Coercive Inequalities and U-Bounds

Esther Bou Dagher

Online Asymptotic Geometric Analysis Seminar

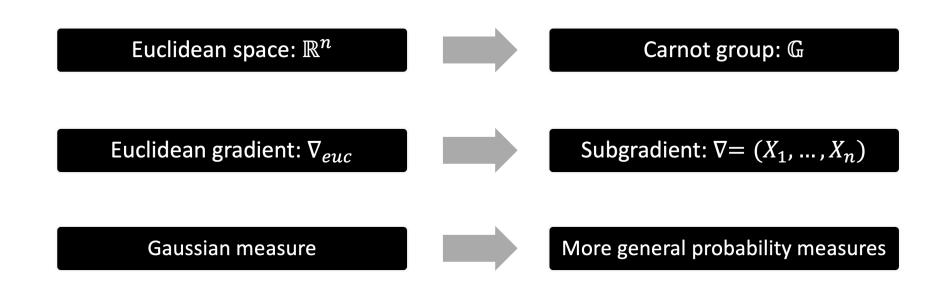
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In 1975, L. Gross obtained the following Logarithmic Sobolev inequality:

$$\int_{\mathbb{R}^n} f^2 \log\left(\frac{f^2}{\int_{\mathbb{R}^n} f^2 d\mu}\right) d\mu \le 2 \int_{\mathbb{R}^n} |\nabla f|^2 d\mu, \tag{1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where ∇ is the standard gradient on \mathbb{R}^n and $d\mu = \frac{e^{-\frac{|x|^2}{2}}}{Z}d\lambda$ is the Gaussian measure.



< ロ > < 団 > < 三 > < 三 > < 三 > < 三 < つ < へ

In 1975, L. Gross obtained the following Logarithmic Sobolev inequality ([33]):

where
$$\nabla_{G}$$
 is the standard gradient on \mathbb{R}^{n} and $d\mu = \frac{e^{-\frac{|\lambda|^{2}}{2}}d\lambda}{Z}d\lambda}$ is the

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Gaussian measure.

Plan

$$d\mu = \frac{e^{-U(d)}}{Z} d\lambda.$$
d: Carnot-Carathéodory distance

W. Hebisch and B. Zegarliński (2009): q –LSI for $U(d) = d^p$, for p the finite index conjugate of q.

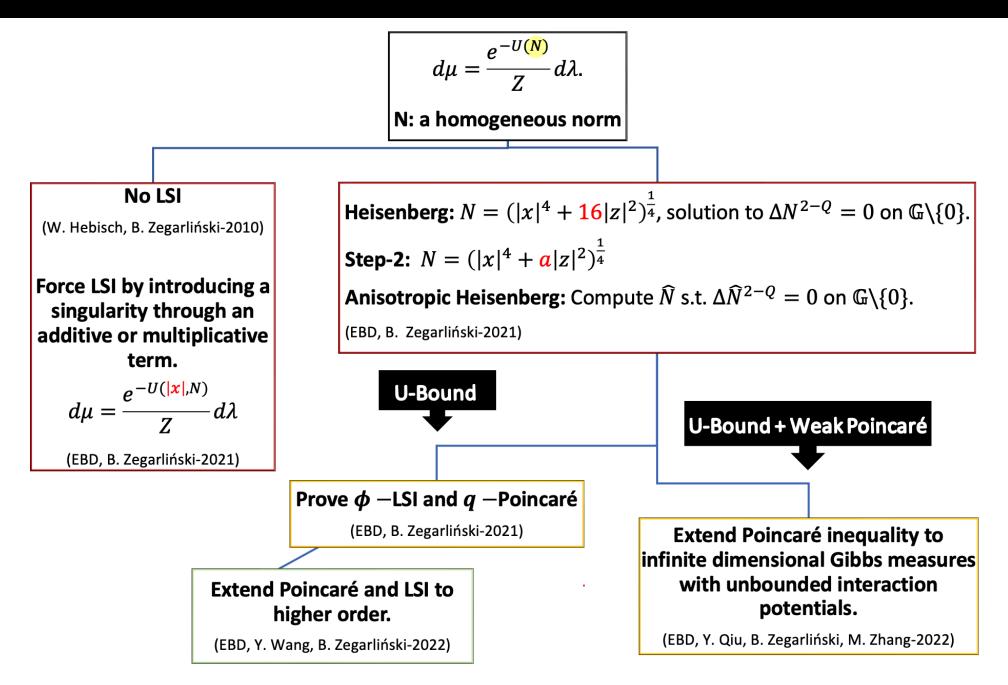
EBD (2021): q –LSI for U(d), where $U'' \leq \beta U'$ and $U \leq \gamma U'^q$, on $\{d(x) \geq 1\}$.

Applications:

LSI \rightarrow Hypercontractivity

 $\mathsf{LSI} \to \mathsf{Talagrand} \text{ inequality}$

Plan



L.Gross showed that (1) can be extended to infinite dimensions. He proved that if \mathcal{L} is the non-positive self-adjoint operator on $L^2(\mu)$ such that

$$(-\mathcal{L}f,f)_{L^{2}(\mu)}=\int_{\mathbb{R}^{n}}|\nabla f|^{2}d\mu,$$

then (1) is equivalent to the fact that the semigroup $P_t = e^{t\mathcal{L}}$ generated by \mathcal{L} is hypercontractive.

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 〇 < 〇</p>

In 1985, D. Bakry and M. Emery extended the Logarithmic Sobolev inequality for a larger class of probability measures defined on Riemaniann manifolds under the Curvature-Dimension condition. The q-Logarithmic Sobolev inequality, in the setting of a metric measure space, was obtained by S. Bobkov and M. Ledoux in 2000, in the form:

$$\int f^{q} \log rac{f^{q}}{\int f^{q} d\mu} d\mu \leq c \int |\nabla f|^{q} d\mu,$$

where $q \in (1, 2]$. In 2005, S. Bobkov and B. Zegarliński showed that the q-LSI is better than q = 2 i in the sense that one gets a stronger decay of tail estimates i.e. if μ satisfies the Logarithmic Sobolev inequality for $q \in (1, 2]$, then for every bounded locally Lipschitz function f such that $|\nabla f| \leq M \ \mu - a.e.$ for $M \in (0, \infty)$, we have

$$\mu(e^{tf}) \le \exp\{\frac{cM^q}{q^q(q-1)}t^q + t\mu(f)\} \quad \forall t > 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In addition, when the space is finite, and under weak conditions, S. Bobkov and B. Zegarliński proved that the corresponding semigroup P_t is ultracontractive i.e.

 $\parallel P_t f \parallel_{\infty} \leq \parallel f \parallel_p$

for all $t \ge 0$ and $p \in [1, \infty)$.

Introduction

Definition

A Lie group on \mathbb{R}^N , $\mathbb{G} = (\mathbb{R}^N, \circ)$ is a Carnot group if: (C.1) \mathbb{R}^N can be split as $\mathbb{R}^N = \mathbb{R}^{N_1} \times ... \times \mathbb{R}^{N_r}$, and the dilation $\delta_{\lambda} : \mathbb{R}^N \to \mathbb{R}^N$

$$\delta_{\lambda}(x) = \delta_{\lambda}(x^{(1)}, ..., x^{(r)}) = (\lambda x^{(1)}, \lambda^2 x^{(2)}, ..., \lambda^r x^{(r)}), \qquad x^{(i)} \in \mathbb{R}^{N_i},$$

is an automorphism of the group \mathbb{G} for every $\lambda > 0$. (C.2) If N_1 is as above, let $X_1, ..., X_{N_1}$ be the left invariant vector fields on \mathbb{G} such that $X_j(0) = \partial/\partial x_j|_0$ for $j = 1, ..., N_1$. Then

$$rank(Lie{X_1,...,X_{N_1}}(x)) = N \quad \forall x \in \mathbb{R}^N.$$

Definition

The vector valued operator $\nabla := (X_1, X_2, ..., X_{N_1})$ is called the sub-gradient on \mathbb{G} , and $\triangle = \sum_{i=1}^{N_1} X_i^2$ is called the sub-Laplacian on \mathbb{G} .

