S(\mathcal{E}) \leqslant \alpha_{n}|\mathcal{E}|^{1 / n} \max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)
$$

as

We may assume that $\prod_{i=1}^{n} a_{i}=1$. Then, we can rewrite

$$
S(\mathcal{E}) \leqslant \alpha_{n}|\mathcal{E}|^{1 / n} \max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)
$$

as

$$
n \omega_{n} \cdot \frac{1}{d_{n}} \mathbb{E}\left[\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right] \leqslant \alpha_{n} \omega_{n}^{1 / n} \cdot(n-1) \omega_{n-1} \frac{1}{a_{1}} \cdot \frac{1}{d_{n-1}} \mathbb{E}\left[\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right]
$$

We may assume that $\prod_{i=1}^{n} a_{i}=1$. Then, we can rewrite

$$
S(\mathcal{E}) \leqslant \alpha_{n}|\mathcal{E}|^{1 / n} \max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)
$$

as

$$
n \omega_{n} \cdot \frac{1}{d_{n}} \mathbb{E}\left[\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right] \leqslant \alpha_{n} \omega_{n}^{1 / n} \cdot(n-1) \omega_{n-1} \frac{1}{a_{1}} \cdot \frac{1}{d_{n-1}} \mathbb{E}\left[\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right] .
$$

Then,

$$
\alpha_{n} \geqslant C_{n} a_{1} \frac{\mathbb{E}\left[\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right]}{\mathbb{E}\left[\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right]} .
$$

Since $x \mapsto\left(\sum_{i=1}^{n} \frac{x_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}$ is a seminorm, using Hölder and Khintchine's inequality for this seminorm in Gauss space we get

$$
\frac{\mathbb{E}\left[\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right]}{\mathbb{E}\left[\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right]} \geqslant c\left(\frac{\mathbb{E}\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)}{\mathbb{E}\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)}\right)^{1 / 2}=c\left(\frac{\sum_{i=1}^{n} \frac{1}{a_{i}^{2}}}{\sum_{i=2}^{n} \frac{1}{a_{i}^{2}}}\right)^{1 / 2}
$$

Since $x \mapsto\left(\sum_{i=1}^{n} \frac{x_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}$ is a seminorm, using Hölder and Khintchine's inequality for this seminorm in Gauss space we get

$$
\frac{\mathbb{E}\left[\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right]}{\mathbb{E}\left[\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right]} \geqslant c\left(\frac{\mathbb{E}\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)}{\mathbb{E}\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)}\right)^{1 / 2}=c\left(\frac{\sum_{i=1}^{n} \frac{1}{a_{i}^{2}}}{\sum_{i=2}^{n} \frac{1}{a_{i}^{2}}}\right)^{1 / 2}
$$

and hence

$$
\alpha_{n} \geqslant c \cdot C_{n} a_{1}\left(\frac{\sum_{i=1}^{n} \frac{1}{a_{i}^{2}}}{\sum_{i=2}^{n} \frac{1}{a_{i}^{2}}}\right)^{1 / 2}=c \cdot C_{n}\left(\frac{1+\sum_{i=2}^{n} \frac{a_{1}^{2}}{a_{i}^{2}}}{\sum_{i=2}^{n} \frac{1}{a_{i}^{2}}}\right)^{1 / 2} .
$$

Now choose $a_{2}=\cdots=a_{n}=r$ and $a_{1}=r^{-(n-1)}$. Then,

$$
\left(\frac{1+\sum_{i=2}^{n} \frac{a_{1}^{2}}{a_{i}^{2}}}{\sum_{i=2}^{n} \frac{1}{a_{i}^{2}}}\right)^{1 / 2}=\left(\frac{1+\frac{n-1}{r^{2 n}}}{\frac{n-1}{r^{2}}}\right)^{1 / 2}=\left(\frac{1}{r^{2 n-2}}+\frac{r^{2}}{n-1}\right)^{1 / 2} \rightarrow \infty
$$

as $r \rightarrow \infty$. So, we arrive at a contradiction, i.e. there can be no upper bound for α_{n}.

On the other hand, if K is in some classical position (e.g. isotropic or John's position or minimal surface area or minimal mean width position) then we know that a reverse isoperimetric inequality of the form

$$
S(K) \leqslant c_{n}|K|^{\frac{n-1}{n}}
$$

holds true.

On the other hand, if K is in some classical position (e.g. isotropic or John's position or minimal surface area or minimal mean width position) then we know that a reverse isoperimetric inequality of the form

$$
S(K) \leqslant c_{n}|K|^{\frac{n-1}{n}}
$$

holds true. Then we can show that the reverse inequality holds.

On the other hand, if K is in some classical position (e.g. isotropic or John's position or minimal surface area or minimal mean width position) then we know that a reverse isoperimetric inequality of the form

$$
S(K) \leqslant c_{n}|K|^{\frac{n-1}{n}}
$$

holds true. Then we can show that the reverse inequality holds.In GHP it was prove that that for any convex body K in \mathbb{R}^{n} and any $\xi \in S^{n-1}$ we have

$$
\frac{S\left(P_{\xi^{\perp}}(K)\right)}{\left|P_{\xi^{\perp}}(K)\right|} \leqslant \frac{2(n-1)}{n} \frac{S(K)}{|K|},
$$

On the other hand, if K is in some classical position (e.g. isotropic or John's position or minimal surface area or minimal mean width position) then we know that a reverse isoperimetric inequality of the form

$$
S(K) \leqslant c_{n}|K|^{\frac{n-1}{n}}
$$

holds true. Then we can show that the reverse inequality holds.In GHP it was prove that that for any convex body K in \mathbb{R}^{n} and any $\xi \in S^{n-1}$ we have

$$
\frac{S\left(P_{\xi^{\perp}}(K)\right)}{\left|P_{\xi^{\perp}}(K)\right|} \leqslant \frac{2(n-1)}{n} \frac{S(K)}{|K|},
$$

therefore

$$
|K| \max _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \leqslant \frac{2(n-1)}{n} S(K) \max _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(K)\right| .
$$

