On a version of the slicing problem for the surface area of convex bodies

Silouanos Brazitikos (joint work with Dimitris Liakopoulos) University of Athens

AGA Seminar, March 2022

Classical Slicing Problem

The classical slicing problem asks if there exists an absolute constant $C_2 > 0$ such that for every $n \ge 2$ and every centered convex body K in \mathbb{R}^n one has

$$|K|^{\frac{n-1}{n}} \leqslant C_2 \max_{\xi \in S^{n-1}} |K \cap \xi^{\perp}|.$$

The classical slicing problem asks if there exists an absolute constant $C_2 > 0$ such that for every $n \ge 2$ and every centered convex body K in \mathbb{R}^n one has

$$|K|^{\frac{n-1}{n}} \leqslant C_2 \max_{\xi \in S^{n-1}} |K \cap \xi^{\perp}|.$$

It is well-known that this problem is equivalent to the question if there exists an absolute constant $\mathcal{C}_3>0$ such that

$$L_n := \max\{L_K : K \text{ is isotropic in } \mathbb{R}^n\} \leqslant C_3,$$

for all $n \ge 1$, where L_K is the isotropic constant of K.

The classical slicing problem asks if there exists an absolute constant $C_2 > 0$ such that for every $n \ge 2$ and every centered convex body K in \mathbb{R}^n one has

$$|K|^{\frac{n-1}{n}} \leqslant C_2 \max_{\xi \in S^{n-1}} |K \cap \xi^{\perp}|.$$

It is well-known that this problem is equivalent to the question if there exists an absolute constant $\mathcal{C}_3>0$ such that

$$L_n := \max\{L_K : K \text{ is isotropic in } \mathbb{R}^n\} \leqslant C_3,$$

for all $n \ge 1$, where L_K is the isotropic constant of K.

Koldobsky proved the following variants for the surface area. If K is an intersection body in \mathbb{R}^n , then

$$as(K) \leq c_n \max_{\xi \in S^{n-1}} as(K \cap \xi^{\perp}) |K|^{1/n},$$

The classical slicing problem asks if there exists an absolute constant $C_2 > 0$ such that for every $n \ge 2$ and every centered convex body K in \mathbb{R}^n one has

$$|K|^{\frac{n-1}{n}} \leqslant C_2 \max_{\xi \in S^{n-1}} |K \cap \xi^{\perp}|.$$

It is well-known that this problem is equivalent to the question if there exists an absolute constant $\mathcal{C}_3>0$ such that

$$L_n := \max\{L_K : K \text{ is isotropic in } \mathbb{R}^n\} \leqslant C_3,$$

for all $n \ge 1$, where L_K is the isotropic constant of K.

Koldobsky proved the following variants for the surface area. If K is an intersection body in \mathbb{R}^n , then

$$as(K) \leq c_n \max_{\xi \in S^{n-1}} as(K \cap \xi^{\perp}) |K|^{1/n},$$

and

$$S(K) \geq c_n \min_{\xi \in S^{n-1}} S(P_{\xi^{\perp}}K) |K|^{1/n},$$

where $as(K) = \int_{S^{n-1}} |K \cap \xi^{\perp}| d\sigma(\xi)$.

Question

Is it true that there exists a constant α_n depending (or not) on the dimension *n* so that

$$\mathcal{S}(\mathcal{K}) \leqslant lpha_n |\mathcal{K}|^{rac{1}{n}} \max_{\xi \in S^{n-1}} \mathcal{S}(\mathcal{K} \cap \xi^{\perp})$$

for every centrally symmetric convex body K in \mathbb{R}^n ?

Question

Is it true that there exists a constant α_n depending (or not) on the dimension n so that

$$\mathcal{S}(\mathcal{K}) \leqslant lpha_n |\mathcal{K}|^{rac{1}{n}} \max_{\xi \in S^{n-1}} \mathcal{S}(\mathcal{K} \cap \xi^{\perp})$$

for every centrally symmetric convex body K in \mathbb{R}^n ?

In general, for any $2 \leq k \leq n-1$, one may ask for a constant $\alpha_{n,k}$ such that

$$S(K) \leq \alpha_{n,k}^k |K|^{\frac{k}{n}} \max_{H \in G_{n,n-k}} S(K \cap H).$$

Question

Is it true that there exists a constant α_n depending (or not) on the dimension n so that

$$S(K) \leqslant \alpha_n |K|^{rac{1}{n}} \max_{\xi \in S^{n-1}} S(K \cap \xi^{\perp})$$

for every centrally symmetric convex body K in \mathbb{R}^n ?

In general, for any $2 \leq k \leq n-1$, one may ask for a constant $\alpha_{n,k}$ such that

$$S(K) \leq \alpha_{n,k}^{k} |K|^{\frac{k}{n}} \max_{H \in G_{n,n-k}} S(K \cap H).$$

Theorem. B.-Liakopoulos

The answer to both questions is negative.

Our examples will be given by ellipsoids. They will based on

Theorem

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^n and write $a_1 \leq a_2 \leq \cdots \leq a_n$ for the lengths and e_1, e_2, \ldots, e_n for the corresponding directions of its semi-axes. If $1 \leq k \leq n-1$ then for any $H \in G_{n,k}$ and any $0 \leq j < k$ we have that

 $W_j(\mathcal{E} \cap F_k) \leqslant W_j(\mathcal{E} \cap H) \leqslant W_j(P_H(\mathcal{E})) \leqslant W_j(\mathcal{E} \cap E_k),$

where $F_k = \operatorname{span}\{e_1, \ldots, e_k\}$ and $E_k = \operatorname{span}\{e_{n-k+1}, \ldots, e_n\}$. In particular, for every $\xi \in S^{n-1}$, $S(\mathcal{E} \cap \xi^{\perp}) \leq S(P_{\varepsilon^{\perp}}(\mathcal{E})) \leq S(\mathcal{E} \cap e_1^{\perp}).$

S.Brazitikos (Un. of Athens)

Our examples will be given by ellipsoids. They will based on

Theorem

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^n and write $a_1 \leq a_2 \leq \cdots \leq a_n$ for the lengths and e_1, e_2, \ldots, e_n for the corresponding directions of its semi-axes. If $1 \leq k \leq n-1$ then for any $H \in G_{n,k}$ and any $0 \leq j < k$ we have that

$$W_j(\mathcal{E} \cap F_k) \leqslant W_j(\mathcal{E} \cap H) \leqslant W_j(P_H(\mathcal{E})) \leqslant W_j(\mathcal{E} \cap E_k),$$

where $F_k = \operatorname{span}\{e_1, \ldots, e_k\}$ and $E_k = \operatorname{span}\{e_{n-k+1}, \ldots, e_n\}$. In particular, for every $\xi \in S^{n-1}$, $S(\mathcal{E} \cap \xi^{\perp}) \leqslant S(P_{\xi^{\perp}}(\mathcal{E})) \leqslant S(\mathcal{E} \cap e_1^{\perp}).$

The proof relies on Cauchy interlacing Theorem and comparison with a spheroid.