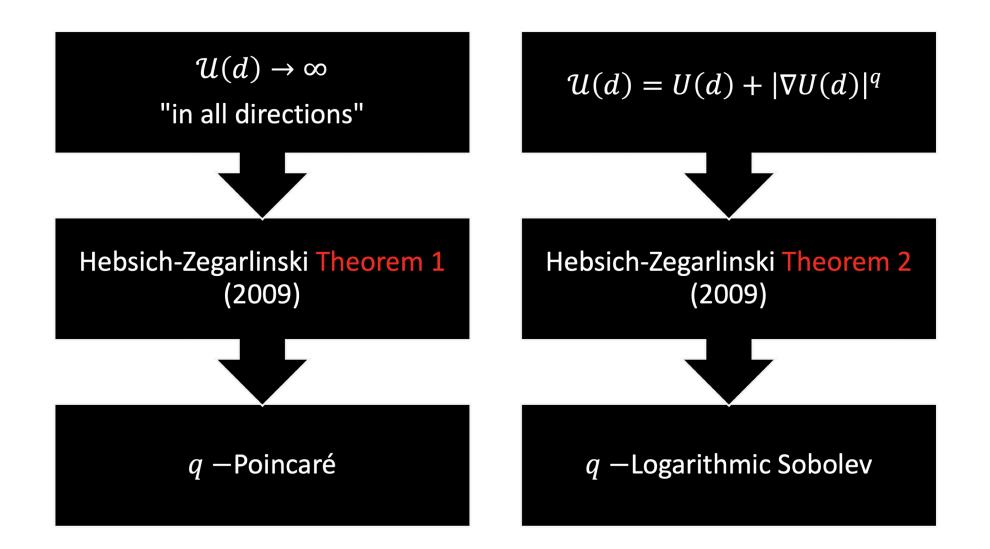
In the setting of Carnot groups, D. Bakry and M. Emery's Curvature-Dimension condition will no longer hold true. In 2010, W. Hebisch and B. Zegarliński developed a method of studying coercive inequalities on general metric spaces that does not require a bound on the curvature of space was developed.

their method is based on U-bounds,

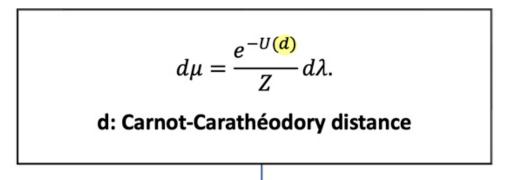
$$\int f^{q} \mathcal{U}(d) d\mu \leq C \int |\nabla f|^{q} d\mu + D \int f^{q} d\mu$$

where $d\mu = \frac{e^{-U(d)}}{Z} d\lambda$ is a probability measure, U(d) and U(d) are functions having a suitable growth at infinity.

$$\int f^q \mathcal{U}(d) d\mu \leq C \int |\nabla f|^q d\mu + D \int f^q d\mu; \ d\mu = rac{e^{-U(d)}}{Z} d\lambda$$



<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



W. Hebisch and B. Zegarliński (2009): q –LSI for $U(d) = d^p$, for p the finite index conjugate of q.

EBD (2021): q –LSI for U(d), where $U'' \leq \beta U'$ and $U \leq \gamma U'^q$, on $\{d(x) \geq 1\}$.

LSI \rightarrow Hypercontractivity

LSI \rightarrow Talagrand inequality

Definition

We say that γ is horizontal if there exist measurable functions $a_1, \ldots, a_{N_1} : [0, 1] \to \mathbb{R}$ such that $\gamma'(t) = \sum_{i=1}^{N_1} a_i(t) X_i(\gamma(t))$ for almost all $t \in [0, 1]$. For such a horizontal curve γ , we define the length of γ to be

$$|\gamma| = \int_{\mathbf{0}}^{\mathbf{1}} \left(\sum_{i=\mathbf{1}}^{N_{\mathbf{1}}} a_i^{\mathbf{2}}(t) \right)^{\frac{1}{\mathbf{2}}} dt.$$

Definition

The Carnot-Carathéodory distance or the control distance between two points x and y is defined by

$$d(x, y) = \inf \left\{ t | \gamma : [0, t] \to G, \gamma(0) = x, \gamma(t) = y | \gamma'(s) | \le 1 \forall s \in [0, t] \right\},\$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

where $\gamma : [0,1] \rightarrow G$ is an absolutely continuous horizontal path on [0,1].

U-Bound;
$$d\mu = \frac{e^{-U(d)}}{7}d\lambda$$

Theorem (EBD, 2021)

Assume that outside the open unit ball $B = \{d(x) < 1\}$, the metric d satisfies the following: $|\nabla d|$ is bounded, say $|\nabla d| \le 1$, and there exist finite positive constants K and c_0 such that

$$\Delta d \leq K + U'(d) \left(\left| \nabla d \right|^2 - c_0 \right).$$
⁽²⁾

(i) If $U'' \leq \beta U'$ for some positive constant β , outside B, then for any $q \in (1, \infty)$, there exist constants C_q, D_q , independent of f, such that

$$\int |f|^q |\boldsymbol{U}'(\boldsymbol{d})|^q d\mu_U \leq C_q \int |\nabla f|^q d\mu_U + D_q \int |f|^q d\mu_U.$$

(ii) If, in addition, $U \leq \gamma U'^q$ for some positive constant γ and some q > 1, outside B, then

$$\int |f|^q U(d) d\mu_U \leq C_q \int |\nabla f|^q d\mu_U + D_q \int |f|^q d\mu_U.$$

Take $\mathcal{U}(d) = |U'(d)|^q$, by Hebisch-Zegarlinski Theorem 1, (i) $\rightarrow q$ -Poincaré. To apply Theorem 2, we need $\mathcal{U}(d) = U(d) + |\nabla U(d)|^q = U(d) + |U'(d)\nabla d|^q \le U(d) + |U'(d)|^q$. Using (i) and (ii), we get q-LSI.

Example (EBD, 2021)

The q-Poincaré and a q-Logarithmic Sobolev inequality are satisfied for the measure

$$d\mu_U = \frac{e^{-(d+1)^p \log(d+1)}}{Z} d\lambda$$

for $q \ge \beta$, where β is the finite index conjugate to p.

Example (EBD, 2021)

The q-Poincaré and a q-Logarithmic Sobolev inequality are satisfied for the measure

$$d\mu_U = \frac{e^{-\sinh(d)}}{Z} d\lambda$$

for all $q \geq 1$.

In 2000, F. Otto and C. Villani showed that in the setting of manifolds under D. Bakry and M. Emery's Curvature-Dimension condition, the LSI implies Talagrand's inequality:

$$T_w(\mu,\nu) \le 2 \int \log(f) d\mu,$$
 (4)

where μ is a measure on \mathbb{R}^N absolutely continuous wrt the Gaussian measure ν ,

$$f = rac{d\mu}{d
u}$$
, $w(x,y) = \sum_{i=1}^{N} (x_i - y_i)^2$, and
 $T_w(\mu,
u) = \inf_{\pi \in \Pi(\mu,
u)} \int_{\mathbb{R}^N imes \mathbb{R}^N} w(x, y) d\pi(x, y),$

where $\Pi(\mu, \nu)$ is the set of probability measures on $\mathbb{R}^N \times \mathbb{R}^N$ with μ the first marginal and ν the second marginal.