On the other hand, if K is in some classical position (e.g. isotropic or John's position or minimal surface area or minimal mean width position) then we know that a reverse isoperimetric inequality of the form

$$
S(K) \leqslant c_{n}|K|^{\frac{n-1}{n}}
$$

holds true. Then we can show that the reverse inequality holds.In GHP it was prove that that for any convex body K in \mathbb{R}^{n} and any $\xi \in S^{n-1}$ we have

$$
\frac{S\left(P_{\xi^{\perp}}(K)\right)}{\left|P_{\xi^{\perp}}(K)\right|} \leqslant \frac{2(n-1)}{n} \frac{S(K)}{|K|},
$$

therefore

$$
|K| \max _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \leqslant \frac{2(n-1)}{n} S(K) \max _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(K)\right| .
$$

Since we trivially have

$$
\left|P_{\xi^{\perp}}(K)\right|=\frac{1}{2} \int_{S^{n-1}}|\langle\xi, \theta\rangle| d \sigma_{K}(\theta) \leqslant \frac{1}{2} S(K)
$$

On the other hand, if K is in some classical position (e.g. isotropic or John's position or minimal surface area or minimal mean width position) then we know that a reverse isoperimetric inequality of the form

$$
S(K) \leqslant c_{n}|K|^{\frac{n-1}{n}}
$$

holds true. Then we can show that the reverse inequality holds.In GHP it was prove that that for any convex body K in \mathbb{R}^{n} and any $\xi \in S^{n-1}$ we have

$$
\frac{S\left(P_{\xi^{\perp}}(K)\right)}{\left|P_{\xi^{\perp}}(K)\right|} \leqslant \frac{2(n-1)}{n} \frac{S(K)}{|K|},
$$

therefore

$$
|K| \max _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \leqslant \frac{2(n-1)}{n} S(K) \max _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(K)\right| .
$$

Since we trivially have

$$
\left|P_{\xi^{\perp}}(K)\right|=\frac{1}{2} \int_{S^{n-1}}|\langle\xi, \theta\rangle| d \sigma_{K}(\theta) \leqslant \frac{1}{2} S(K)
$$

we see that

$$
|K| \max _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \leqslant \frac{n-1}{n} S(K)^{2} .
$$

On the other hand, if K is in some classical position (e.g. isotropic or John's position or minimal surface area or minimal mean width position) then we know that a reverse isoperimetric inequality of the form

$$
S(K) \leqslant c_{n}|K|^{\frac{n-1}{n}}
$$

holds true. Then we can show that the reverse inequality holds.In GHP it was prove that that for any convex body K in \mathbb{R}^{n} and any $\xi \in S^{n-1}$ we have

$$
\frac{S\left(P_{\xi^{\perp}}(K)\right)}{\left|P_{\xi^{\perp}}(K)\right|} \leqslant \frac{2(n-1)}{n} \frac{S(K)}{|K|},
$$

therefore

$$
|K| \max _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \leqslant \frac{2(n-1)}{n} S(K) \max _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(K)\right| .
$$

Since we trivially have

$$
\left|P_{\xi^{\perp}}(K)\right|=\frac{1}{2} \int_{S^{n-1}}|\langle\xi, \theta\rangle| d \sigma_{K}(\theta) \leqslant \frac{1}{2} S(K)
$$

we see that

$$
|K| \max _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \leqslant \frac{n-1}{n} S(K)^{2} .
$$

Using the reserve isoperimetric

$$
|K|^{\frac{1}{n}} \max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right) \leqslant|K|^{\frac{1}{n}} \max _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \leqslant C_{n} S(K)
$$

for a constant C_{n}.

If we are not in a classical position then the inequality holds with a parameter.

If we are not in a classical position then the inequality holds with a parameter. One such parameter is

$$
t(K):=\left(\frac{|K|}{\left|r(K) B_{2}^{n}\right|}\right)^{1 / n}
$$

where $r(K)$ is the inradius.

If we are not in a classical position then the inequality holds with a parameter. One such parameter is

$$
t(K):=\left(\frac{|K|}{\left|r(K) B_{2}^{n}\right|}\right)^{1 / n}
$$

where $r(K)$ is the inradius.

Theorem

Let K be a convex body with barycenter at the origin in \mathbb{R}^{n}. Then, for every $1 \leqslant j \leqslant n-k-1 \leqslant n-1$ we have that

$$
W_{j}(K) \leqslant \alpha_{n, k, j} L_{K}^{\frac{k(n-k-j)}{n-k}} t(K)^{j}|K|^{\frac{k}{n}} \max _{H \in G_{n, n-k}} W_{j}(K \cap H),
$$

for some constant $\alpha_{n, k, j}$.