We shall use the next formula of Rivin:

We shall use the next formula of Rivin:

If $\mathcal E$ is an ellipsoid in $\mathbb R^n$ with semi-axes $a_1\leqslant\cdots\leqslant a_n$ in the directions of e_1,\ldots,e_n then

$$S(\mathcal{E}) = n |\mathcal{E}| \int_{S^{n-1}} \left(\sum_{i=1}^n \frac{\xi_i^2}{a_i^2} \right)^{1/2} d\sigma(\xi).$$

We shall use the next formula of Rivin:

If $\mathcal E$ is an ellipsoid in $\mathbb R^n$ with semi-axes $a_1\leqslant\cdots\leqslant a_n$ in the directions of e_1,\ldots,e_n then

$$S(\mathcal{E}) = n |\mathcal{E}| \int_{S^{n-1}} \left(\sum_{i=1}^n \frac{\xi_i^2}{a_i^2} \right)^{1/2} d\sigma(\xi).$$

Now assume that there exists a constant $\alpha_n > 0$ such that we have the following inequality for ellipsoids:

$$S(\mathcal{E}) \leq \alpha_n |\mathcal{E}|^{1/n} \max_{\xi \in S^{n-1}} S(\mathcal{E} \cap \xi^{\perp}).$$

We know that the maximum is attained for the section $\mathcal{E} \cap e_1^{\perp}$. Then we have

$$\max_{\xi\in S^{n-1}} S(\mathcal{E}\cap\xi^{\perp}) = S(\mathcal{E}\cap e_1^{\perp}) = (n-1) \left|\mathcal{E}\cap e_1^{\perp}\right| \int_{S^{n-2}} \left(\sum_{i=2}^n \frac{\xi_i^2}{a_i^2}\right)^{1/2} d\sigma(\xi).$$

We may assume that $\prod_{i=1}^n a_i = 1$. Then, we can rewrite

$$S(\mathcal{E}) \leqslant \alpha_n |\mathcal{E}|^{1/n} \max_{\xi \in S^{n-1}} S(\mathcal{E} \cap \xi^{\perp})$$

as

We may assume that $\prod_{i=1}^n a_i = 1$. Then, we can rewrite

$$S(\mathcal{E}) \leqslant \alpha_n |\mathcal{E}|^{1/n} \max_{\xi \in S^{n-1}} S(\mathcal{E} \cap \xi^{\perp})$$

as

$$n\omega_n \cdot \frac{1}{d_n} \mathbb{E}\Big[\Big(\sum_{i=1}^n \frac{g_i^2}{a_i^2}\Big)^{1/2}\Big] \leqslant \alpha_n \omega_n^{1/n} \cdot (n-1)\omega_{n-1} \frac{1}{a_1} \cdot \frac{1}{d_{n-1}} \mathbb{E}\Big[\Big(\sum_{i=2}^n \frac{g_i^2}{a_i^2}\Big)^{1/2}\Big].$$

We may assume that $\prod_{i=1}^{n} a_i = 1$. Then, we can rewrite

$$S(\mathcal{E}) \leqslant \alpha_n |\mathcal{E}|^{1/n} \max_{\xi \in S^{n-1}} S(\mathcal{E} \cap \xi^{\perp})$$

as

$$n\omega_n\cdot rac{1}{d_n}\mathbb{E}\Big[\Big(\sum_{i=1}^n rac{g_i^2}{a_i^2}\Big)^{1/2}\Big]\leqslant lpha_n\omega_n^{1/n}\cdot(n-1)\omega_{n-1}rac{1}{a_1}\cdot rac{1}{d_{n-1}}\mathbb{E}\Big[\Big(\sum_{i=2}^n rac{g_i^2}{a_i^2}\Big)^{1/2}\Big].$$

Then,

$$\alpha_n \geqslant C_n a_1 \frac{\mathbb{E}\left[\left(\sum_{i=1}^n \frac{g_i^2}{a_i^2}\right)^{1/2}\right]}{\mathbb{E}\left[\left(\sum_{i=2}^n \frac{g_i^2}{a_i^2}\right)^{1/2}\right]}.$$

Since $x \mapsto \left(\sum_{i=1}^{n} \frac{x_i^2}{a_i^2}\right)^{1/2}$ is a seminorm, using Hölder and Khintchine's inequality for this seminorm in Gauss space we get

$$\frac{\mathbb{E}\left[\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1/2}\right]}{\mathbb{E}\left[\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1/2}\right]} \ge c \left(\frac{\mathbb{E}\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)}{\mathbb{E}\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)}\right)^{1/2} = c \left(\frac{\sum_{i=1}^{n} \frac{1}{a_{i}^{2}}}{\sum_{i=2}^{n} \frac{1}{a_{i}^{2}}}\right)^{1/2},$$

Since $x \mapsto \left(\sum_{i=1}^{n} \frac{x_i^2}{a_i^2}\right)^{1/2}$ is a seminorm, using Hölder and Khintchine's inequality for this seminorm in Gauss space we get

$$\frac{\mathbb{E}\left[\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1/2}\right]}{\mathbb{E}\left[\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1/2}\right]} \ge c \left(\frac{\mathbb{E}\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)}{\mathbb{E}\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)}\right)^{1/2} = c \left(\frac{\sum_{i=1}^{n} \frac{1}{a_{i}^{2}}}{\sum_{i=2}^{n} \frac{1}{a_{i}^{2}}}\right)^{1/2},$$

and hence

$$\alpha_n \ge c \cdot C_n a_1 \left(\frac{\sum_{i=1}^n \frac{1}{a_i^2}}{\sum_{i=2}^n \frac{1}{a_i^2}} \right)^{1/2} = c \cdot C_n \left(\frac{1 + \sum_{i=2}^n \frac{a_1^2}{a_i^2}}{\sum_{i=2}^n \frac{1}{a_i^2}} \right)^{1/2}$$