We would like to apply the q-Logarithmic Sobolev inequality to get hypercontractivity and to obtain the p-Talagrand inequality on (X, d, μ) with a constant K:

$$W_{\rho}(\mu,\nu)^{\rho} \leq \frac{1}{K} \operatorname{Ent}_{\mu}\left(\frac{d\nu}{d\mu}\right),$$
 (6)

with p finite index conjugate of q, where

$$W_p(\mu,\nu)^p = \inf_{\pi \in \Pi(\mu,\nu)} \int_{X \times X} d(x,y)^p d\pi(x,y),$$

and

$$\operatorname{Ent}_{\mu}\left(\frac{d\nu}{d\mu}\right) = \int \frac{d\nu}{d\mu} \log\left(\frac{d\nu}{d\mu}\right) d\mu.$$

< ロ > < 回 > < 三 > < 三 > < 三 > < ○ < ○

For the quadratic case p = q = 2, J. Lott and C. Villani (2007) and for $p \ge 2$, Z. Balogh, A. Engulatov, L. Hunzinker, and O, Maasalo (2011) used the Hamilton-Jacobi infimum convolution operator under the assumption where the space (X, d, μ) supports local Poincaré inequality and the measure μ is a doubling measure.

In our setting, we show hypercontractivity and the p-Talagrand inequality using the Hamilton-Jacobi equation in the setting of Carnot groups done by F. Dragoni in 2007. The advantage of doing so is that the restriction to have μ a doubling measure is no longer required.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○</p>

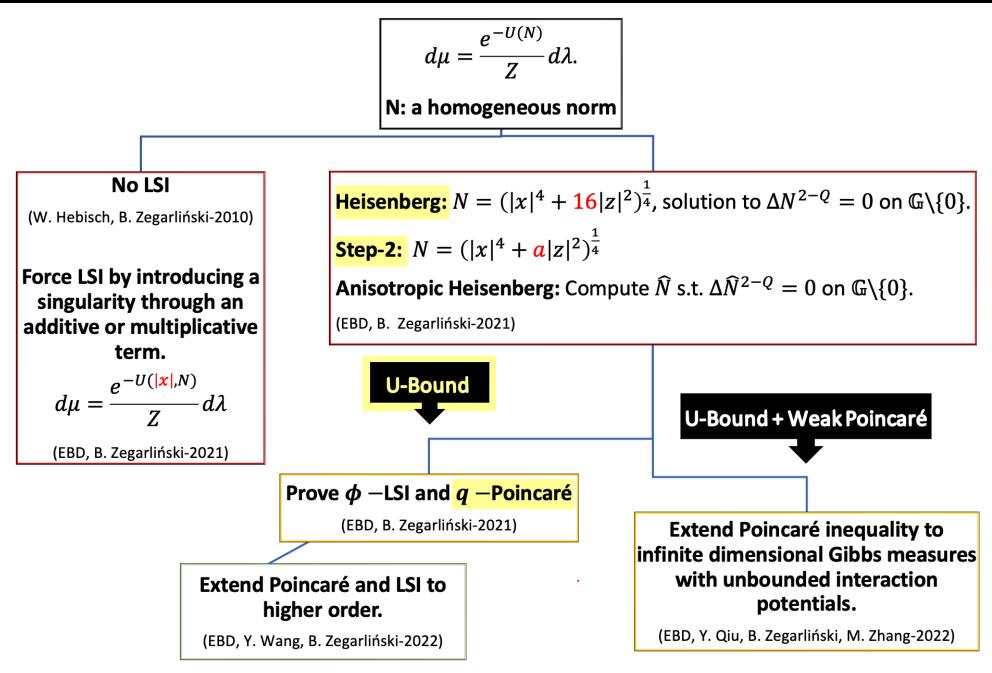
Theorem (EBD, 2021 LSI \rightarrow Talagrand)

Let $1 < q \le 2$, and $p \ge 2$ be its finite index conjugate, so that $\frac{1}{p} + \frac{1}{q} = 1$. If (G, d, μ) satisfies the q-Logarithmic Sobolev inequality with constant $c = (q - 1) \left(\frac{q}{K}\right)^{q-1}$ for some constant K > 0, then it also satisfies the p-Talagrand inequality with the same constant K.

Theorem (EBD, 2021 LSI \rightarrow Hypercontractivity)

Assume we have the following 2-Logarithmic Sobolev inequality with the measure $d\mu = \frac{e^{-U(d)}}{Z} d\lambda$, and in the setting of the Carnot group: then, for every bounded measurable function f on \mathbb{G} , every $t \ge 0$, and every $a \in \mathbb{R}$,

 $||e^{Q_t f}||_{a+\rho t} \le ||e^f||_a.$



We define the step-two Carnot group \mathbb{G} , i.e. a group isomorphic to \mathbb{R}^{n+m} with the group law

$$(x,z) \circ (x',z') = \left(x_i + x'_i, \ z_j + z'_j + \frac{1}{2} < \Lambda^{(j)}x, x' > \right)_{i=1,...,m;j=1,...,m}$$

for $x, x' \in \mathbb{R}^n, z, z' \in \mathbb{R}^m$, where $\langle ., . \rangle$ stands for the inner product on \mathbb{R}^n , and:

1) The matrices $\Lambda^{(j)}$ are $n \times n$ skew-symmetric

2) The matrices are linearly independent

We are in the setting of Heisenberg group, if in addition:

1)
$$\Lambda^{(j)}$$
 are orthogonal
2) $\Lambda^{(k)}\Lambda^{(j)} + \Lambda^{(j)}\Lambda^{(k)} = 0, \forall k \neq j$

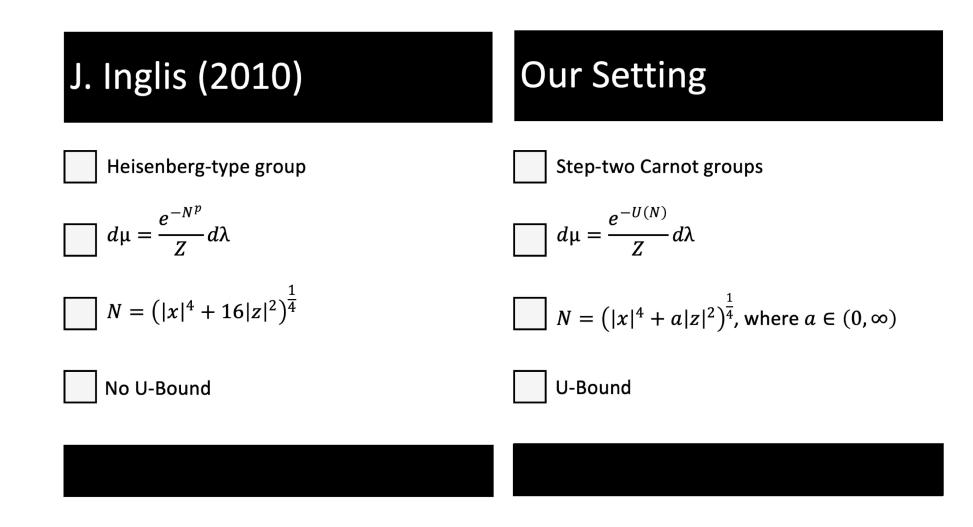
Setup;
$$d\mu = \frac{e^{-U(N)}}{Z} d\lambda$$

Heisenberg:

 $N \equiv (|x|^4 + 16|z|^2)^{\frac{1}{4}}$ is the Kaplan norm. In other words, N^{2-Q} is the unique fundamental solution of the sub-Laplacian $\triangle := \sum_{i=1}^{n} X_i^2$, where X_i is the Jacobian basis of \mathfrak{g} , the Lie algebra of $\mathbb{G} \cong \mathbb{R}^{n+m}$, and Q = n + 2m is the homogeneous dimension.

Step-two:

We consider $N \equiv (|x|^4 + a|z|^2)^{\frac{1}{4}}$, where $(x, z) \in \mathbb{G}$ and $a \in (0, \infty)$.