Using the monotonicity of mixed volumes we may write

$$
W_{j}(K)=V\left((K, n-j),\left(B_{2}^{n}, j\right)\right) \leqslant V\left((K, n-j),\left(\frac{K}{r(K)}, j\right)\right)=\frac{|K|}{r(K)^{j}}
$$

Using the monotonicity of mixed volumes we may write

$$
W_{j}(K)=V\left((K, n-j),\left(B_{2}^{n}, j\right)\right) \leqslant V\left((K, n-j),\left(\frac{K}{r(K)}, j\right)\right)=\frac{|K|}{r(K)^{j}}
$$

We rewrite this inequality in the form

$$
\begin{equation*}
W_{j}(K) \leqslant \omega_{n}^{\frac{j}{n}} t(K)^{j}|K|^{\frac{n-j}{n}}=\omega_{n}^{\frac{j}{n}} t(K)^{j}|K|^{\frac{k}{n}}|K|^{\frac{n-k-j}{n}} . \tag{1}
\end{equation*}
$$

Using the monotonicity of mixed volumes we may write

$$
W_{j}(K)=V\left((K, n-j),\left(B_{2}^{n}, j\right)\right) \leqslant V\left((K, n-j),\left(\frac{K}{r(K)}, j\right)\right)=\frac{|K|}{r(K)^{j}}
$$

We rewrite this inequality in the form

$$
\begin{equation*}
W_{j}(K) \leqslant \omega_{n}^{\frac{j}{n}} t(K)^{j}|K|^{\frac{n-j}{n}}=\omega_{n}^{\frac{j}{n}} t(K)^{j}|K|^{\frac{k}{n}}|K|^{\frac{n-k-j}{n}} . \tag{1}
\end{equation*}
$$

Now, we use the estimate (Dafnis-Paouris)

$$
\frac{c_{0}}{L_{K}} \leq \widetilde{\Phi}_{[k]}(K):=\frac{1}{|K|^{\frac{n-k}{n k}}}\left(\int_{G_{n, n-k}}|K \cap H|^{n} d \nu_{n, n-k}\right)^{\frac{1}{n k}}
$$

Using the monotonicity of mixed volumes we may write

$$
W_{j}(K)=V\left((K, n-j),\left(B_{2}^{n}, j\right)\right) \leqslant V\left((K, n-j),\left(\frac{K}{r(K)}, j\right)\right)=\frac{|K|}{r(K)^{j}}
$$

We rewrite this inequality in the form

$$
\begin{equation*}
W_{j}(K) \leqslant \omega_{n}^{\frac{j}{n}} t(K)^{j}|K|^{\frac{n-j}{n}}=\omega_{n}^{\frac{j}{n}} t(K)^{j}|K|^{\frac{k}{n}}|K|^{\frac{n-k-j}{n}} . \tag{1}
\end{equation*}
$$

Now, we use the estimate (Dafnis-Paouris)

$$
\frac{c_{0}}{L_{K}} \leq \widetilde{\Phi}_{[k]}(K):=\frac{1}{|K|^{\frac{n-k}{n k}}}\left(\int_{G_{n, n-k}}|K \cap H|^{n} d \nu_{n, n-k}\right)^{\frac{1}{n k}}
$$

This gives

$$
|K|^{\frac{n-k}{n k}} \leqslant \frac{L_{K}}{c_{0}}\left(\int_{G_{n, n-k}}|K \cap H|^{n} d \nu_{n, n-k}\right)^{\frac{1}{n k}} \leqslant c_{1} L_{K} \max _{H \in G_{n, n-k}}|K \cap H|^{\frac{1}{k}}
$$

Using the monotonicity of mixed volumes we may write

$$
W_{j}(K)=V\left((K, n-j),\left(B_{2}^{n}, j\right)\right) \leqslant V\left((K, n-j),\left(\frac{K}{r(K)}, j\right)\right)=\frac{|K|}{r(K)^{j}}
$$

We rewrite this inequality in the form

$$
\begin{equation*}
W_{j}(K) \leqslant \omega_{n}^{\frac{j}{n}} t(K)^{j}|K|^{\frac{n-j}{n}}=\omega_{n}^{\frac{j}{n}} t(K)^{j}|K|^{\frac{k}{n}}|K|^{\frac{n-k-j}{n}} . \tag{1}
\end{equation*}
$$

Now, we use the estimate (Dafnis-Paouris)

$$
\frac{c_{0}}{L_{K}} \leq \widetilde{\Phi}_{[k]}(K):=\frac{1}{|K|^{\frac{n-k}{n k}}}\left(\int_{G_{n, n-k}}|K \cap H|^{n} d \nu_{n, n-k}\right)^{\frac{1}{n k}}
$$

This gives

$$
|K|^{\frac{n-k}{n k}} \leqslant \frac{L_{K}}{c_{0}}\left(\int_{G_{n, n-k}}|K \cap H|^{n} d \nu_{n, n-k}\right)^{\frac{1}{n k}} \leqslant c_{1} L_{K} \max _{H \in G_{n, n-k}}|K \cap H|^{\frac{1}{k}}
$$

and hence,

$$
|K|^{\frac{n-k-j}{n}} \leqslant\left(c_{1} L_{K}\right)^{\frac{k(n-k-j)}{n-k}} \max _{H \in G_{n, n-k}}|K \cap H|^{\frac{n-k-j}{n-k}} .
$$

Using the monotonicity of mixed volumes we may write

$$
W_{j}(K)=V\left((K, n-j),\left(B_{2}^{n}, j\right)\right) \leqslant V\left((K, n-j),\left(\frac{K}{r(K)}, j\right)\right)=\frac{|K|}{r(K)^{j}}
$$

We rewrite this inequality in the form

$$
\begin{equation*}
W_{j}(K) \leqslant \omega_{n}^{\frac{j}{n}} t(K)^{j}|K|^{\frac{n-j}{n}}=\omega_{n}^{\frac{j}{n}} t(K)^{j}|K|^{\frac{k}{n}}|K|^{\frac{n-k-j}{n}} . \tag{1}
\end{equation*}
$$

Now, we use the estimate (Dafnis-Paouris)

$$
\frac{c_{0}}{L_{K}} \leq \widetilde{\Phi}_{[k]}(K):=\frac{1}{|K|^{\frac{n-k}{n k}}}\left(\int_{G_{n, n-k}}|K \cap H|^{n} d \nu_{n, n-k}\right)^{\frac{1}{n k}}
$$