Now choose $a_2 = \cdots = a_n = r$ and $a_1 = r^{-(n-1)}$. Then,

$$\left(\frac{1+\sum_{i=2}^{n}\frac{a_{1}^{2}}{a_{i}^{2}}}{\sum_{i=2}^{n}\frac{1}{a_{i}^{2}}}\right)^{1/2} = \left(\frac{1+\frac{n-1}{r^{2n}}}{\frac{n-1}{r^{2}}}\right)^{1/2} = \left(\frac{1}{r^{2n-2}} + \frac{r^{2}}{n-1}\right)^{1/2} \to \infty$$

as $r \to \infty$. So, we arrive at a contradiction, i.e. there can be no upper bound for α_n .

$$S(K) \leqslant c_n |K|^{rac{n-1}{n}}$$

holds true.

$$S(K) \leqslant c_n |K|^{rac{n-1}{n}}$$

holds true. Then we can show that the reverse inequality holds.

$$S(K) \leqslant c_n |K|^{rac{n-1}{n}}$$

holds true. Then we can show that the reverse inequality holds. In GHP it was prove that that for any convex body K in \mathbb{R}^n and any $\xi \in S^{n-1}$ we have

$$\frac{S(P_{\xi^{\perp}}(K))}{|P_{\xi^{\perp}}(K)|} \leqslant \frac{2(n-1)}{n} \frac{S(K)}{|K|},$$

$$S(K) \leqslant c_n |K|^{rac{n-1}{n}}$$

holds true. Then we can show that the reverse inequality holds. In GHP it was prove that that for any convex body K in \mathbb{R}^n and any $\xi \in S^{n-1}$ we have

$$\frac{S(P_{\xi^{\perp}}(K))}{|P_{\xi^{\perp}}(K)|} \leqslant \frac{2(n-1)}{n} \frac{S(K)}{|K|}$$

therefore

$$|\mathcal{K}| \max_{\xi \in S^{n-1}} S(P_{\xi^{\perp}}(\mathcal{K})) \leqslant \frac{2(n-1)}{n} S(\mathcal{K}) \max_{\xi \in S^{n-1}} |P_{\xi^{\perp}}(\mathcal{K})|.$$

$$S(K) \leqslant c_n |K|^{rac{n-1}{n}}$$

holds true. Then we can show that the reverse inequality holds. In GHP it was prove that that for any convex body K in \mathbb{R}^n and any $\xi \in S^{n-1}$ we have

$$\frac{S(P_{\xi^{\perp}}(K))}{|P_{\xi^{\perp}}(K)|} \leqslant \frac{2(n-1)}{n} \frac{S(K)}{|K|}$$

therefore

$$|\mathcal{K}| \max_{\xi \in S^{n-1}} S(P_{\xi^{\perp}}(\mathcal{K})) \leqslant \frac{2(n-1)}{n} S(\mathcal{K}) \max_{\xi \in S^{n-1}} |P_{\xi^{\perp}}(\mathcal{K})|.$$

Since we trivially have

$$|P_{\xi^{\perp}}(K)| = rac{1}{2} \int_{S^{n-1}} |\langle \xi, heta
angle| \, d\sigma_{K}(heta) \leqslant rac{1}{2} S(K),$$

$$S(K) \leqslant c_n |K|^{rac{n-1}{n}}$$

holds true. Then we can show that the reverse inequality holds. In GHP it was prove that that for any convex body K in \mathbb{R}^n and any $\xi \in S^{n-1}$ we have

$$\frac{S(P_{\xi^{\perp}}(K))}{|P_{\xi^{\perp}}(K)|} \leqslant \frac{2(n-1)}{n} \frac{S(K)}{|K|}$$

therefore

$$|\mathcal{K}| \max_{\xi \in S^{n-1}} S(P_{\xi^{\perp}}(\mathcal{K})) \leqslant \frac{2(n-1)}{n} S(\mathcal{K}) \max_{\xi \in S^{n-1}} |P_{\xi^{\perp}}(\mathcal{K})|.$$

Since we trivially have

$$|P_{\xi^{\perp}}(K)| = rac{1}{2} \int_{S^{n-1}} |\langle \xi, heta
angle| \, d\sigma_{K}(heta) \leqslant rac{1}{2} S(K),$$

we see that

$$|\mathcal{K}| \max_{\xi \in S^{n-1}} S(P_{\xi^{\perp}}(\mathcal{K})) \leqslant \frac{n-1}{n} S(\mathcal{K})^2.$$

$$S(K) \leqslant c_n |K|^{rac{n-1}{n}}$$

holds true. Then we can show that the reverse inequality holds. In GHP it was prove that that for any convex body K in \mathbb{R}^n and any $\xi \in S^{n-1}$ we have

$$\frac{S(P_{\xi^{\perp}}(K))}{|P_{\xi^{\perp}}(K)|} \leqslant \frac{2(n-1)}{n} \frac{S(K)}{|K|}$$

therefore

$$|K| \max_{\xi \in S^{n-1}} S(P_{\xi^{\perp}}(K)) \leqslant \frac{2(n-1)}{n} S(K) \max_{\xi \in S^{n-1}} |P_{\xi^{\perp}}(K)|.$$

Since we trivially have

$$|P_{\xi^{\perp}}(K)| = rac{1}{2} \int_{S^{n-1}} |\langle \xi, heta
angle| \, d\sigma_{K}(heta) \leqslant rac{1}{2} S(K),$$

we see that

$$|\mathcal{K}| \max_{\xi \in S^{n-1}} S(P_{\xi^{\perp}}(\mathcal{K})) \leqslant \frac{n-1}{n} S(\mathcal{K})^2.$$

Using the reserve isoperimetric

$$|\mathcal{K}|^{rac{1}{n}} \max_{\xi \in S^{n-1}} \mathcal{S}(\mathcal{K} \cap \xi^{\perp}) \leqslant |\mathcal{K}|^{rac{1}{n}} \max_{\xi \in S^{n-1}} \mathcal{S}(P_{\xi^{\perp}}(\mathcal{K})) \leqslant \mathit{C_n} \, \mathcal{S}(\mathcal{K})$$

for a constant C_n .

S.Brazitikos (Un. of Athens)

If we are not in a classical position then the inequality holds with a parameter.

If we are not in a classical position then the inequality holds with a parameter. One such parameter is

$$t(K) := \left(\frac{|K|}{|r(K)B_2^n|}\right)^{1/n},$$

where r(K) is the inradius.

If we are not in a classical position then the inequality holds with a parameter. One such parameter is

$$t(K) := \left(\frac{|K|}{|r(K)B_2^n|}\right)^{1/n},$$

where r(K) is the inradius.