< ロ > < 団 > < 目 > < 目 > < 目 > < 回 > < < ○ < ○</p>

Theorem (EBD and B. Zegarliński, 2021)

Let $N = (|x|^4 + a|z|^2)^{\frac{1}{4}}$ with $a \in (0, \infty)$ be as above and $g : [0, \infty) \to [0, \infty)$ be a differentiable increasing function such that $g''(N) \le g'(N)^3 N^3$ on $\{N \ge 1\}$. Let $d\mu = \frac{e^{-g(N)}}{Z} d\lambda$ be a probability measure, and Z the normalization constant. Then, for all locally Lipschitz functions f,

$$\int \frac{g'(N)}{N^2} |f|^q d\mu \le C \int |\nabla f|^q d\mu + D \int |f|^q d\mu$$
(2)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

holds outside the unit ball $\{N < 1\}$ with C and D positive constants and $q \ge 2$.

By Hebisch-Zegarlinski Theorem 1, we choose $U(N) = \frac{g'(N)}{N^2}$, to obtain q-Poincaré inequality.

Example (EBD and B. Zegarliński, 2021)

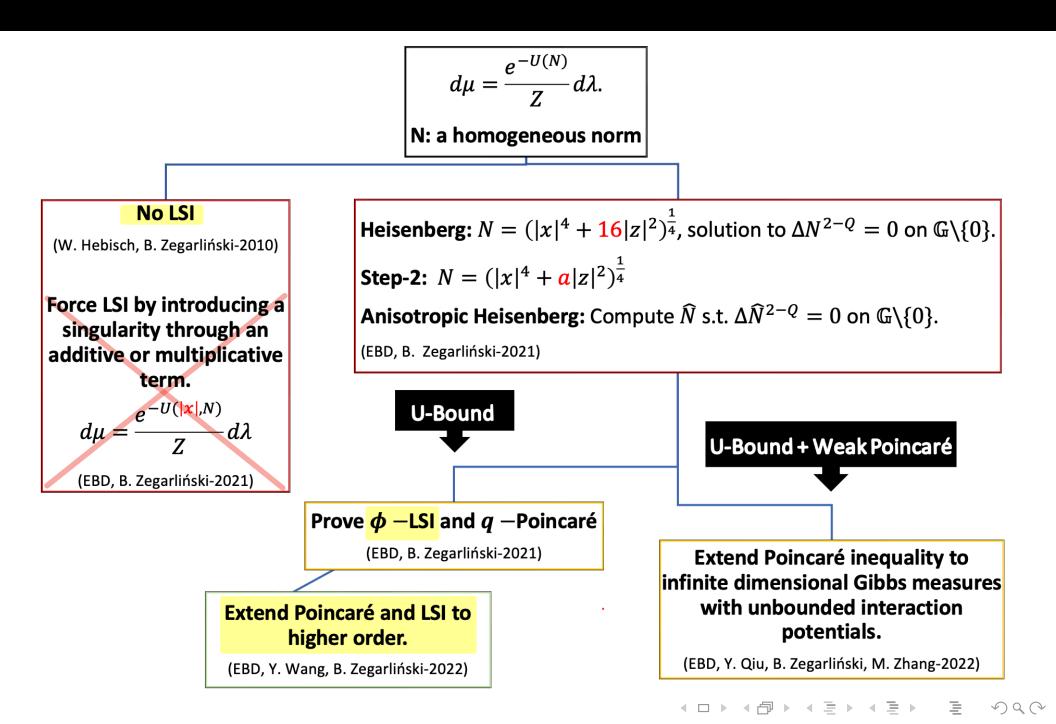
The Poincaré inequality for $q \ge 2$ holds for the measure $d\mu = \frac{exp(-cosh(N^k))}{Z}d\lambda$, where λ is the Lebesgue measure, and $k \ge 1$ in the setting of the step-two Carnot group.

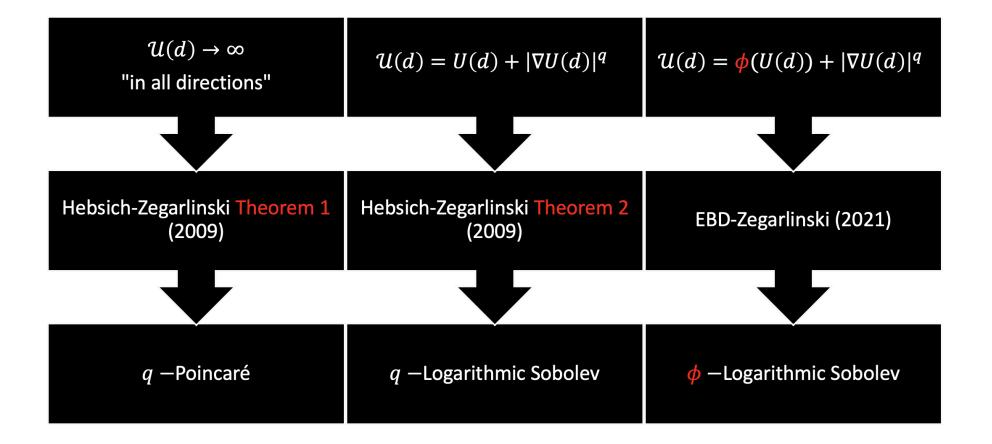
Example (J. Inglis, 2010)

The Poincaré inequality for $q \ge 2$ holds for the measure $d\mu = \frac{exp(-N^{\kappa})}{Z}d\lambda$, where λ is the Lebesgue measure, and $k \ge 4$ in the setting of the step-two Carnot group.

Example (EBD and B. Zegarliński, 2021)

The Poincaré inequality for $q \ge 2$ holds for the measure $d\mu = \frac{exp(-N^k \log (N+1))}{Z} d\lambda$, where λ is the Lebesgue measure, and $k \ge 3$ in the setting of the step-two Carnot group.





▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ◇ ◇ ◇

Theorem (EBD and B. Zegarliński, 2021)

Let U be a locally lipschitz function on \mathbb{R}^N which is bounded below such that $Z = \int e^{-U} d\lambda < \infty$, and $d\mu = \frac{e^{-U}}{Z} d\lambda$. Let $\phi : [0, \infty) \to \mathbb{R}^+$ be a non-negative, non-decreasing, concave function such that $\phi(0) > 0$, and $\phi'(0) > 0$. Assume the following classical Sobolev inequality is satisfied:

$$\left(\int |f|^{q+\epsilon}d\lambda
ight)^{rac{q}{q+\epsilon}}\leq a\int |
abla f|^qd\lambda+b\int |f|^qd\lambda$$

for some $a, b \in [0, \infty)$, and $\epsilon > 0$. Moreover, if for some $A, B \in [0, \infty)$, we have:

$$\mu\left(|f|^{q}(\phi(U)+|\nabla U|^{q})\right) \leq A\mu|\nabla f|^{q}+B\mu|f|^{q},$$
(3)

Then, there exists constants $C, D \in [0, \infty)$ such that:

$$\mu\left(\left|f\right|^{q}\phi\left(\left|\log\frac{|f|^{q}}{\mu|f|^{q}}\right|\right)\right) \leq C\mu|\nabla f|^{q} + D\mu|f|^{q},$$

for all locally Lipschitz functions f.

