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Classical Slicing Problem

The classical slicing problem asks if there exists an absolute constant C2 > 0 such that
for every n ⩾ 2 and every centered convex body K in Rn one has

|K |
n−1
n ⩽ C2 max

ξ∈Sn−1
|K ∩ ξ⊥|.

It is well-known that this problem is equivalent to the question if there exists an absolute
constant C3 > 0 such that

Ln := max{LK : K is isotropic in Rn} ⩽ C3,

for all n ⩾ 1, where LK is the isotropic constant of K .
Koldobsky proved the following variants for the surface area. If K is an intersection body
in Rn, then

as(K) ≤ cn max
ξ∈Sn−1

as(K ∩ ξ⊥)|K |1/n,

and
S(K) ≥ cn min

ξ∈Sn−1
S(Pξ⊥K)|K |1/n,

where as(K) =
∫
Sn−1 |K ∩ ξ⊥| dσ(ξ).
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Koldobsky asked if this is true if we replace projections with sections.

Question

Is it true that there exists a constant αn depending (or not) on the dimension n so that

S(K) ⩽ αn|K |
1
n max

ξ∈Sn−1
S(K ∩ ξ⊥)

for every centrally symmetric convex body K in Rn?

In general, for any 2 ⩽ k ⩽ n − 1, one may ask for a constant αn,k such that

S(K) ⩽ αk
n,k |K |

k
n max

H∈Gn,n−k

S(K ∩ H).

Theorem. B.-Liakopoulos

The answer to both questions is negative.
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Our examples will be given by ellipsoids. They will based on

Theorem

Let E be an origin symmetric ellipsoid in Rn and write a1 ⩽ a2 ⩽ · · · ⩽ an for the lengths
and e1, e2, . . . , en for the corresponding directions of its semi-axes. If 1 ⩽ k ⩽ n − 1 then
for any H ∈ Gn,k and any 0 ⩽ j < k we have that

Wj(E ∩ Fk) ⩽ Wj(E ∩ H) ⩽ Wj(PH(E)) ⩽ Wj(E ∩ Ek),

where Fk = span{e1, . . . , ek} and Ek = span{en−k+1, . . . , en}. In particular, for every
ξ ∈ Sn−1,

S(E ∩ ξ⊥) ⩽ S(Pξ⊥(E)) ⩽ S(E ∩ e⊥1 ).

The proof relies on Cauchy interlacing Theorem and comparison with a spheroid.
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We shall use the next formula of Rivin:

If E is an ellipsoid in Rn with semi-axes a1 ⩽ · · · ⩽ an in the directions of e1, . . . , en then

S(E) = n |E|
∫
Sn−1

( n∑
i=1

ξ2i
a2i

)1/2
dσ(ξ).

Now assume that there exists a constant αn > 0 such that we have the following
inequality for ellipsoids:

S(E) ⩽ αn|E|1/n max
ξ∈Sn−1

S(E ∩ ξ⊥).

We know that the maximum is attained for the section E ∩ e⊥1 . Then we have

max
ξ∈Sn−1

S(E ∩ ξ⊥) = S(E ∩ e⊥1 ) = (n − 1) |E ∩ e⊥1 |
∫
Sn−2

( n∑
i=2

ξ2i
a2i

)1/2
dσ(ξ).
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We may assume that
∏n

i=1 ai = 1. Then, we can rewrite

S(E) ⩽ αn|E|1/n max
ξ∈Sn−1

S(E ∩ ξ⊥)

as

nωn ·
1

dn
E
[( n∑

i=1

g 2
i

a2i

)1/2]
⩽ αnω

1/n
n · (n − 1)ωn−1

1

a1
· 1

dn−1
E
[( n∑

i=2

g 2
i

a2i

)1/2]
.

Then,

αn ⩾ Cna1

E
[(∑n

i=1

g2i
a2i

)1/2]
E
[(∑n

i=2

g2i
a2i

)1/2] .
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Since x 7→
(∑n

i=1

x2i
a2i

)1/2
is a seminorm, using Hölder and Khintchine’s inequality for this

seminorm in Gauss space we get

E
[(∑n

i=1

g2i
a2i

)1/2]
E
[(∑n

i=2

g2i
a2i

)1/2] ⩾ c

E
(∑n

i=1

g2i
a2i

)
E
(∑n

i=2

g2i
a2i

)


1/2

= c

∑n
i=1

1
a2i∑n

i=2
1
a2i

1/2

,

and hence

αn ⩾ c · Cna1

∑n
i=1

1
a2i∑n

i=2
1
a2i

1/2

= c · Cn

1 +
∑n

i=2
a21
a2i∑n

i=2
1
a2i


1/2

.