Theorem

Let K be a convex body with barycenter at the origin in \mathbb{R}^n . Then, for every $1 \leq j \leq n-k-1 \leq n-1$ we have that

$$W_j(K) \leqslant lpha_{n,k,j} L_K^{rac{k(n-k-j)}{n-k}} t(K)^j |K|^{rac{k}{n}} \max_{H \in G_{n,n-k}} W_j(K \cap H),$$

for some constant $\alpha_{n,k,j}$.

$$W_j(K) = V((K, n-j), (B_2^n, j)) \leqslant V\left((K, n-j), \left(\frac{K}{r(K)}, j\right)\right) = \frac{|K|}{r(K)^j}.$$

$$W_j(K) = V((K, n-j), (B_2^n, j)) \leqslant V\left((K, n-j), \left(\frac{K}{r(K)}, j\right)\right) = \frac{|K|}{r(K)^j}.$$

We rewrite this inequality in the form

$$W_{j}(K) \leqslant \omega_{n}^{\underline{i}} t(K)^{j} |K|^{\frac{n-j}{n}} = \omega_{n}^{\underline{i}} t(K)^{j} |K|^{\frac{k}{n}} |K|^{\frac{n-k-j}{n}}.$$
(1)

$$W_j(K) = V((K, n-j), (B_2^n, j)) \leq V\left((K, n-j), \left(\frac{K}{r(K)}, j\right)\right) = \frac{|K|}{r(K)^j}.$$

We rewrite this inequality in the form

$$W_{j}(K) \leqslant \omega_{n}^{\frac{i}{n}} t(K)^{j} |K|^{\frac{n-j}{n}} = \omega_{n}^{\frac{i}{n}} t(K)^{j} |K|^{\frac{k}{n}} |K|^{\frac{n-k-j}{n}}.$$
(1)

Now, we use the estimate (Dafnis-Paouris)

$$\frac{c_0}{L_{\mathcal{K}}} \leq \widetilde{\Phi}_{[k]}(\mathcal{K}) := \frac{1}{|\mathcal{K}|^{\frac{n-k}{nk}}} \left(\int_{\mathcal{G}_{n,n-k}} |\mathcal{K} \cap \mathcal{H}|^n d\nu_{n,n-k} \right)^{\frac{1}{nk}}$$

$$W_j(K) = V((K, n-j), (B_2^n, j)) \leq V\left((K, n-j), \left(\frac{K}{r(K)}, j\right)\right) = \frac{|K|}{r(K)^j}.$$

We rewrite this inequality in the form

$$W_{j}(K) \leqslant \omega_{n}^{\frac{i}{n}} t(K)^{j} |K|^{\frac{n-j}{n}} = \omega_{n}^{\frac{i}{n}} t(K)^{j} |K|^{\frac{k}{n}} |K|^{\frac{n-k-j}{n}}.$$
(1)

Now, we use the estimate (Dafnis-Paouris)

$$\frac{c_0}{L_{\mathcal{K}}} \leq \widetilde{\Phi}_{[k]}(\mathcal{K}) := \frac{1}{|\mathcal{K}|^{\frac{n-k}{nk}}} \left(\int_{G_{n,n-k}} |\mathcal{K} \cap \mathcal{H}|^n d\nu_{n,n-k} \right)^{\frac{1}{nk}}$$

This gives

$$|\mathcal{K}|^{\frac{n-k}{nk}} \leqslant \frac{L_{\mathcal{K}}}{c_0} \left(\int_{G_{n,n-k}} |\mathcal{K} \cap \mathcal{H}|^n d\nu_{n,n-k} \right)^{\frac{1}{nk}} \leqslant c_1 L_{\mathcal{K}} \max_{\mathcal{H} \in G_{n,n-k}} |\mathcal{K} \cap \mathcal{H}|^{\frac{1}{k}},$$

$$W_j(K) = V((K, n-j), (B_2^n, j)) \leqslant V\left((K, n-j), \left(\frac{K}{r(K)}, j\right)\right) = \frac{|K|}{r(K)^j}.$$

We rewrite this inequality in the form

$$W_{j}(K) \leqslant \omega_{n}^{\frac{i}{n}} t(K)^{j} |K|^{\frac{n-j}{n}} = \omega_{n}^{\frac{i}{n}} t(K)^{j} |K|^{\frac{k}{n}} |K|^{\frac{n-k-j}{n}}.$$
(1)

Now, we use the estimate (Dafnis-Paouris)

$$\frac{c_0}{L_{\mathcal{K}}} \leq \widetilde{\Phi}_{[k]}(\mathcal{K}) := \frac{1}{|\mathcal{K}|^{\frac{n-k}{nk}}} \left(\int_{\mathcal{G}_{n,n-k}} |\mathcal{K} \cap \mathcal{H}|^n d\nu_{n,n-k} \right)^{\frac{1}{nk}}.$$

This gives

$$|\mathcal{K}|^{\frac{n-k}{nk}} \leqslant \frac{L_{\mathcal{K}}}{c_0} \left(\int_{\mathcal{G}_{n,n-k}} |\mathcal{K} \cap \mathcal{H}|^n d\nu_{n,n-k} \right)^{\frac{1}{nk}} \leqslant c_1 L_{\mathcal{K}} \max_{\mathcal{H} \in \mathcal{G}_{n,n-k}} |\mathcal{K} \cap \mathcal{H}|^{\frac{1}{k}},$$

and hence,

$$|\mathcal{K}|^{\frac{n-k-j}{n}} \leqslant (c_1 L_{\mathcal{K}})^{\frac{k(n-k-j)}{n-k}} \max_{H \in G_{n,n-k}} |\mathcal{K} \cap H|^{\frac{n-k-j}{n-k}}.$$

$$W_j(K) = V((K, n-j), (B_2^n, j)) \leq V\left((K, n-j), \left(\frac{K}{r(K)}, j\right)\right) = \frac{|K|}{r(K)^j}.$$

We rewrite this inequality in the form

$$W_{j}(K) \leqslant \omega_{n}^{\frac{i}{n}} t(K)^{j} |K|^{\frac{n-j}{n}} = \omega_{n}^{\frac{i}{n}} t(K)^{j} |K|^{\frac{k}{n}} |K|^{\frac{n-k-j}{n}}.$$
(1)

Now, we use the estimate (Dafnis-Paouris)

$$\frac{c_0}{L_{\mathcal{K}}} \leq \widetilde{\Phi}_{[k]}(\mathcal{K}) := \frac{1}{|\mathcal{K}|^{\frac{n-k}{nk}}} \left(\int_{\mathcal{G}_{n,n-k}} |\mathcal{K} \cap \mathcal{H}|^n d\nu_{n,n-k} \right)^{\frac{1}{nk}}.$$