Higher order LSI

Choose $\phi(x) = (1+x)^{\beta}$, for $\beta \in (0,1)$. Then, ϕ satisfies the conditions of the theorem above and we have:

$$\mu\left(\left|f\right|^{q}\left|\log\frac{\left|f\right|^{q}}{\mu\left|f\right|^{q}}\right|^{\beta}\right) \leq \mu\left(\left|f\right|^{q}\phi\left(\left|\log\frac{\left|f\right|^{q}}{\mu\left|f\right|^{q}}\right|\right)\right) \leq C\mu\left|\nabla f\right|^{q} + D\mu\left|f\right|^{q}.$$

Theorem (EBD, Y. Wang, and B. Zegarliński, 2022)

Given the following Logarithmic-Sobolev inequality

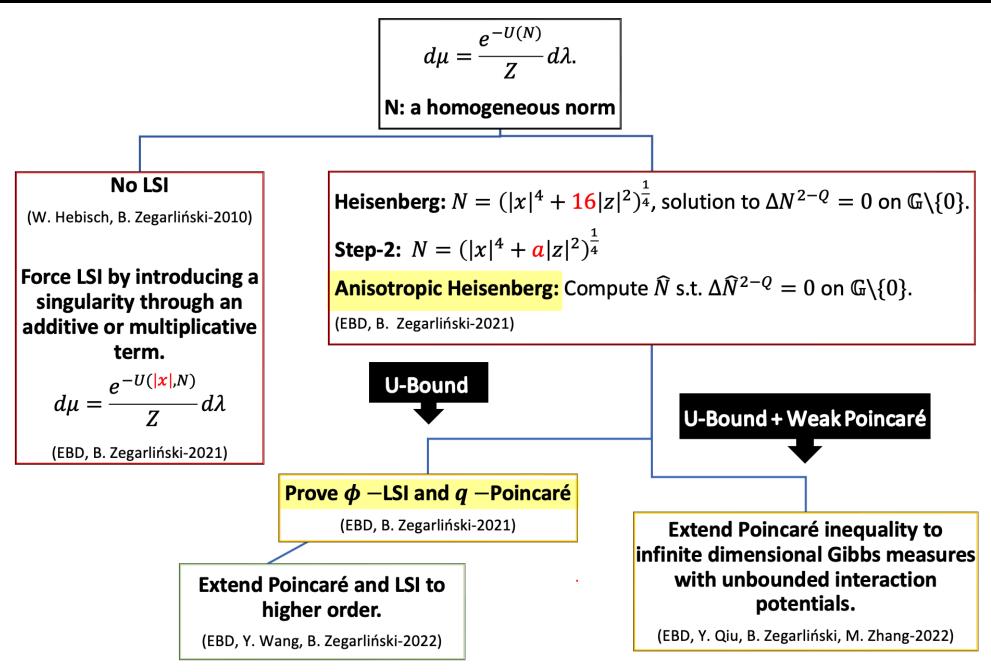
$$\int |f|^2 \left| \log \left(\frac{|f|^2}{\mu |f|^2} \right) \right|^{\beta} d\mu \le C \mu |\nabla f|^2, \tag{4}$$

for $\beta \in (0, 1]$. Then, for all $m \in \mathbb{N}$,

$$\int |f|^2 \left| \log\left(\frac{|f|^2}{\mu |f|^2}\right) \right|^{\beta m} d\mu \le D \sum_{|\alpha|=0}^m \int |\nabla^{\alpha} f|^2 d\mu, \tag{5}$$

where $\nabla^{\alpha} f = (X_1^{\alpha_1} X_2^{\alpha_2} ... X_n^{\alpha_n} f)$ such that $|\alpha| = \sum_{i=1}^n \alpha_i$, and $C, D \in (0, \infty)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ④ ヘ ○



The Carnot group \mathbb{G} is said to be polarizable if N, where N^{2-Q} is the fundamental solution to the sub-Laplacian, is ∞ -harmonic in $\mathbb{G}\setminus\{0\}$, i.e. for $\nabla :=(X_i)_{1\leq i\leq n}$,

$$\Delta_{\infty} N := \frac{1}{2} < \nabla \left(|\nabla N|^2 \right), \forall N \ge 0 \quad \text{in } \mathbb{G} \setminus \{0\}.$$
(6)

The concept of polarizable Carnot groups was first introduced by Z. Balogh and J. Tyson in 2002, where they used the ∞ -harmonicity of N to create a procedure to construct polar coordinates. Moreover, they showed in that the fundamental solution of the p-sub-Laplacian can be expressed as the fundamental solution N^{2-Q} of the sub-Laplacian, proved capacity formulas, and produced sharp constants for the Moser-Trudinger inequality. For the time being, there is no classification of polarizable Carnot groups and the only examples till now are Euclidean spaces and Heisenberg-type groups. Consider the generators of the Lie algebra:

$$\begin{cases} X = \frac{\partial}{\partial x} + 2ay \cdot \frac{\partial}{\partial t} \\ Y = \frac{\partial}{\partial y} - 2ax \cdot \frac{\partial}{\partial t} \\ Z = \frac{\partial}{\partial z} - 2w \cdot \frac{\partial}{\partial t} \\ W = \frac{\partial}{\partial w} - 2z \cdot \frac{\partial}{\partial t}, \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\frac{\text{Heisenberg:}}{\text{Anisotropic Heisenberg:}} a = 1.$

Heisenberg \mathbb{R}^{n+m}

•
$$N = (|x|^4 + 16|z|^2)^{\frac{1}{4}}$$

•
$$|\nabla \mathbf{N}|^2 = \frac{|\mathbf{x}|^2}{\mathbf{N}^2}$$

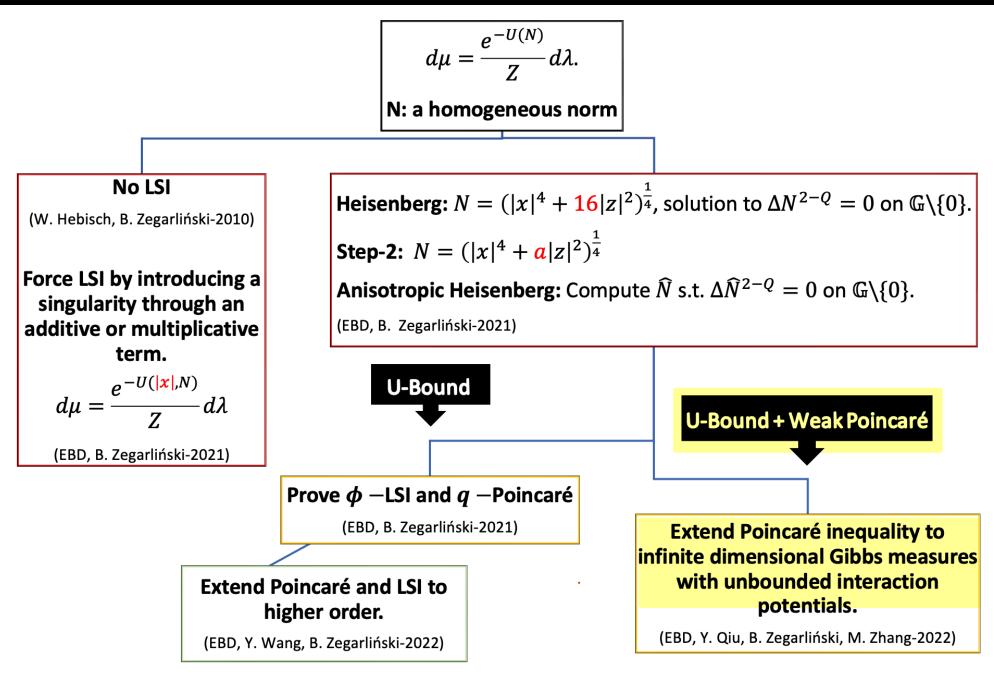
•
$$|\Delta N| = (Q - 1) |\nabla N|^2 =$$

 $(n + 2m - 1) \frac{|x|^2}{N^2}$

$$\bullet \frac{x}{|x|} \cdot \nabla \mathbf{N} = \frac{|\mathbf{x}|^3}{\mathbf{N}^3}$$

Step-2 Carnot \mathbb{R}^{n+m}
• $N = (x ^4 + a z ^2)^{\frac{1}{4}}$
• 1) $A \frac{ \mathbf{x} ^2}{N^2} \le \nabla \mathbf{N} ^2 \le C \frac{ \mathbf{x} ^2}{N^2}$
• 2) $ \Delta N \le B \frac{ x ^2}{N^2}$
• 3) $\frac{x}{ x } \cdot \nabla \mathbf{N} = \frac{ \mathbf{x} ^3}{\mathbf{N}^3}$
• $a, A, B, C \in (0, \infty)$