Now choose a2 = · · · = an = r and a1 = r−(n−1). Then,1 +
∑n

i=2
a21
a2i∑n

i=2
1
a2i


1/2

=

(
1 + n−1

r2n

n−1
r2

)1/2

=

(
1

r 2n−2
+

r 2

n − 1

)1/2

→ ∞

as r → ∞. So, we arrive at a contradiction, i.e. there can be no upper bound for αn.
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On the other hand, if K is in some classical position (e.g. isotropic or John’s position or
minimal surface area or minimal mean width position) then we know that a reverse
isoperimetric inequality of the form

S(K) ⩽ cn|K |
n−1
n

holds true.

Then we can show that the reverse inequality holds.In GHP it was prove that
that for any convex body K in Rn and any ξ ∈ Sn−1 we have

S(Pξ⊥(K))

|Pξ⊥(K)| ⩽
2(n − 1)

n

S(K)

|K | ,

therefore

|K | max
ξ∈Sn−1

S(Pξ⊥(K)) ⩽
2(n − 1)

n
S(K) max

ξ∈Sn−1
|Pξ⊥(K)|.

Since we trivially have

|Pξ⊥(K)| =
1

2

∫
Sn−1

|⟨ξ, θ⟩| dσK (θ) ⩽
1

2
S(K),

we see that

|K | max
ξ∈Sn−1

S(Pξ⊥(K)) ⩽
n − 1

n
S(K)2.

Using the reserve isoperimetric

|K |
1
n max

ξ∈Sn−1
S(K ∩ ξ⊥) ⩽ |K |

1
n max

ξ∈Sn−1
S(Pξ⊥(K)) ⩽ Cn S(K)

for a constant Cn.
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Sn−1
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If we are not in a classical position then the inequality holds with a parameter.

One such
parameter is

t(K) :=

(
|K |

|r(K)Bn
2 |

)1/n

,

where r(K) is the inradius.

Theorem

Let K be a convex body with barycenter at the origin in Rn. Then, for every
1 ⩽ j ⩽ n − k − 1 ⩽ n − 1 we have that

Wj(K) ⩽ αn,k,jL
k(n−k−j)

n−k

K t(K)j |K |
k
n max

H∈Gn,n−k

Wj(K ∩ H),

for some constant αn,k,j .
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Using the monotonicity of mixed volumes we may write

Wj(K) = V ((K , n − j), (Bn
2 , j)) ⩽ V

(
(K , n − j),

(
K

r(K)
, j

))
=

|K |
r(K)j

.

We rewrite this inequality in the form

Wj(K) ⩽ ω
j
n
n t(K)j |K |

n−j
n = ω

j
n
n t(K)j |K |

k
n |K |

n−k−j
n . (1)

Now, we use the estimate (Dafnis-Paouris)

c0
LK

≤ Φ̃[k](K) :=
1

|K |
n−k
nk

(∫
Gn,n−k

|K ∩ H|ndνn,n−k

) 1
nk

.

This gives

|K |
n−k
nk ⩽

LK

c0

(∫
Gn,n−k

|K ∩ H|ndνn,n−k

) 1
nk

⩽ c1LK max
H∈Gn,n−k

|K ∩ H|
1
k ,

and hence,

|K |
n−k−j

n ⩽ (c1LK )
k(n−k−j)

n−k max
H∈Gn,n−k

|K ∩ H|
n−k−j
n−k .

On the other hand, applying Aleksandrov’s inequalities for K ∩ H we get

|K ∩ H|
n−k−j
n−k ⩽ ω

− j
n−k

n−k Wj(K ∩ H)

for every H ∈ Gn,n−k .
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Combining the above we see that

|K |
n−k−j

n ⩽
1

ω
j

n−k

n−k

(c1LK )
k(n−k−j)

n−k max
H∈Gn,n−k

Wj(K ∩ H),

and then (1) takes the form

Wj(K) ⩽ (ω
j
n
n /ω

j
n−k

n−k )(c1LK )
k(n−k−j)

n−k t(K)j |K |
k
n max

H∈Gn,n−k

Wj(K ∩ H).