This gives

$$|\mathcal{K}|^{\frac{n-k}{nk}} \leqslant \frac{L_{\mathcal{K}}}{c_0} \left(\int_{G_{n,n-k}} |\mathcal{K} \cap \mathcal{H}|^n d\nu_{n,n-k} \right)^{\frac{1}{nk}} \leqslant c_1 L_{\mathcal{K}} \max_{\mathcal{H} \in G_{n,n-k}} |\mathcal{K} \cap \mathcal{H}|^{\frac{1}{k}},$$

and hence,

$$|K|^{\frac{n-k-j}{n}} \leqslant (c_1 L_K)^{\frac{k(n-k-j)}{n-k}} \max_{H \in G_{n,n-k}} |K \cap H|^{\frac{n-k-j}{n-k}}.$$

On the other hand, applying Aleksandrov's inequalities for $K \cap H$ we get

$$|K \cap H|^{\frac{n-k-j}{n-k}} \leq \omega_{n-k}^{-\frac{j}{n-k}} W_j(K \cap H)$$

for every $H \in G_{n,n-k}$.

Combining the above we see that

$$|K|^{\frac{n-k-j}{n}} \leq \frac{1}{\omega_{n-k}^{\frac{j}{n-k}}} (c_1 L_K)^{\frac{k(n-k-j)}{n-k}} \max_{H \in G_{n,n-k}} W_j(K \cap H),$$

and then (1) takes the form

$$W_j(K) \leqslant (\omega_n^{rac{j}{n}}/\omega_{n-k}^{rac{j}{n-k}})(c_1L_K)^{rac{k(n-k-j)}{n-k}}t(K)^j|K|^{rac{k}{n}}\max_{H\in G_{n,n-k}}W_j(K\cap H).$$

Setting $\alpha_{n,k,j} = (\omega_n^{\frac{j}{n}} / \omega_{n-k}^{\frac{j}{n-k}})c_1^{\frac{k(n-k-j)}{n-k}}$ we conclude the proof.

If K and D are two convex bodies in \mathbb{R}^n such that $S(K \cap \xi^{\perp}) \leq S(D \cap \xi^{\perp})$ for all $\xi \in S^{n-1}$ does it then follow that $S(K) \leq S(D)$?

If K and D are two convex bodies in \mathbb{R}^n such that $S(K \cap \xi^{\perp}) \leq S(D \cap \xi^{\perp})$ for all $\xi \in S^{n-1}$ does it then follow that $S(K) \leq S(D)$?

Answering a question of Pełczynski, they prove that the central (n-1)-dimensional section of the cube $B_{\infty}^n = [-1,1]^n$ that has maximal surface area is the one that corresponds to the unit vector $\xi_0 = \frac{1}{\sqrt{2}}(1,1,0,\ldots,0)$ (exactly as in the case of volume) i.e.

$$\max_{\xi\in S^{n-1}}S(B^n_\infty\cap\xi^\perp)=S(B^n_\infty\cap\xi^\perp_0)=2((n-2)\sqrt{2}+1).$$

If K and D are two convex bodies in \mathbb{R}^n such that $S(K \cap \xi^{\perp}) \leq S(D \cap \xi^{\perp})$ for all $\xi \in S^{n-1}$ does it then follow that $S(K) \leq S(D)$?

Answering a question of Pełczynski, they prove that the central (n-1)-dimensional section of the cube $B_{\infty}^n = [-1, 1]^n$ that has maximal surface area is the one that corresponds to the unit vector $\xi_0 = \frac{1}{\sqrt{2}}(1, 1, 0, \dots, 0)$ (exactly as in the case of volume) i.e.

$$\max_{\xi\in S^{n-1}}S(B_\infty^n\cap\xi^\perp)=S(B_\infty^n\cap\xi_0^\perp)=2((n-2)\sqrt{2}+1).$$

Comparing with a ball of suitable radius one gets that the answer to the Busemann-Petty problem for surface area is negative in dimensions $n \ge 14$.

If K and D are two convex bodies in \mathbb{R}^n such that $S(K \cap \xi^{\perp}) \leq S(D \cap \xi^{\perp})$ for all $\xi \in S^{n-1}$ does it then follow that $S(K) \leq S(D)$?

Answering a question of Pełczynski, they prove that the central (n-1)-dimensional section of the cube $B_{\infty}^n = [-1, 1]^n$ that has maximal surface area is the one that corresponds to the unit vector $\xi_0 = \frac{1}{\sqrt{2}}(1, 1, 0, \dots, 0)$ (exactly as in the case of volume) i.e.

$$\max_{\xi\in S^{n-1}}S(B_\infty^n\cap\xi^\perp)=S(B_\infty^n\cap\xi_0^\perp)=2((n-2)\sqrt{2}+1).$$

Comparing with a ball of suitable radius one gets that the answer to the Busemann-Petty problem for surface area is negative in dimensions $n \ge 14$.

Isomorphic version

Is there a constant β_n such that if K and D are two convex bodies in \mathbb{R}^n with $S(K \cap \xi^{\perp}) \leq S(D \cap \xi^{\perp})$ for all $\xi \in S^{n-1}$ then $S(K) \leq \beta_n S(D)$?

$$S(K \cap \xi^{\perp}) \leqslant S(D \cap \xi^{\perp}),$$

for all $\xi \in S^{n-1}$, then $S(K) \leq \beta_n S(D)$.

$$S(K \cap \xi^{\perp}) \leqslant S(D \cap \xi^{\perp}),$$

for all $\xi \in S^{n-1}$, then $S(K) \leq \beta_n S(D)$.

Now, let K be a convex body in \mathbb{R}^n and choose $\xi_0 \in S^{n-1}$ such that

$$S(K \cap \xi_0^{\perp}) = \max_{\xi \in S^{n-1}} S(K \cap \xi^{\perp})$$

$$S(K \cap \xi^{\perp}) \leqslant S(D \cap \xi^{\perp}),$$

for all $\xi \in S^{n-1}$, then $S(K) \leq \beta_n S(D)$.