This gives

$$
|K|^{\frac{n-k}{n k}} \leqslant \frac{L_{K}}{c_{0}}\left(\int_{G_{n, n-k}}|K \cap H|^{n} d \nu_{n, n-k}\right)^{\frac{1}{n k}} \leqslant c_{1} L_{K} \max _{H \in G_{n, n-k}}|K \cap H|^{\frac{1}{k}}
$$

and hence,

$$
|K|^{\frac{n-k-j}{n}} \leqslant\left(c_{1} L_{K}\right)^{\frac{k(n-k-j)}{n-k}} \max _{H \in G_{n, n-k}}|K \cap H|^{\frac{n-k-j}{n-k}} .
$$

On the other hand, applying Aleksandrov's inequalities for $K \cap H$ we get

$$
|K \cap H|^{\frac{n-k-j}{n-k}} \leqslant \omega_{n-k}^{-\frac{j}{n-k}} W_{j}(K \cap H)
$$

for every $H \in G_{n, n-k}$.

Combining the above we see that

$$
|K|^{\frac{n-k-j}{n}} \leqslant \frac{1}{\omega_{n-k}^{\frac{j}{n-k}}}\left(c_{1} L_{K}\right)^{\frac{k(n-k-j)}{n-k}} \max _{H \in G_{n, n-k}} W_{j}(K \cap H),
$$

and then (1) takes the form

$$
W_{j}(K) \leqslant\left(\omega_{n}^{\frac{j}{n}} / \omega_{n-k}^{\frac{j}{n-k}}\right)\left(c_{1} L_{K}\right)^{\frac{k(n-k-j)}{n-k}} t(K)^{j}|K|^{\frac{k}{n}} \max _{H \in G_{n, n-k}} W_{j}(K \cap H)
$$

Setting $\alpha_{n, k, j}=\left(\omega_{n}^{\frac{j}{n}} / \omega_{n-k}^{\frac{j}{n-k}}\right) c_{1}^{\frac{k(n-k-j)}{n-k}}$ we conclude the proof.

Connection with Busemann-Petty

Question-Koldobsky and König

If K and D are two convex bodies in \mathbb{R}^{n} such that $S\left(K \cap \xi^{\perp}\right) \leqslant S\left(D \cap \xi^{\perp}\right)$ for all $\xi \in S^{n-1}$ does it then follow that $S(K) \leqslant S(D)$?

Connection with Busemann-Petty

Question-Koldobsky and König

If K and D are two convex bodies in \mathbb{R}^{n} such that $S\left(K \cap \xi^{\perp}\right) \leqslant S\left(D \cap \xi^{\perp}\right)$ for all $\xi \in S^{n-1}$ does it then follow that $S(K) \leqslant S(D)$?

Answering a question of Pełczynski, they prove that the central ($n-1$)-dimensional section of the cube $B_{\infty}^{n}=[-1,1]^{n}$ that has maximal surface area is the one that corresponds to the unit vector $\xi_{0}=\frac{1}{\sqrt{2}}(1,1,0, \ldots, 0)$ (exactly as in the case of volume) i.e.

$$
\max _{\xi \in S^{n-1}} S\left(B_{\infty}^{n} \cap \xi^{\perp}\right)=S\left(B_{\infty}^{n} \cap \xi_{0}^{\perp}\right)=2((n-2) \sqrt{2}+1)
$$

Connection with Busemann-Petty

Question-Koldobsky and König

If K and D are two convex bodies in \mathbb{R}^{n} such that $S\left(K \cap \xi^{\perp}\right) \leqslant S\left(D \cap \xi^{\perp}\right)$ for all $\xi \in S^{n-1}$ does it then follow that $S(K) \leqslant S(D)$?

Answering a question of Pełczynski, they prove that the central ($n-1$)-dimensional section of the cube $B_{\infty}^{n}=[-1,1]^{n}$ that has maximal surface area is the one that corresponds to the unit vector $\xi_{0}=\frac{1}{\sqrt{2}}(1,1,0, \ldots, 0)$ (exactly as in the case of volume) i.e.

$$
\max _{\xi \in S^{n-1}} S\left(B_{\infty}^{n} \cap \xi^{\perp}\right)=S\left(B_{\infty}^{n} \cap \xi_{0}^{\perp}\right)=2((n-2) \sqrt{2}+1)
$$

Comparing with a ball of suitable radius one gets that the answer to the Busemann-Petty problem for surface area is negative in dimensions $n \geqslant 14$.

Connection with Busemann-Petty

Question-Koldobsky and König

If K and D are two convex bodies in \mathbb{R}^{n} such that $S\left(K \cap \xi^{\perp}\right) \leqslant S\left(D \cap \xi^{\perp}\right)$ for all $\xi \in S^{n-1}$ does it then follow that $S(K) \leqslant S(D)$?

Answering a question of Pełczynski, they prove that the central ($n-1$)-dimensional section of the cube $B_{\infty}^{n}=[-1,1]^{n}$ that has maximal surface area is the one that corresponds to the unit vector $\xi_{0}=\frac{1}{\sqrt{2}}(1,1,0, \ldots, 0)$ (exactly as in the case of volume) i.e.

$$
\max _{\xi \in S^{n-1}} S\left(B_{\infty}^{n} \cap \xi^{\perp}\right)=S\left(B_{\infty}^{n} \cap \xi_{0}^{\perp}\right)=2((n-2) \sqrt{2}+1)
$$

Comparing with a ball of suitable radius one gets that the answer to the Busemann-Petty problem for surface area is negative in dimensions $n \geqslant 14$.