Setting αn,k,j = (ω
j
n
n /ω

j
n−k

n−k )c
k(n−k−j)

n−k
1 we conclude the proof.
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Connection with Busemann-Petty

Question-Koldobsky and König

If K and D are two convex bodies in Rn such that S(K ∩ ξ⊥) ⩽ S(D ∩ ξ⊥) for all
ξ ∈ Sn−1 does it then follow that S(K) ⩽ S(D)?

Answering a question of Pe lczynski, they prove that the central (n − 1)-dimensional
section of the cube Bn

∞ = [−1, 1]n that has maximal surface area is the one that
corresponds to the unit vector ξ0 = 1√

2
(1, 1, 0, . . . , 0) (exactly as in the case of volume)

i.e.
max

ξ∈Sn−1
S(Bn

∞ ∩ ξ⊥) = S(Bn
∞ ∩ ξ⊥0 ) = 2((n − 2)

√
2 + 1).

Comparing with a ball of suitable radius one gets that the answer to the Busemann-Petty
problem for surface area is negative in dimensions n ⩾ 14.

Isomorphic version

Is there a constant βn such that if K and D are two convex bodies in Rn with
S(K ∩ ξ⊥) ⩽ S(D ∩ ξ⊥) for all ξ ∈ Sn−1 then S(K) ⩽ βnS(D)?
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Suppose that the isomorphic version holds, i.e. there is a constant βn such that if K and
D are centrally symmetric convex bodies in Rn that satisfy

S(K ∩ ξ⊥) ⩽ S(D ∩ ξ⊥),

for all ξ ∈ Sn−1, then S(K) ⩽ βnS(D).

Now, let K be a convex body in Rn and choose ξ0 ∈ Sn−1 such that

S(K ∩ ξ⊥0 ) = max
ξ∈Sn−1

S(K ∩ ξ⊥)

and r > 0 such that rn−2S(Bn−1
2 ) = S(rBn−1

2 ) = S(K ∩ ξ⊥0 ).Then,

S(K ∩ ξ⊥) ⩽ S(rBn
2 ∩ ξ⊥),

for all ξ ∈ Sn−1. Therefore,

S(K)
n−2
n−1 ⩽ β

n−2
n−1
n S(rBn

2 )
n−2
n−1 = β

n−2
n−1
n

S(Bn
2 )

n−2
n−1

S(Bn−1
2 )

max
ξ∈Sn−1

S(K ∩ ξ⊥).

This implies that there is some constant c(n) such that

S(K) ⩽ c(n)S(K)
1

n−1 max
ξ∈Sn−1

S(K ∩ ξ⊥).

The validity of the above is a new question.
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We start with an estimate for ellipsoids.

Proposition

Let E be an origin symmetric ellipsoid in Rn. Then,

S(E)

max
ξ∈Sn−1

S(E ∩ ξ⊥)
⩽ Dnr(E)−

1
n−1

where Dn > 0 is bounded by an absolute constant.

We may assume that |E| = 1. Let a1 ⩽ · · · ⩽ an be the lengths of its principal semi-axes
of E in the directions of e1, . . . , en. We have seen that

S(E)

max
ξ∈Sn−1

S(E ∩ ξ⊥)
= Cna1

E
[(∑n

i=1

g2i
a2i

)1/2]
E
[(∑n

i=2

g2i
a2i

)1/2] ,
where Cn is bounded by an absolute constant.
Since

E
[(∑n

i=1

g2i
a2i

)1/2]
E
[(∑n

i=2

g2i
a2i

)1/2] ⩽ c

E
(∑n

i=1

g2i
a2i

)
E
(∑n

i=2

g2i
a2i

)


1/2

= c

∑n
i=1

1
a2i∑n

i=2
1
a2i

1/2

,
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we have that

S(E)

max
ξ∈Sn−1

S(E ∩ ξ⊥)
⩽ Cna1

∑n
i=1

1
a2i∑n

i=2
1
a2i

1/2

= Cn

1 +
1∑n

i=2

a21
a2i


1/2

.