Now, let K be a convex body in \mathbb{R}^n and choose $\xi_0 \in S^{n-1}$ such that

$$S(K \cap \xi_0^{\perp}) = \max_{\xi \in S^{n-1}} S(K \cap \xi^{\perp})$$

and r>0 such that $r^{n-2}S(B_2^{n-1})=S(rB_2^{n-1})=S(K\cap\xi_0^{\perp}).$

$$S(K \cap \xi^{\perp}) \leqslant S(D \cap \xi^{\perp}),$$

for all $\xi \in S^{n-1}$, then $S(K) \leq \beta_n S(D)$. Now, let K be a convex body in \mathbb{R}^n and choose $\xi_0 \in S^{n-1}$ such that

$$S(K \cap \xi_0^\perp) = \max_{\xi \in S^{n-1}} S(K \cap \xi^\perp)$$

and r > 0 such that $r^{n-2}S(B_2^{n-1}) = S(rB_2^{n-1}) = S(K \cap \xi_0^{\perp})$. Then, $S(K \cap \xi^{\perp}) \leqslant S(rB_2^n \cap \xi^{\perp}),$

for all $\xi \in S^{n-1}$.

$$S(K \cap \xi^{\perp}) \leqslant S(D \cap \xi^{\perp}),$$

for all $\xi \in S^{n-1}$, then $S(K) \leq \beta_n S(D)$. Now, let K be a convex body in \mathbb{R}^n and choose $\xi_0 \in S^{n-1}$ such that

$$S(K \cap \xi_0^\perp) = \max_{\xi \in S^{n-1}} S(K \cap \xi^\perp)$$

and r > 0 such that $r^{n-2}S(B_2^{n-1}) = S(rB_2^{n-1}) = S(K \cap \xi_0^{\perp})$. Then, $S(K \cap \xi^{\perp}) \leqslant S(rB_2^n \cap \xi^{\perp}),$

for all $\xi \in S^{n-1}$. Therefore,

$$S(K)^{\frac{n-2}{n-1}} \leqslant \beta_n^{\frac{n-2}{n-1}} S(rB_2^n)^{\frac{n-2}{n-1}} = \beta_n^{\frac{n-2}{n-1}} \frac{S(B_2^n)^{\frac{n-2}{n-1}}}{S(B_2^{n-1})} \max_{\xi \in S^{n-1}} S(K \cap \xi^{\perp}).$$

$$S(K \cap \xi^{\perp}) \leqslant S(D \cap \xi^{\perp}),$$

for all $\xi \in S^{n-1}$, then $S(K) \leq \beta_n S(D)$. Now, let K be a convex body in \mathbb{R}^n and choose $\xi_0 \in S^{n-1}$ such that

$$S(K \cap \xi_0^\perp) = \max_{\xi \in S^{n-1}} S(K \cap \xi^\perp)$$

and r > 0 such that $r^{n-2}S(B_2^{n-1}) = S(rB_2^{n-1}) = S(K \cap \xi_0^{\perp})$. Then, $S(K \cap \xi^{\perp}) \leqslant S(rB_2^n \cap \xi^{\perp}),$

for all $\xi \in S^{n-1}$. Therefore,

$$S({\cal K})^{rac{n-2}{n-1}}\leqslant eta_n^{rac{n-2}{n-1}}S(rB_2^n)^{rac{n-2}{n-1}}=eta_n^{rac{n-2}{n-1}}rac{S(B_2^n)^{rac{n-2}{n-1}}}{S(B_2^{n-1})}\max_{\xi\in S^{n-1}}S({\cal K}\cap \xi^\perp).$$

This implies that there is some constant c(n) such that

$$S(K) \leq c(n)S(K)^{\frac{1}{n-1}} \max_{\xi \in S^{n-1}} S(K \cap \xi^{\perp}).$$

The validity of the above is a new question.

We start with an estimate for ellipsoids.

Proposition

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^n . Then,

$$\frac{S(\mathcal{E})}{\max_{\substack{\ell \in S^{n-1}}} S(\mathcal{E} \cap \xi^{\perp})} \leq D_n r(\mathcal{E})^{-\frac{1}{n-1}}$$

where $D_n > 0$ is bounded by an absolute constant.

We start with an estimate for ellipsoids.

Proposition

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^n . Then,

$$\frac{S(\mathcal{E})}{\max_{\xi\in S^{n-1}}S(\mathcal{E}\cap\xi^{\perp})}\leqslant D_nr(\mathcal{E})^{-\frac{1}{n-1}}$$

where $D_n > 0$ is bounded by an absolute constant.

We may assume that $|\mathcal{E}| = 1$. Let $a_1 \leq \cdots \leq a_n$ be the lengths of its principal semi-axes of \mathcal{E} in the directions of e_1, \ldots, e_n . We have seen that

$$\frac{S(\mathcal{E})}{\max_{\xi\in S^{n-1}}S(\mathcal{E}\cap\xi^{\perp})} = C_n a_1 \frac{\mathbb{E}\left[\left(\sum_{i=1}^n \frac{g_i^2}{a_i^2}\right)^{1/2}\right]}{\mathbb{E}\left[\left(\sum_{i=2}^n \frac{g_i^2}{a_i^2}\right)^{1/2}\right]},$$

where C_n is bounded by an absolute constant.

Since

$$\frac{\mathbb{E}\left[\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1/2}\right]}{\mathbb{E}\left[\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)^{1/2}\right]} \leqslant c \left(\frac{\mathbb{E}\left(\sum_{i=1}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)}{\mathbb{E}\left(\sum_{i=2}^{n} \frac{g_{i}^{2}}{a_{i}^{2}}\right)}\right)^{1/2} = c \left(\frac{\sum_{i=1}^{n} \frac{1}{a_{i}^{2}}}{\sum_{i=2}^{n} \frac{1}{a_{i}^{2}}}\right)^{1/2},$$

S.Brazitikos (Un. of Athens)

we have that

$$\frac{S(\mathcal{E})}{\max_{\xi \in S^{n-1}} S(\mathcal{E} \cap \xi^{\perp})} \leqslant C_n a_1 \left(\frac{\sum_{i=1}^n \frac{1}{a_i^2}}{\sum_{i=2}^n \frac{1}{a_i^2}} \right)^{1/2} = C_n \left(1 + \frac{1}{\sum_{i=2}^n \frac{a_i^2}{a_i^2}} \right)^{1/2}.$$

we have that

$$\frac{\mathcal{S}(\mathcal{E})}{\max_{\xi\in S^{n-1}}\mathcal{S}(\mathcal{E}\cap\xi^{\perp})}\leqslant \mathcal{C}_n\mathsf{a}_1\left(\frac{\sum_{i=1}^n\frac{1}{a_i^2}}{\sum_{i=2}^n\frac{1}{a_i^2}}\right)^{1/2}=\mathcal{C}_n\left(1+\frac{1}{\sum_{i=2}^n\frac{a_1^2}{a_i^2}}\right)^{1/2}.$$