Isomorphic version

Is there a constant β_{n} such that if K and D are two convex bodies in \mathbb{R}^{n} with $S\left(K \cap \xi^{\perp}\right) \leqslant S\left(D \cap \xi^{\perp}\right)$ for all $\xi \in S^{n-1}$ then $S(K) \leqslant \beta_{n} S(D)$?

Suppose that the isomorphic version holds, i.e. there is a constant β_{n} such that if K and D are centrally symmetric convex bodies in \mathbb{R}^{n} that satisfy

$$
S\left(K \cap \xi^{\perp}\right) \leqslant S\left(D \cap \xi^{\perp}\right)
$$

for all $\xi \in S^{n-1}$, then $S(K) \leqslant \beta_{n} S(D)$.

Suppose that the isomorphic version holds, i.e. there is a constant β_{n} such that if K and D are centrally symmetric convex bodies in \mathbb{R}^{n} that satisfy

$$
S\left(K \cap \xi^{\perp}\right) \leqslant S\left(D \cap \xi^{\perp}\right)
$$

for all $\xi \in S^{n-1}$, then $S(K) \leqslant \beta_{n} S(D)$.
Now, let K be a convex body in \mathbb{R}^{n} and choose $\xi_{0} \in S^{n-1}$ such that

$$
S\left(K \cap \xi_{0}^{\perp}\right)=\max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

Suppose that the isomorphic version holds, i.e. there is a constant β_{n} such that if K and D are centrally symmetric convex bodies in \mathbb{R}^{n} that satisfy

$$
S\left(K \cap \xi^{\perp}\right) \leqslant S\left(D \cap \xi^{\perp}\right)
$$

for all $\xi \in S^{n-1}$, then $S(K) \leqslant \beta_{n} S(D)$.
Now, let K be a convex body in \mathbb{R}^{n} and choose $\xi_{0} \in S^{n-1}$ such that

$$
S\left(K \cap \xi_{0}^{\perp}\right)=\max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

and $r>0$ such that $r^{n-2} S\left(B_{2}^{n-1}\right)=S\left(r B_{2}^{n-1}\right)=S\left(K \cap \xi_{0}^{\perp}\right)$.

Suppose that the isomorphic version holds, i.e. there is a constant β_{n} such that if K and D are centrally symmetric convex bodies in \mathbb{R}^{n} that satisfy

$$
S\left(K \cap \xi^{\perp}\right) \leqslant S\left(D \cap \xi^{\perp}\right)
$$

for all $\xi \in S^{n-1}$, then $S(K) \leqslant \beta_{n} S(D)$.
Now, let K be a convex body in \mathbb{R}^{n} and choose $\xi_{0} \in S^{n-1}$ such that

$$
S\left(K \cap \xi_{0}^{\perp}\right)=\max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

and $r>0$ such that $r^{n-2} S\left(B_{2}^{n-1}\right)=S\left(r B_{2}^{n-1}\right)=S\left(K \cap \xi_{0}^{\perp}\right)$.Then,

$$
S\left(K \cap \xi^{\perp}\right) \leqslant S\left(r B_{2}^{n} \cap \xi^{\perp}\right)
$$

for all $\xi \in S^{n-1}$.

Suppose that the isomorphic version holds, i.e. there is a constant β_{n} such that if K and D are centrally symmetric convex bodies in \mathbb{R}^{n} that satisfy

$$
S\left(K \cap \xi^{\perp}\right) \leqslant S\left(D \cap \xi^{\perp}\right)
$$

for all $\xi \in S^{n-1}$, then $S(K) \leqslant \beta_{n} S(D)$.
Now, let K be a convex body in \mathbb{R}^{n} and choose $\xi_{0} \in S^{n-1}$ such that

$$
S\left(K \cap \xi_{0}^{\perp}\right)=\max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

and $r>0$ such that $r^{n-2} S\left(B_{2}^{n-1}\right)=S\left(r B_{2}^{n-1}\right)=S\left(K \cap \xi_{0}^{\perp}\right)$.Then,

$$
S\left(K \cap \xi^{\perp}\right) \leqslant S\left(r B_{2}^{n} \cap \xi^{\perp}\right)
$$

for all $\xi \in S^{n-1}$. Therefore,

$$
S(K)^{\frac{n-2}{n-1}} \leqslant \beta_{n}^{\frac{n-2}{n-1}} S\left(r B_{2}^{n}\right)^{\frac{n-2}{n-1}}=\beta_{n}^{\frac{n-2}{n-1}} \frac{S\left(B_{2}^{n}\right)^{\frac{n-2}{n-1}}}{S\left(B_{2}^{n-1}\right)} \max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

Suppose that the isomorphic version holds, i.e. there is a constant β_{n} such that if K and D are centrally symmetric convex bodies in \mathbb{R}^{n} that satisfy

$$
S\left(K \cap \xi^{\perp}\right) \leqslant S\left(D \cap \xi^{\perp}\right)
$$

for all $\xi \in S^{n-1}$, then $S(K) \leqslant \beta_{n} S(D)$.
Now, let K be a convex body in \mathbb{R}^{n} and choose $\xi_{0} \in S^{n-1}$ such that

$$
S\left(K \cap \xi_{0}^{\perp}\right)=\max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

and $r>0$ such that $r^{n-2} S\left(B_{2}^{n-1}\right)=S\left(r B_{2}^{n-1}\right)=S\left(K \cap \xi_{0}^{\perp}\right)$.Then,

$$
S\left(K \cap \xi^{\perp}\right) \leqslant S\left(r B_{2}^{n} \cap \xi^{\perp}\right)
$$

for all $\xi \in S^{n-1}$. Therefore,

$$
S(K)^{\frac{n-2}{n-1}} \leqslant \beta_{n}^{\frac{n-2}{n-1}} S\left(r B_{2}^{n}\right)^{\frac{n-2}{n-1}}=\beta_{n}^{\frac{n-2}{n-1}} \frac{S\left(B_{2}^{n}\right)^{\frac{n-2}{n-1}}}{S\left(B_{2}^{n-1}\right)} \max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

This implies that there is some constant $c(n)$ such that

$$
S(K) \leqslant c(n) S(K)^{\frac{1}{n-1}} \max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

The validity of the above is a new question.