Using the arithmetic-geometric mean inequality we get

n∑
i=2

a21
a2i

⩾ (n − 1)a21

(
1

a22 . . . a
2
n

) 1
n−1

= (n − 1)a21a
2

n−1
1 = (n − 1)a

2n
n−1
1 .

Moreover, 1 ⩽ 1

a
2n

n−1
1

and adding these two inequalities we get

1 +
1∑n

i=2

a21
a2i


1/2

⩽

 1

a
2n

n−1
1

+
1

(n − 1)a
2n

n−1
1

 1
2

,

therefore
S(E)

max
ξ∈Sn−1

S(E ∩ ξ⊥)
⩽ Dn

1

a
1

n−1
1

= Dn
1

r(E)
1

n−1

,

where Dn is bounded by an absolute constant.
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The example of an ellipsoid F with a2 = . . . = an = r and a1 = 1
rn−1 gives that

S(F)

maxξ∈Sn−1 S(F ∩ ξ⊥)
⩾ En

1

r(F)
1

n−1

,

therefore the inequality is sharp.

Using the inequality that 1
r(K)

⩽ S(K) for every convex body K of volume 1 in Rn we get

Theorem

Let E be an origin symmetric ellipsoid in Rn. Then,

S(E) ⩽ AnS(E)
1

n−1 max
ξ∈Sn−1

S(E ∩ ξ⊥)

where An > 0 is bounded by an absolute constant.

Using John’s theorem and the monotonicity of surface area one can easily deduce that a
similar estimate holds true in full generality:For any convex body K in Rn one has

S(K) ⩽ A′
nS(K)

1
n−1 max

ξ∈Sn−1
S(K ∩ ξ⊥)

where A′
n > 0 is a constant depending only on n.It is an interesting question to determine

the best possible behavior of the constant A′
n with respect to the dimension n.
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New Parameters

Recall Rivin’s formula.

If E is an ellipsoid in Rn with semi-axes a1 ⩽ · · · ⩽ an in the
directions of e1, . . . , en then

S(E) = n |E|
∫
Sn−1

( n∑
i=1

ξ2i
a2i

)1/2
dσ(ξ).

This can be rewritten as
S(E) ≈ n |E|M(E)

where M(E) =
∫
Sn−1 ∥ξ∥Edσ(ξ). It is natural to introduce the parameter

p(K) =
S(K)

|K |M(K)
.

Our aim is to provide optimal upper and lower bounds for p(K) both in general and in
the case where K is in some of the classical positions.
We show the following:

Theorem

There exist absolute constants c1, c2 > 0 such that for every convex body K ∈ Rn we
have

c1
√
n ⩽ p(K) ⩽ c2n

3/2.

Moreover, both estimates give the optimal dependence on the dimension.
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Proof in the centrally symmetric case.

By the simple case k = 1 of the Rogers-Shephard
inequality we have that

n

2
∥u∥K |K | ⩾ |Pu⊥K | ⩾ ∥u∥K

2
|K |.

Integrating over the sphere we get

1

2
M(K)|K | ⩽ ωn−1

nωn
S(K) ≈ 1√

n
S(K) ⩽

n

2
M(K)|K |.

The order of the bounds is sharp since they are achieved by

Ps =

{
x ∈ Rn : |x1| +

1

s

n∑
i=2

|xi | ⩽ 1

}

and
Pa,s = {x : |x1| ⩽ s, |xi | ⩽ a for i ⩾ 2}

where 0 < s < a.
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inequality we have that

n

2
∥u∥K |K | ⩾ |Pu⊥K | ⩾ ∥u∥K

2
|K |.

Integrating over the sphere we get

1

2
M(K)|K | ⩽ ωn−1

nωn
S(K) ≈ 1√

n
S(K) ⩽

n

2
M(K)|K |.

The order of the bounds is sharp since they are achieved by

Ps =

{
x ∈ Rn : |x1| +

1

s

n∑
i=2

|xi | ⩽ 1

}

and
Pa,s = {x : |x1| ⩽ s, |xi | ⩽ a for i ⩾ 2}

where 0 < s < a.
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Thank you for your attention!!!
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