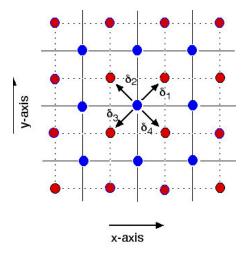
Anisotropic
Heisenberg
neisenberg
\mathbb{R}^{2n+1}
$2, 2, \frac{1}{2},, 2, \frac{1}{2}, \frac{1}{$
• N = $\frac{(B^2 + t^2)^{\frac{1}{4n}}(AB + t^2 + A\sqrt{B^2 + t^2})^{\frac{1}{2} - \frac{1}{4n}}}{(B + \sqrt{B^2 + t^2})^{\frac{1}{2}}}$
$(B+\sqrt{B^2+t^2})^{\frac{1}{2}}$
where 2 2 2n
$A = \frac{x_1^2}{2} + \frac{x_{n+1}^2}{2} + \frac{1}{2} \sum_{i=2, i\neq n+1}^{2n} x_j^2$
$J-2, J \neq n \pm 1$
and $x^2 + x^2 + \frac{2n}{2}$
$B = \frac{x_1^2}{4} + \frac{x_{n+1}^2}{4} + \frac{1}{2} \sum_{\substack{j=2, j \neq n+1}}^{2n} x_j^2$
4 4 $\sum_{j=2, j \neq n+1}$
• $\frac{ \mathbf{x} ^2}{2^{5+\frac{2}{n}N^2}} \le \nabla \mathbf{N} ^2 \le \frac{(2n+1)^2 \mathbf{x} ^2}{8n^2 \mathbf{N}^2}$
$\frac{1}{2^{5+\frac{2}{n}N^2}} \leq V N \leq \frac{1}{8n^2N^2}$
2
• $ \Delta N = (Q - 1) \nabla N ^2 =$ $(2n + 1) \frac{ x ^2}{N^2}$
$(2n + 1) \frac{ x ^2}{ x ^2}$
$(2n+1)\frac{1}{N^2}$
L 12
• $\frac{x}{ x } \cdot \nabla N \ge -\frac{ x ^2}{4nN}$. Problem:
x = 4nN this term could be negative, and so
we need the dimension $n > 5$.



So far, the passage to infinite dimensions in the setting of Nilpotent Lie groups required the condition $|\nabla N| \ge c$ outside the unit ball which is not true for homogeneous norms introduced.

For Kaplan norm in Heisenberg group: $N = (|x|^2 + 16|z|^2)^{\frac{1}{4}}$, and $|\nabla N| = \frac{|x|}{N}$. Choose |x| = 0 and |z| large. Then, $|\nabla N|$ does not satisfy $|\nabla N| \ge c$ outside the unit ball $\{N(x,z) < 1\}$.

Gibbs measures: Setup



We have a Carnot group \mathbb{G} , and we give it a d-dimensional integer lattice structure: $\mathbb{G}^{\mathbb{Z}^d}$. For any compact $\Lambda \subset \mathbb{Z}$, denote the potential U^w_{Λ} by

$$U^w_{\Lambda}(x_{\Lambda}) := \sum_{i \in \Lambda} \phi(x_i) + \sum_{i,j \in \Lambda, i \sim j} \beta V(x_i, x_j) + \sum_{i \in \Lambda, j \notin \Lambda, i \sim j} \beta V(x_i, w_j),$$

where $\phi \in C^{\mathbf{1}}(\mathbb{G}, \mathbb{R})$ is the phase and $V \in C^{\mathbf{1}}(\mathbb{G} \times \mathbb{G}, \mathbb{R})$ is the interaction with strength $\beta \geq 0$. Let $\mathbb{E}^{w}_{\Lambda} := \frac{1}{Z^{w}_{\Lambda}} e^{-U^{w}_{\Lambda}} dx_{\Lambda}$ be the local Gibbs measure and ν be the associated global measure satisfying $\nu \mathbb{E}^{w}_{\Lambda} = \nu$ for all compact $\Lambda \subset \mathbb{Z}$. Denote $|\nabla_{\Lambda} f|^{2} = \sum_{i \in \Lambda} |\nabla_{i} f|^{2}$ and $|\nabla f|^{2} = |\nabla_{\mathbb{Z}} f|^{2}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consider the following two hypotheses: (H1) For any $i \in \mathbb{Z}$, the (U-bound \rightarrow) weak U-Bound

$$\sum_{j:j\sim i}\nu(f^{q}|\nabla_{j}V(x_{i},x_{j})|^{q}) \leq A\left(\nu|\nabla_{i}f|^{q}+\nu|f|^{q}+\sum_{m=0}^{\infty}C_{\beta}^{m}\nu|\nabla_{\{i-1-m,i+1+m\}}f|^{q}\right)$$

holds for some constants A > 0 and $C_{\beta} \in [0, 1)$ such that $A\beta$ and C_{β} vanish as $\beta \rightarrow 0$.

(H2) For any $i \in \mathbb{Z}$, the weak q-Poincaré inequality

$$\nu \mathbb{E}_i^w |f - \mathbb{E}_i^w f|^q \le B_{SG} \left(\nu |\nabla_i f|^q + \sum_{m=0}^\infty C_\beta^m \nu |\nabla_{\{i-1-m,i+1+m\}} f|^q \right)$$

holds for some constants $B_{SG} > 0$ and the same $C_{\beta} \in [0, 1)$ such that $A\beta$ and $B_{SG}\beta \to 0$ as $\beta \to 0$.

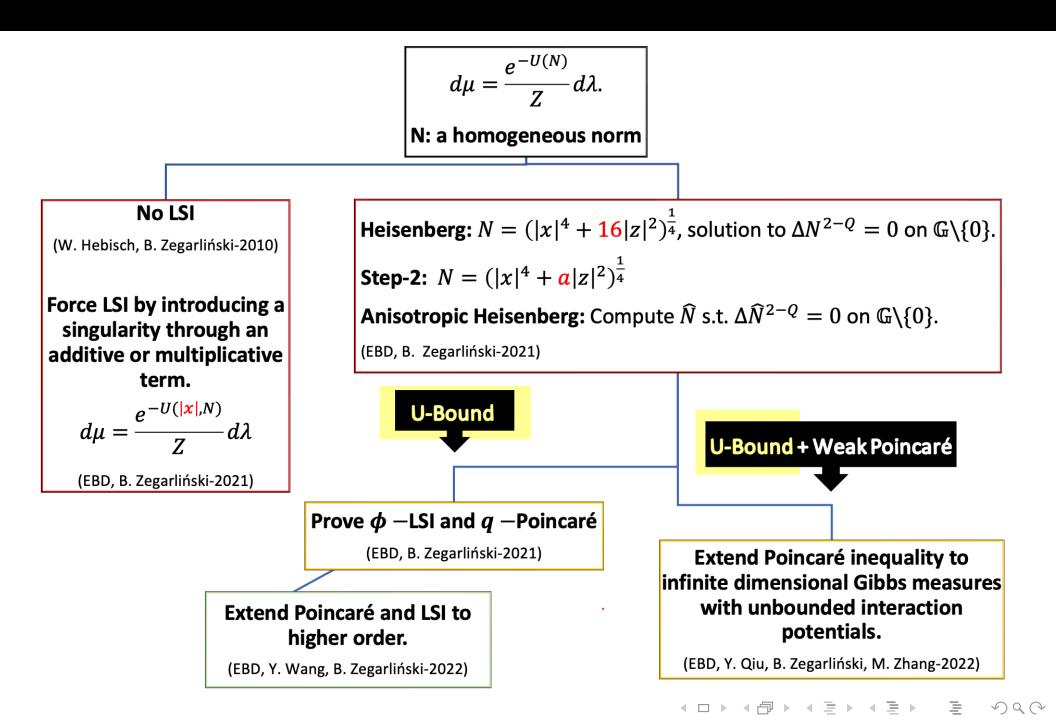
Theorem (EBD, Y. Qiu, B. Zegarliński, and M. Zhang, 2022)

Suppose (H1) and (H2) are satisfied, then there exists $\tilde{\beta} > 0$ such that for all $\beta \in [0, \tilde{\beta})$ the global Poincaré inequality

$$u | f - \nu f |^q \le c_{SG} \nu | \nabla f |^q$$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < < </p>

holds for some constant $c_{SG} > 0$.