We start with an estimate for ellipsoids.

Proposition

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^{n}. Then,

$$
\frac{S(\mathcal{E})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)} \leqslant D_{n} r(\mathcal{E})^{-\frac{1}{n-1}}
$$

where $D_{n}>0$ is bounded by an absolute constant.

We start with an estimate for ellipsoids.

Proposition

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^{n}. Then,

$$
\frac{S(\mathcal{E})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)} \leqslant D_{n} r(\mathcal{E})^{-\frac{1}{n-1}}
$$

where $D_{n}>0$ is bounded by an absolute constant.
We may assume that $|\mathcal{E}|=1$. Let $a_{1} \leqslant \cdots \leqslant a_{n}$ be the lengths of its principal semi-axes of \mathcal{E} in the directions of e_{1}, \ldots, e_{n}. We have seen that

$$
\frac{S(\mathcal{E})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)}=C_{n} a_{1} \frac{\mathbb{E}\left[\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right]}{\mathbb{E}\left[\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right]}
$$

where C_{n} is bounded by an absolute constant.
Since

$$
\frac{\mathbb{E}\left[\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right]}{\mathbb{E}\left[\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2}\right]} \leqslant c\left(\frac{\mathbb{E}\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)}{\mathbb{E}\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)}\right)^{1 / 2}=c\left(\frac{\sum_{i=1}^{n} \frac{1}{a_{i}^{2}}}{\sum_{i=2}^{n} \frac{1}{a_{i}^{2}}}\right)^{1 / 2}
$$

we have that

$$
\frac{S(\mathcal{E})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)} \leqslant C_{n} a_{1}\left(\frac{\sum_{i=1}^{n} \frac{1}{a_{i}^{2}}}{\sum_{i=2}^{n} \frac{1}{a_{i}^{2}}}\right)^{1 / 2}=C_{n}\left(1+\frac{1}{\sum_{i=2}^{n} \frac{a_{1}^{2}}{a_{i}^{2}}}\right)^{1 / 2}
$$

we have that

$$
\frac{S(\mathcal{E})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)} \leqslant C_{n} a_{1}\left(\frac{\sum_{i=1}^{n} \frac{1}{a_{i}^{2}}}{\sum_{i=2}^{n} \frac{1}{a_{i}^{2}}}\right)^{1 / 2}=C_{n}\left(1+\frac{1}{\sum_{i=2}^{n} \frac{a_{1}^{2}}{a_{i}^{2}}}\right)^{1 / 2} .
$$

Using the arithmetic-geometric mean inequality we get

$$
\sum_{i=2}^{n} \frac{a_{1}^{2}}{a_{i}^{2}} \geqslant(n-1) a_{1}^{2}\left(\frac{1}{a_{2}^{2} \ldots a_{n}^{2}}\right)^{\frac{1}{n-1}}=(n-1) a_{1}^{2} a_{1}^{\frac{2}{n-1}}=(n-1) a_{1}^{\frac{2 n}{n-1}}
$$

we have that

$$
\frac{S(\mathcal{E})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)} \leqslant C_{n} a_{1}\left(\frac{\sum_{i=1}^{n} \frac{1}{a_{i}^{2}}}{\sum_{i=2}^{n} \frac{1}{a_{i}^{2}}}\right)^{1 / 2}=C_{n}\left(1+\frac{1}{\sum_{i=2}^{n} \frac{a_{1}^{2}}{a_{i}^{2}}}\right)^{1 / 2} .
$$

Using the arithmetic-geometric mean inequality we get

$$
\sum_{i=2}^{n} \frac{a_{1}^{2}}{a_{i}^{2}} \geqslant(n-1) a_{1}^{2}\left(\frac{1}{a_{2}^{2} \ldots a_{n}^{2}}\right)^{\frac{1}{n-1}}=(n-1) a_{1}^{2} a_{1}^{\frac{2}{n-1}}=(n-1) a_{1}^{\frac{2 n}{n-1}}
$$

Moreover, $1 \leqslant \frac{1}{a_{1}^{\frac{2 n}{n-1}}}$ and adding these two inequalities we get

$$
\left(1+\frac{1}{\sum_{i=2}^{n} \frac{a_{1}^{2}}{a_{i}^{2}}}\right)^{1 / 2} \leqslant\left(\frac{1}{a_{1}^{\frac{2 n}{n-1}}}+\frac{1}{(n-1) a_{1}^{\frac{2 n}{n-1}}}\right)^{\frac{1}{2}}
$$

therefore

$$
\frac{S(\mathcal{E})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)} \leqslant D_{n} \frac{1}{a_{1}^{\frac{1}{n-1}}}=D_{n} \frac{1}{r(\mathcal{E})^{\frac{1}{n-1}}},
$$

where D_{n} is bounded by an absolute constant.

The example of an ellipsoid \mathcal{F} with $a_{2}=\ldots=a_{n}=r$ and $a_{1}=\frac{1}{r^{n-1}}$ gives that

$$
\frac{S(\mathcal{F})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{F} \cap \xi^{\perp}\right)} \geqslant E_{n} \frac{1}{r(\mathcal{F})^{\frac{1}{n-1}}}
$$

therefore the inequality is sharp.