Using the arithmetic-geometric mean inequality we get

$$\sum_{i=2}^{n} \frac{a_{1}^{2}}{a_{i}^{2}} \ge (n-1)a_{1}^{2} \left(\frac{1}{a_{2}^{2} \dots a_{n}^{2}}\right)^{\frac{1}{n-1}} = (n-1)a_{1}^{2}a_{1}^{\frac{2}{n-1}} = (n-1)a_{1}^{\frac{2n}{n-1}}.$$

we have that

$$\frac{\mathcal{S}(\mathcal{E})}{\max\limits_{\xi\in S^{n-1}}\mathcal{S}(\mathcal{E}\cap\xi^{\perp})}\leqslant \mathcal{C}_n\mathsf{a}_1\left(\frac{\sum_{i=1}^n\frac{1}{a_i^2}}{\sum_{i=2}^n\frac{1}{a_i^2}}\right)^{1/2}=\mathcal{C}_n\left(1+\frac{1}{\sum_{i=2}^n\frac{a_i^2}{a_i^2}}\right)^{1/2}.$$

Using the arithmetic-geometric mean inequality we get

$$\sum_{i=2}^{n} \frac{a_{1}^{2}}{a_{i}^{2}} \ge (n-1)a_{1}^{2}\left(\frac{1}{a_{2}^{2}\dots a_{n}^{2}}\right)^{\frac{1}{n-1}} = (n-1)a_{1}^{2}a_{1}^{\frac{2}{n-1}} = (n-1)a_{1}^{\frac{2n}{n-1}}.$$

Moreover, $1\leqslant \frac{1}{a_1^{\frac{2n}{n-1}}}$ and adding these two inequalities we get

$$\left(1+\frac{1}{\sum_{i=2}^{n}\frac{a_{i}^{2}}{a_{i}^{2}}}\right)^{1/2}\leqslant\left(\frac{1}{a_{1}^{\frac{2n}{n-1}}}+\frac{1}{(n-1)a_{1}^{\frac{2n}{n-1}}}\right)^{\frac{1}{2}},$$

therefore

$$\frac{\mathcal{S}(\mathcal{E})}{\max\limits_{\xi\in S^{n-1}}\mathcal{S}(\mathcal{E}\cap\xi^{\perp})}\leqslant D_n\frac{1}{a_1^{\frac{1}{n-1}}}=D_n\frac{1}{r(\mathcal{E})^{\frac{1}{n-1}}},$$

where D_n is bounded by an absolute constant.

S.Brazitikos (Un. of Athens)

$$\frac{S(\mathcal{F})}{\max_{\xi\in S^{n-1}}S(\mathcal{F}\cap\xi^{\perp})} \geqslant E_n\frac{1}{r(\mathcal{F})^{\frac{1}{n-1}}},$$

therefore the inequality is sharp.

$$\frac{S(\mathcal{F})}{\max_{\xi\in S^{n-1}}S(\mathcal{F}\cap\xi^{\perp})} \geqslant E_n\frac{1}{r(\mathcal{F})^{\frac{1}{n-1}}},$$

therefore the inequality is sharp.

Using the inequality that $\frac{1}{r(K)} \leqslant S(K)$ for every convex body K of volume 1 in \mathbb{R}^n we get

$$\frac{S(\mathcal{F})}{\max_{\xi\in S^{n-1}}S(\mathcal{F}\cap\xi^{\perp})} \geqslant E_n\frac{1}{r(\mathcal{F})^{\frac{1}{n-1}}},$$

therefore the inequality is sharp.

Using the inequality that $\frac{1}{r(K)} \leqslant S(K)$ for every convex body K of volume 1 in \mathbb{R}^n we get

Theorem

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^n . Then,

$$S(\mathcal{E}) \leqslant A_n S(\mathcal{E})^{rac{1}{n-1}} \max_{\xi \in S^{n-1}} S(\mathcal{E} \cap \xi^{\perp})$$

where $A_n > 0$ is bounded by an absolute constant.

$$\frac{S(\mathcal{F})}{\max_{\xi\in S^{n-1}}S(\mathcal{F}\cap\xi^{\perp})} \geqslant E_n\frac{1}{r(\mathcal{F})^{\frac{1}{n-1}}},$$

therefore the inequality is sharp.

Using the inequality that $\frac{1}{r(K)} \leqslant S(K)$ for every convex body K of volume 1 in \mathbb{R}^n we get

Theorem

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^n . Then,

$$S(\mathcal{E}) \leqslant A_n S(\mathcal{E})^{\frac{1}{n-1}} \max_{\xi \in S^{n-1}} S(\mathcal{E} \cap \xi^{\perp})$$

where $A_n > 0$ is bounded by an absolute constant.

Using John's theorem and the monotonicity of surface area one can easily deduce that a similar estimate holds true in full generality:

$$\frac{S(\mathcal{F})}{\max_{\xi\in S^{n-1}}S(\mathcal{F}\cap\xi^{\perp})} \geqslant E_n\frac{1}{r(\mathcal{F})^{\frac{1}{n-1}}},$$

therefore the inequality is sharp.

Using the inequality that $rac{1}{r(K)}\leqslant S(K)$ for every convex body K of volume 1 in \mathbb{R}^n we get

Theorem

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^n . Then,

$$S(\mathcal{E}) \leqslant A_n S(\mathcal{E})^{\frac{1}{n-1}} \max_{\xi \in S^{n-1}} S(\mathcal{E} \cap \xi^{\perp})$$

where $A_n > 0$ is bounded by an absolute constant.

Using John's theorem and the monotonicity of surface area one can easily deduce that a similar estimate holds true in full generality: For any convex body K in \mathbb{R}^n one has

$$S(K) \leqslant A'_n S(K)^{rac{1}{n-1}} \max_{\xi \in S^{n-1}} S(K \cap \xi^{\perp})$$

where $A'_n > 0$ is a constant depending only on n.

$$\frac{S(\mathcal{F})}{\max_{\xi\in S^{n-1}}S(\mathcal{F}\cap\xi^{\perp})} \geqslant E_n\frac{1}{r(\mathcal{F})^{\frac{1}{n-1}}},$$

therefore the inequality is sharp.

Using the inequality that $rac{1}{r(K)}\leqslant S(K)$ for every convex body K of volume 1 in \mathbb{R}^n we get

Theorem

Let \mathcal{E} be an origin symmetric ellipsoid in \mathbb{R}^n . Then,

$$S(\mathcal{E}) \leqslant A_n S(\mathcal{E})^{\frac{1}{n-1}} \max_{\xi \in S^{n-1}} S(\mathcal{E} \cap \xi^{\perp})$$

where $A_n > 0$ is bounded by an absolute constant.