Theorem (EBD and B. Zegarliński, 2021)

Let $N = (|x|^4 + a|z|^2)^{\frac{1}{4}}$ with $a \in (0, \infty)$ be as above and $g : [0, \infty) \to [0, \infty)$ be a differentiable increasing function such that $g''(N) \leq g'(N)^3 N^3$ on $\{N \geq 1\}$. Let $d\mu = \frac{e^{-g(N)}}{Z} d\lambda$ be a probability measure, and Z the normalization constant. Then, for all locally Lipschitz functions f,

$$\int \frac{g'(N)}{N^2} |f|^q d\mu \le C \int |\nabla f|^q d\mu + D \int |f|^q d\mu$$
(7)

holds outside the unit ball $\{N < 1\}$ with C and D positive constants and $q \ge 2$.

Here,
$$\mathcal{U} = \frac{g'(N)}{N^2}$$
. First Question: How to choose \mathcal{U} ?

We need a technical lemma first:

• $N = (|x|^4 + a|z|^2)^{\frac{1}{4}}$

• 1) $A \frac{|\mathbf{x}|^2}{N^2} \le |\nabla \mathbf{N}|^2 \le C^{\frac{1}{2}}$

• 2) $|\Delta N| \le B \frac{|x|^2}{N^2}$

• 3) $\frac{x}{|x|} \cdot \nabla \mathbf{N} = \frac{|\mathbf{x}|^3}{\mathbf{N}^3}$

• $a, A, B, C \in (0, \infty)$

Step-2 Carnot \mathbb{R}^{n+m}	Anisotropic Heisenberg \mathbb{R}^{2n+1}
$V = (x ^4 + a z ^2)^{\frac{1}{4}}$	• $N = \frac{(B^2 + t^2)^{\frac{1}{4n}}(AB + t^2 + A\sqrt{B^2 + t^2})^{\frac{1}{2} - \frac{1}{4n}}}{(B + \sqrt{B^2 + t^2})^{\frac{1}{2}}}$ where
$ A ^{ x ^2} \le \nabla N ^2 \le C \frac{ x ^2}{N^2}$	$A = \frac{x_1^2}{2} + \frac{x_{n+1}^2}{2} + \frac{1}{2} \sum_{j=2, j \neq n+1}^{2n} x_j^2$ and
$ \Delta N \le B \frac{ x ^2}{N^2}$	$B = \frac{x_1^2}{4} + \frac{x_{n+1}^2}{4} + \frac{1}{2} \sum_{j=2, j \neq n+1}^{2n} x_j^2$
$\frac{x}{ x } \cdot \nabla \mathbf{N} = \frac{ \mathbf{x} ^3}{\mathbf{N}^3}$	• $\frac{ \mathbf{x} ^2}{2^{5+\frac{2}{nN^2}}} \le \nabla \mathbf{N} ^2 \le \frac{(2n+1)^2 \mathbf{x} ^2}{8n^2 \mathbf{N}^2}$ • $ \Delta N = (Q-1) \nabla \mathbf{N} ^2 =$
$a, A, B, C \in (0, \infty)$	• $ \Delta N = (Q - 1) \nabla N ^2 =$ $(2n + 1) \frac{ x ^2}{N^2}$
	• $\frac{x}{ x } \cdot \nabla N \ge -\frac{ x ^2}{4nN}$. Problem: this term could be negative, and so we need the dimension $n > 5$.

\mathbb{R}^{n+m}	
• $N = (x ^4 + 16 z ^2)^{\frac{1}{4}}$	
• $ \nabla \mathbf{N} ^2 = \frac{ \mathbf{x} ^2}{\mathbf{N}^2}$	
• $ \Delta N = (Q - 1) \nabla N ^2 =$ $(n + 2m - 1) \frac{ x ^2}{N^2}$	
• $\frac{x}{ x } \cdot \nabla \mathbf{N} = \frac{ \mathbf{x} ^3}{\mathbf{N}^3}$	

Haisanharg

For q = 2, using integration by parts:

$$\int (\nabla N) \cdot (\nabla f) e^{-g(N)} d\lambda = -\int \nabla \left(\nabla N e^{-g(N)}\right) f d\lambda$$
$$= -\int \Delta N f e^{-g(N)} d\lambda + \int |\nabla N|^2 f g'(N) e^{-g(N)} d\lambda.$$

Netx, using 1) and 2),

$$A\int \frac{|x|^2}{N^2} fg'(N) e^{-g(N)} d\lambda - B\int \frac{|x|^2}{N^3} fe^{-g(N)} d\lambda \leq \int (\nabla N) \cdot (\nabla f) e^{-g(N)} d\lambda.$$

First candidate for $\mathcal{U} = \frac{|x|^2}{N^2}g'(N)$. We need $\mathcal{U} \to \infty$ "in all directions" to apply Hebisch-Zegarlinski Theorem 1 (2009). Recall that $N = (|x|^2 + a|z|^2)^{\frac{1}{4}}$. For |x| = 0, we can have $|z|^2 \to \infty$, but $\mathcal{U} = 0$. So, the problem is around the z-axis.

Idea: Replace f by $\frac{f^2}{|x|^2}$:

Now we have the good candidate $\mathcal{U} = \frac{g'(N)}{N^2}$:

$$\int f^2 \left(\frac{Ag'(N)}{N^2} - \frac{B}{N^3} \right) e^{-g(N)} d\lambda \leq \int (\nabla N) \cdot \left(\nabla \left(\frac{f^2}{|x|^2} \right) \right) e^{-g(N)} d\lambda$$

$$= \int (\nabla N) \cdot \left[2f \frac{\nabla f}{|x|^2} - \frac{2f^2 \nabla |x|}{|x|^3} \right] e^{-g(N)} d\lambda$$

$$=\int \frac{2f}{|x|^2} \nabla N \cdot \nabla f e^{-g(N)} d\lambda - 2\int f^2 \frac{\nabla N \cdot x}{|x|^4} e^{-g(N)} d\lambda$$

$$\leq 2\int rac{f}{|x|^2}|
abla N||
abla f|e^{-g(N)}d\lambda$$
 See Technical Lemma
Heisenberg: $abla N\cdot x\geq 0$

$$\leq 2\sqrt{C}\int rac{|f|}{N|x|}|
abla f|e^{-g(N)}d\lambda.$$

Where the last two inequalities use the calculation of $\nabla N \cdot x$, from 3) and the upper bound on $|\nabla N|$ from 1).

Trial 1: Use Hardy's Inequality

Applying Cauchy's inequality with
$$\epsilon : ab \leq \frac{\epsilon a^2}{2} + \frac{b^2}{2\epsilon}$$
 with $a = \frac{|f|}{N|x|}e^{-\frac{g(N)}{2}}$ and
 $b = \sqrt{C}|\nabla f|e^{-\frac{g(N)}{2}},$ Bad term Good term
 $\int f^2 \left(A\frac{g'(N)}{N^2} - \frac{B}{N^3}\right)e^{-g(N)}d\lambda \leq \epsilon \int \frac{|f|^2}{N^2|x|^2}e^{-g(N)}d\lambda + \frac{C}{\epsilon}\int |\nabla f|^2e^{-g(N)}d\lambda.$

For $f \in C_0^{\infty}(\mathbb{R}^{n+m})$, we want to use Hardy's inequality:

$$\int \frac{f^2}{|x|^2} d\lambda \leq \frac{4}{(n-2)^2} \int |\nabla f|^2 d\lambda.$$

The **bad** term becomes:

$$\begin{split} \epsilon \int \frac{\left(\frac{fe^{\frac{-g(N)}{2}}}{N}\right)^2}{|x|^2} d\lambda &\leq \frac{4\epsilon}{(n-2)^2} \int |\nabla \frac{fe^{\frac{-g(N)}{2}}}{N}|^2 d\lambda \\ &= \frac{\epsilon}{(n-2)^2} \int \frac{f^2 g'(N)^2}{N^2} |\nabla N|^2 d\mu + other \ terms. \end{split}$$

This last term cannot be absorbed in the left-hand side of our U-Bound inequality, and Trial 1 fails.