The example of an ellipsoid \mathcal{F} with $a_{2}=\ldots=a_{n}=r$ and $a_{1}=\frac{1}{r^{n-1}}$ gives that

$$
\frac{S(\mathcal{F})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{F} \cap \xi^{\perp}\right)} \geqslant E_{n} \frac{1}{r(\mathcal{F})^{\frac{1}{n-1}}},
$$

therefore the inequality is sharp. Using the inequality that $\frac{1}{r(K)} \leqslant S(K)$ for every convex body K of volume 1 in \mathbb{R}^{n} we get

The example of an ellipsoid \mathcal{F} with $a_{2}=\ldots=a_{n}=r$ and $a_{1}=\frac{1}{r^{n-1}}$ gives that

$$
\frac{S(\mathcal{F})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{F} \cap \xi^{\perp}\right)} \geqslant E_{n} \frac{1}{r(\mathcal{F})^{\frac{1}{n-1}}},
$$

therefore the inequality is sharp.
Using the inequality that $\frac{1}{r(K)} \leqslant S(K)$ for every convex body K of volume 1 in \mathbb{R}^{n} we get

Theorem

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^{n}. Then,

$$
S(\mathcal{E}) \leqslant A_{n} S(\mathcal{E})^{\frac{1}{n-1}} \max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)
$$

where $A_{n}>0$ is bounded by an absolute constant.

The example of an ellipsoid \mathcal{F} with $a_{2}=\ldots=a_{n}=r$ and $a_{1}=\frac{1}{r^{n-1}}$ gives that

$$
\frac{S(\mathcal{F})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{F} \cap \xi^{\perp}\right)} \geqslant E_{n} \frac{1}{r(\mathcal{F})^{\frac{1}{n-1}}},
$$

therefore the inequality is sharp.
Using the inequality that $\frac{1}{r(K)} \leqslant S(K)$ for every convex body K of volume 1 in \mathbb{R}^{n} we get

Theorem

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^{n}. Then,

$$
S(\mathcal{E}) \leqslant A_{n} S(\mathcal{E})^{\frac{1}{n-1}} \max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)
$$

where $A_{n}>0$ is bounded by an absolute constant.
Using John's theorem and the monotonicity of surface area one can easily deduce that a similar estimate holds true in full generality:

The example of an ellipsoid \mathcal{F} with $a_{2}=\ldots=a_{n}=r$ and $a_{1}=\frac{1}{r^{n-1}}$ gives that

$$
\frac{S(\mathcal{F})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{F} \cap \xi^{\perp}\right)} \geqslant E_{n} \frac{1}{r(\mathcal{F})^{\frac{1}{n-1}}},
$$

therefore the inequality is sharp.
Using the inequality that $\frac{1}{r(K)} \leqslant S(K)$ for every convex body K of volume 1 in \mathbb{R}^{n} we get

Theorem

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^{n}. Then,

$$
S(\mathcal{E}) \leqslant A_{n} S(\mathcal{E})^{\frac{1}{n-1}} \max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)
$$

where $A_{n}>0$ is bounded by an absolute constant.
Using John's theorem and the monotonicity of surface area one can easily deduce that a similar estimate holds true in full generality:For any convex body K in \mathbb{R}^{n} one has

$$
S(K) \leqslant A_{n}^{\prime} S(K)^{\frac{1}{n-1}} \max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

where $A_{n}^{\prime}>0$ is a constant depending only on n.

The example of an ellipsoid \mathcal{F} with $a_{2}=\ldots=a_{n}=r$ and $a_{1}=\frac{1}{r^{n-1}}$ gives that

$$
\frac{S(\mathcal{F})}{\max _{\xi \in S^{n-1}} S\left(\mathcal{F} \cap \xi^{\perp}\right)} \geqslant E_{n} \frac{1}{r(\mathcal{F})^{\frac{1}{n-1}}},
$$

therefore the inequality is sharp.
Using the inequality that $\frac{1}{r(K)} \leqslant S(K)$ for every convex body K of volume 1 in \mathbb{R}^{n} we get

Theorem

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^{n}. Then,

$$
S(\mathcal{E}) \leqslant A_{n} S(\mathcal{E})^{\frac{1}{n-1}} \max _{\xi \in S^{n-1}} S\left(\mathcal{E} \cap \xi^{\perp}\right)
$$

where $A_{n}>0$ is bounded by an absolute constant.
Using John's theorem and the monotonicity of surface area one can easily deduce that a similar estimate holds true in full generality:For any convex body K in \mathbb{R}^{n} one has

$$
S(K) \leqslant A_{n}^{\prime} S(K)^{\frac{1}{n-1}} \max _{\xi \in S^{n-1}} S\left(K \cap \xi^{\perp}\right)
$$

where $A_{n}^{\prime}>0$ is a constant depending only on n.lt is an interesting question to determine the best possible behavior of the constant A_{n}^{\prime} with respect to the dimension n.

New Parameters

Recall Rivin's formula.

New Parameters

Recall Rivin's formula.If \mathcal{E} is an ellipsoid in \mathbb{R}^{n} with semi-axes $a_{1} \leqslant \cdots \leqslant a_{n}$ in the directions of e_{1}, \ldots, e_{n} then

$$
S(\mathcal{E})=n|\mathcal{E}| \int_{S^{n-1}}\left(\sum_{i=1}^{n} \frac{\xi_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2} d \sigma(\xi)
$$

New Parameters

Recall Rivin's formula.If \mathcal{E} is an ellipsoid in \mathbb{R}^{n} with semi-axes $a_{1} \leqslant \cdots \leqslant a_{n}$ in the directions of e_{1}, \ldots, e_{n} then

$$
S(\mathcal{E})=n|\mathcal{E}| \int_{S^{n-1}}\left(\sum_{i=1}^{n} \frac{\xi_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2} d \sigma(\xi)
$$

This can be rewritten as

$$
S(\mathcal{E}) \approx n|\mathcal{E}| M(\mathcal{E})
$$

where $M(\mathcal{E})=\int_{S^{n-1}}\|\xi\|_{\mathcal{E}} d \sigma(\xi)$.