Using John's theorem and the monotonicity of surface area one can easily deduce that a similar estimate holds true in full generality: For any convex body K in \mathbb{R}^n one has

$$S(K) \leqslant A'_n S(K)^{rac{1}{n-1}} \max_{\xi \in S^{n-1}} S(K \cap \xi^{\perp})$$

where $A'_n > 0$ is a constant depending only on *n*. It is an interesting question to determine the best possible behavior of the constant A'_n with respect to the dimension *n*.

Recall Rivin's formula.

Recall Rivin's formula. If \mathcal{E} is an ellipsoid in \mathbb{R}^n with semi-axes $a_1 \leq \cdots \leq a_n$ in the directions of e_1, \ldots, e_n then

$$S(\mathcal{E}) = n |\mathcal{E}| \int_{S^{n-1}} \left(\sum_{i=1}^n \frac{\xi_i^2}{a_i^2} \right)^{1/2} d\sigma(\xi).$$

Recall Rivin's formula. If \mathcal{E} is an ellipsoid in \mathbb{R}^n with semi-axes $a_1 \leq \cdots \leq a_n$ in the directions of e_1, \ldots, e_n then

$$S(\mathcal{E}) = n |\mathcal{E}| \int_{S^{n-1}} \left(\sum_{i=1}^n \frac{\xi_i^2}{a_i^2} \right)^{1/2} d\sigma(\xi).$$

This can be rewritten as

$$S(\mathcal{E}) \approx n |\mathcal{E}| M(\mathcal{E})$$

where $M(\mathcal{E}) = \int_{S^{n-1}} \|\xi\|_{\mathcal{E}} d\sigma(\xi)$.

Recall Rivin's formula. If \mathcal{E} is an ellipsoid in \mathbb{R}^n with semi-axes $a_1 \leqslant \cdots \leqslant a_n$ in the directions of e_1, \ldots, e_n then

$$S(\mathcal{E}) = n |\mathcal{E}| \int_{S^{n-1}} \left(\sum_{i=1}^n \frac{\xi_i^2}{a_i^2} \right)^{1/2} d\sigma(\xi).$$

This can be rewritten as

$$S(\mathcal{E}) \approx n |\mathcal{E}| M(\mathcal{E})$$

where $M(\mathcal{E}) = \int_{S^{n-1}} \|\xi\|_{\mathcal{E}} d\sigma(\xi)$. It is natural to introduce the parameter

$$p(K) = \frac{S(K)}{|K|M(K)|}$$

Recall Rivin's formula. If \mathcal{E} is an ellipsoid in \mathbb{R}^n with semi-axes $a_1 \leq \cdots \leq a_n$ in the directions of e_1, \ldots, e_n then

$$S(\mathcal{E}) = n |\mathcal{E}| \int_{S^{n-1}} \left(\sum_{i=1}^n \frac{\xi_i^2}{a_i^2} \right)^{1/2} d\sigma(\xi).$$

This can be rewritten as

$$S(\mathcal{E}) \approx n |\mathcal{E}| M(\mathcal{E})$$

where $M(\mathcal{E}) = \int_{S^{n-1}} \|\xi\|_{\mathcal{E}} d\sigma(\xi)$. It is natural to introduce the parameter

$$p(K) = \frac{S(K)}{|K|M(K)}.$$

Our aim is to provide optimal upper and lower bounds for p(K) both in general and in the case where K is in some of the classical positions. We show the following:

Recall Rivin's formula. If \mathcal{E} is an ellipsoid in \mathbb{R}^n with semi-axes $a_1 \leq \cdots \leq a_n$ in the directions of e_1, \ldots, e_n then

$$S(\mathcal{E}) = n |\mathcal{E}| \int_{S^{n-1}} \left(\sum_{i=1}^n \frac{\xi_i^2}{a_i^2}\right)^{1/2} d\sigma(\xi).$$

This can be rewritten as

$$S(\mathcal{E}) \approx n |\mathcal{E}| M(\mathcal{E})$$

where $M(\mathcal{E}) = \int_{S^{n-1}} \|\xi\|_{\mathcal{E}} d\sigma(\xi)$. It is natural to introduce the parameter

$$p(K) = \frac{S(K)}{|K|M(K)}.$$

Our aim is to provide optimal upper and lower bounds for p(K) both in general and in the case where K is in some of the classical positions.

We show the following:

Theorem

There exist absolute constants $c_1, c_2 > 0$ such that for every convex body $K \in \mathbb{R}^n$ we have

$$c_1\sqrt{n}\leqslant p(K)\leqslant c_2n^{3/2}.$$

Moreover, both estimates give the optimal dependence on the dimension.

S.Brazitikos (Un. of Athens)

Proof in the centrally symmetric case.

Proof in the centrally symmetric case. By the simple case k = 1 of the Rogers-Shephard inequality we have that

$$\frac{n}{2}\|u\|_{\kappa}|K| \ge |P_{u^{\perp}}K| \ge \frac{\|u\|_{\kappa}}{2}|K|.$$

Proof in the centrally symmetric case. By the simple case k = 1 of the Rogers-Shephard inequality we have that

$$\frac{n}{2}\|u\|_{\kappa}|K| \ge |P_{u^{\perp}}K| \ge \frac{\|u\|_{\kappa}}{2}|K|.$$

Integrating over the sphere we get

$$rac{1}{2}M({\mathcal K})|{\mathcal K}|\leqslant rac{\omega_{n-1}}{n\omega_n}S({\mathcal K})pprox rac{1}{\sqrt{n}}S({\mathcal K})\leqslant rac{n}{2}M({\mathcal K})|{\mathcal K}|.$$

Proof in the centrally symmetric case.By the simple case k = 1 of the Rogers-Shephard inequality we have that

$$\frac{n}{2}\|u\|_{\kappa}|K| \ge |P_{u^{\perp}}K| \ge \frac{\|u\|_{\kappa}}{2}|K|.$$

Integrating over the sphere we get

$$\frac{1}{2}M(\mathcal{K})|\mathcal{K}| \leqslant \frac{\omega_{n-1}}{n\omega_n}S(\mathcal{K}) \approx \frac{1}{\sqrt{n}}S(\mathcal{K}) \leqslant \frac{n}{2}M(\mathcal{K})|\mathcal{K}|$$

The order of the bounds is sharp since they are achieved by

$${\mathcal{P}}_s = \left\{ x \in {\mathbb{R}}^n \colon \ |x_1| + rac{1}{s} \sum_{i=2}^n |x_i| \leqslant 1
ight\}$$

and

$$P_{a,s} = \{x : |x_1| \leqslant s, |x_i| \leqslant a \text{ for } i \geqslant 2\}$$

where 0 < s < a.

Thank you for your attention!!!