Using Hardy's inequality on the bad term:

$$\epsilon \int \frac{|f|^2}{N^2|x|^2} e^{-g(N)} d\lambda = \epsilon \int_{B_R \times B_1} \frac{|f|^2}{N^2|x|^2} e^{-g(N)} d\lambda + \epsilon \int_{(B_R \times B_1)^c} \frac{|f|^2}{N^2|x|^2} e^{-g(N)} d\lambda$$
$$\leq \epsilon \int_{B_R \times B_1} \frac{|f|^2}{|x|^2} d\lambda + l_2$$
$$\leq \frac{4\epsilon}{(n-2)^2} \int_{B_R \times B_1} |\nabla f|^2 d\lambda + l_2$$
$$\leq \frac{4\epsilon C}{(n-2)^2} \int_{B_R \times B_1} |\nabla f|^2 d\mu + l_2.$$

Where the last line is true since we can bound $e^{-g(N)}$ from below on $B_R \times B_1$. Regarding the complement:

$$(B_R \times B_1)^c = B_R^c \times B_1^c \cup B_R^c \times B_1 \cup B_R \times B_1^c$$
.
On $B_R^c \times B_1^c$ and $B_R^c \times B_1$, we have $\frac{1}{|x|^2} \leq \frac{1}{R^2}$, so we avoid the singularity. However,
on $B_R \times B_1^c$, we face the same problem as Trial 1.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $(B_R \times B_1)$

Trial 3: Introduce
$$F = \{(x,z) \in \mathbb{R}^{n+m} : |x|\sqrt{g'(N)} < 1\}$$

$$\int f^2 \left(\frac{Ag'(N)}{N^2} - \frac{B}{N^3} \right) e^{-g(N)} d\lambda$$

$$\leq \epsilon \int \frac{|f|^2}{N^2 |x|^2} e^{-g(N)} d\lambda + \frac{C}{\epsilon} \int |\nabla f|^2 e^{-g(N)} d\lambda$$

$$= \epsilon \int_F \frac{|f|^2}{N^2 |x|^2} e^{-g(N)} d\lambda + \epsilon \int_{F^c} \frac{|f|^2}{N^2 |x|^2} e^{-g(N)} d\lambda + GT$$

$$\leq \epsilon \int_F \frac{|fe^{-\frac{g(N)}{2}}|^2}{N^2 |x|^2} d\lambda + \epsilon \int \frac{g'(N)|f|^2}{N^2} e^{-g(N)} d\lambda + GT.$$

< ロ > < 団 > < 三 > < 三 > < 三 > < 回 > < ○

Final trial: Hardy's inequality on $F_r = \{(x, z) \in \mathbb{R}^{n+m} : |x|\sqrt{g'(N)} < r\}$, where $1 \le r \le 2$.

$$\epsilon \int_{F_r} \frac{|fe^{\frac{-g(N)}{2}}|^2}{N^2|x|^2} d\lambda = \frac{\epsilon}{n-2} \int_{F_r} \frac{|fe^{\frac{-g(N)}{2}}|^2}{N^2} \nabla \cdot \left(\frac{x}{|x|^2}\right) d\lambda$$

$$= -\frac{2\epsilon}{n-2} \int_{F_r} \frac{fe^{\frac{-g(N)}{2}}}{N} \nabla \left(\frac{fe^{\frac{-g(N)}{2}}}{N} \right) \cdot \frac{x}{|x|^2} d\lambda + boundary \ term$$

$$\leq \frac{\epsilon}{2} \int_{F_r} \frac{|fe^{\frac{-g(N)}{2}}|^2}{N^2|x|^2} d\lambda + \frac{2\epsilon}{(n-2)^2} \int_{F_r} \left| \nabla \left(\frac{fe^{\frac{-g(N)}{2}}}{N} \right) \right|^2 d\lambda + \text{boundary term}$$

Where we have used Integration by parts in the first line, Cauchy's inequality in the last line, and boundary term = $\frac{\epsilon}{n-2} \int_{\partial F_r} \frac{f^2 e^{-g(N)}}{N^2 |x|^2} \sum_{j=1}^n \frac{x_j < X_j I, \nabla_{euc} \left(|x| \sqrt{g'(N)} \right) >}{\left| \nabla_{euc} \left(|x| \sqrt{g'(N)} \right) \right|} dH^{n+m-1}.$ So,

$$\epsilon \int_{F_r} \frac{|fe^{\frac{-g(N)}{2}}|^2}{N^2|x|^2} d\lambda \leq \frac{4\epsilon}{(n-2)^2} \int_{F_r} \left| \nabla \left(\frac{fe^{\frac{-g(N)}{2}}}{N} \right) \right|^2 d\lambda + boundary \ term.$$

Using the fact that $F \subset F_r \subset F_2$,

$$\epsilon \int_{F} \frac{|fe^{\frac{-g(N)}{2}}|^{2}}{N^{2}|x|^{2}} d\lambda \leq \frac{4\epsilon}{(n-2)^{2}} \int_{F_{2}} \left| \nabla \left(\frac{fe^{\frac{-g(N)}{2}}}{N} \right) \right|^{2} d\lambda + boundary \ term.$$

Recover the full measure using the Coarea formula

$$\epsilon \int_{\mathbf{1}}^{2} \int_{F} \frac{\left|fe^{\frac{-g(N)}{2}}\right|^{2}}{N^{2}|x|^{2}} d\lambda dr \leq \frac{4\epsilon}{(n-2)^{2}} \int_{\mathbf{1}}^{2} \int_{F_{2}} \left|\nabla\left(\frac{fe^{\frac{-g(N)}{2}}}{N}\right)\right|^{2} d\lambda dr$$
$$+ \frac{2\epsilon}{n-2} \int_{\mathbf{1}}^{2} \int_{\partial F_{r}} \frac{f^{2}e^{-g(N)}}{N^{2}|x|^{2}} \sum_{j=1}^{n} \frac{x_{j} < X_{j}I, \nabla_{euc}\left(|x|\sqrt{g'(N)}\right)}{\left|\nabla_{euc}\left(|x|\sqrt{g'(N)}\right)\right|} dH^{n+m-1} dr$$

To recover the full measure in the boundary term, we use the Coarea formula:

$$\epsilon \int_{F} \frac{|fe^{\frac{-g(N)}{2}}|^{2}}{N^{2}|x|^{2}} d\lambda \leq \frac{4\epsilon}{(n-2)^{2}} \int_{F_{2}} \left| \nabla \left(\frac{fe^{\frac{-g(N)}{2}}}{N} \right) \right|^{2} d\lambda$$

$$+\frac{2\epsilon}{n-2}\int_{\{\mathbf{1}<|x|\sqrt{g'(N)}<\mathbf{2}\}}\frac{f^{\mathbf{2}}e^{-g(N)}}{N^{\mathbf{2}}|x|^{\mathbf{2}}}\sum_{j=\mathbf{1}}^{n}x_{j}<\mathbf{X}_{j}I,\nabla_{euc}\left(|x|\sqrt{g'(N)}\right)>d\lambda.$$

The remainder of the proof is to use the condition of the theorem, the technical lemma, the domain of integrations, and the given fields X_j , to find a suitable ϵ , which turns out to be satisfying $\left(\frac{10\epsilon}{n-2} + \epsilon\right) < A$. (Recall: 1) $A \frac{|x|^2}{N^2} \le |\nabla N|^2 \le C \frac{|x|^2}{N^2}$.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Thanks for your attention!

・ロ・・中・・中・・日・・日・