New Parameters

Recall Rivin's formula.If \mathcal{E} is an ellipsoid in \mathbb{R}^{n} with semi-axes $a_{1} \leqslant \cdots \leqslant a_{n}$ in the directions of e_{1}, \ldots, e_{n} then

$$
S(\mathcal{E})=n|\mathcal{E}| \int_{S^{n-1}}\left(\sum_{i=1}^{n} \frac{\xi_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2} d \sigma(\xi)
$$

This can be rewritten as

$$
S(\mathcal{E}) \approx n|\mathcal{E}| M(\mathcal{E})
$$

where $M(\mathcal{E})=\int_{S^{n-1}}\|\xi\|_{\mathcal{E}} d \sigma(\xi)$. It is natural to introduce the parameter

$$
p(K)=\frac{S(K)}{|K| M(K)}
$$

New Parameters

Recall Rivin's formula.If \mathcal{E} is an ellipsoid in \mathbb{R}^{n} with semi-axes $a_{1} \leqslant \cdots \leqslant a_{n}$ in the directions of e_{1}, \ldots, e_{n} then

$$
S(\mathcal{E})=n|\mathcal{E}| \int_{S^{n-1}}\left(\sum_{i=1}^{n} \frac{\xi_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2} d \sigma(\xi)
$$

This can be rewritten as

$$
S(\mathcal{E}) \approx n|\mathcal{E}| M(\mathcal{E})
$$

where $M(\mathcal{E})=\int_{S^{n-1}}\|\xi\|_{\mathcal{E}} d \sigma(\xi)$. It is natural to introduce the parameter

$$
p(K)=\frac{S(K)}{|K| M(K)}
$$

Our aim is to provide optimal upper and lower bounds for $p(K)$ both in general and in the case where K is in some of the classical positions.
We show the following:

New Parameters

Recall Rivin's formula.If \mathcal{E} is an ellipsoid in \mathbb{R}^{n} with semi-axes $a_{1} \leqslant \cdots \leqslant a_{n}$ in the directions of e_{1}, \ldots, e_{n} then

$$
S(\mathcal{E})=n|\mathcal{E}| \int_{S^{n-1}}\left(\sum_{i=1}^{n} \frac{\xi_{i}^{2}}{a_{i}^{2}}\right)^{1 / 2} d \sigma(\xi)
$$

This can be rewritten as

$$
S(\mathcal{E}) \approx n|\mathcal{E}| M(\mathcal{E})
$$

where $M(\mathcal{E})=\int_{S^{n-1}}\|\xi\|_{\mathcal{E}} d \sigma(\xi)$. It is natural to introduce the parameter

$$
p(K)=\frac{S(K)}{|K| M(K)}
$$

Our aim is to provide optimal upper and lower bounds for $p(K)$ both in general and in the case where K is in some of the classical positions.
We show the following:

Theorem

There exist absolute constants $c_{1}, c_{2}>0$ such that for every convex body $K \in \mathbb{R}^{n}$ we have

$$
c_{1} \sqrt{n} \leqslant p(K) \leqslant c_{2} n^{3 / 2}
$$

Moreover, both estimates give the optimal dependence on the dimension.

Proof in the centrally symmetric case.

Proof in the centrally symmetric case.By the simple case $k=1$ of the Rogers-Shephard inequality we have that

$$
\frac{n}{2}\|u\|_{K}|K| \geqslant\left|P_{u \perp} K\right| \geqslant \frac{\|u\|_{K}}{2}|K| .
$$

Proof in the centrally symmetric case. By the simple case $k=1$ of the Rogers-Shephard inequality we have that

$$
\frac{n}{2}\|u\|_{K}|K| \geqslant\left|P_{u \perp} K\right| \geqslant \frac{\|u\|_{K}}{2}|K| .
$$

Integrating over the sphere we get

$$
\frac{1}{2} M(K)|K| \leqslant \frac{\omega_{n-1}}{n \omega_{n}} S(K) \approx \frac{1}{\sqrt{n}} S(K) \leqslant \frac{n}{2} M(K)|K|
$$

Proof in the centrally symmetric case. By the simple case $k=1$ of the Rogers-Shephard inequality we have that

$$
\frac{n}{2}\|u\|_{K}|K| \geqslant\left|P_{u \perp} K\right| \geqslant \frac{\|u\|_{K}}{2}|K| .
$$

Integrating over the sphere we get

$$
\frac{1}{2} M(K)|K| \leqslant \frac{\omega_{n-1}}{n \omega_{n}} S(K) \approx \frac{1}{\sqrt{n}} S(K) \leqslant \frac{n}{2} M(K)|K|
$$

The order of the bounds is sharp since they are achieved by

$$
P_{s}=\left\{x \in \mathbb{R}^{n}:\left|x_{1}\right|+\frac{1}{s} \sum_{i=2}^{n}\left|x_{i}\right| \leqslant 1\right\}
$$

and

$$
P_{a, s}=\left\{x:\left|x_{1}\right| \leqslant s,\left|x_{i}\right| \leqslant a \text { for } i \geqslant 2\right\}
$$

where $0<s<a$.

Thank you for your attention!!!

