Dimensional Brunn-Minkowski inequalities for the relative entropy

Gautam Aishwarya
(joint work with Liran Rotem)

The Technion- Israel Institute of Technology

October 19, 2023

- Entropy and geometric inequalities
- The dimensional Brunn-Minkowski problem for measures (Main question) and our approach
- Log-concave measures with homogeneous potential
- the Gaussian measure

The Brunn-Minkowski inequality

Theorem (Brunn-Minkowski)

Let $K_{0}, K_{1} \subseteq \mathbb{R}^{n}$ be compact sets, then

$$
\operatorname{Vol}_{n}\left((1-t) K_{0}+t K_{1}\right)^{1 / n} \geq(1-t) \operatorname{Vol}_{n}\left(K_{0}\right)^{1 / n}+t \operatorname{Vol}_{n}\left(K_{1}\right)^{1 / n}
$$

Here $(1-t) K_{0}+t K_{1}=\left\{(1-t) x+t y: x \in K_{0}, y \in K_{1}\right\}$.

- Says that the Lebesgue measure is " $1 / n$-concave".
- By scaling properties of volume, this is equivalent to the a priori weaker 0-concavity:
$\mathrm{Vol}_{n}\left((1-t) K_{0}+t K_{1}\right) \geq \operatorname{Vol}_{n}\left(K_{0}\right)^{1-t} \mathrm{Vol}_{n}\left(K_{1}\right)^{t}$.
- How to prove this using "entropy"?

Step 1: find a suitable notion of entropy to encode volume as maximum entropy

Definition

Let μ be a probability measure on \mathbb{R}^{n} having density f w.r.t. the Lebesgue measure. Then, the Shannon-Boltzmann entropy is defined by

$$
h(\mu)=-\int f \log f \mathrm{~d} x
$$

- If μ does not have density, can be meaningfully set to be $-\infty$.
- Sometimes we write $h(f)$ for $h(\mu)$, as well as $h(X)$, if X is a random vector with distribution μ.
- Thought of as a measure of how spread out μ is.

Lemma

Let $K \subseteq \mathbb{R}^{n}$ be compact, then

$$
\sup _{\mu \in \mathcal{P}(K)} h(\mu)=\log \operatorname{Vol}_{n}(K)
$$

Proof:

- If $X \sim \mu$ has density f,

$$
h(\mu)=-\int f \log f \mathrm{~d} x=\mathbb{E} \log \frac{1}{f(X)} \leq \log \mathbb{E} \frac{1}{f(X)} \leq \log \operatorname{Vol}_{n}(K)
$$

- Equality if $X \sim$ Uniform (K).

Therefore, if we want to prove
$\log \operatorname{Vol}_{n}\left((1-t) K_{0}+t K_{1}\right) \geq(1-t) \log \operatorname{Vol}_{n}\left(K_{0}\right)+t \log \mathrm{Vol}_{n}\left(K_{1}\right)$,
we can do the following:
For every $\mu_{0} \in \mathcal{P}\left(K_{0}\right)$ and every $\mu_{1} \in \mathcal{P}\left(K_{1}\right)$ find an interpolation $\mu_{t} \in \mathcal{P}\left((1-t) K_{0}+t K_{1}\right)$, such that

$$
h\left(\mu_{t}\right) \geq(1-t) h\left(\mu_{0}\right)+t h\left(\mu_{1}\right)
$$

Step 2: find a suitable interpolation to show concavity of

 entropy chosen earlier

- We think of probability distributions as distributions (or configurations) of the molecules of a gas in space.
- Look at all time-dependent vector fields v_{t} which displace μ_{0} to μ_{1} between $t=0$ and $t=1$. Each choice of v_{t} corresponds to a family μ_{t} representing the intermediate distribution at time t along the flow.
- Pick the one which minimises the action $\int_{0}^{1} \int\left|v_{t}\right|^{2} \mathrm{~d} \mu_{t} \mathrm{~d} t$, where μ_{t} denotes the intermediate distribution at time t along the flow induced by v_{t}.
- The interpolation $\left\{\mu_{t}\right\}$ corresponding to the action-minimising v_{t} is called the displacement interpolation.
- It turns out that the optimal vector field is of the form $\nabla \theta_{t}$, and displaces every molecule with constant speed along a straight line, leading to $\mu_{t} \in \mathcal{P}\left((1-t) K_{0}+t K_{1}\right)$.
Two useful properties are:
- Continuity equation: For every test function ϕ,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int \phi \mathrm{~d} \mu_{t}=\int\left\langle\nabla \phi, \nabla \theta_{t}\right\rangle \mathrm{d} \mu_{t}
$$

- The Hamilton-Jacobi equation,

$$
\frac{\partial \theta_{t}}{\partial t}+\frac{\left|\nabla \theta_{t}\right|^{2}}{2}=0
$$

An equivalent way to describe things

Let $\mu_{0}, \mu_{1} \in \mathcal{P}_{2, a c}\left(\mathbb{R}^{n}\right)$, and consider the Monge problem of minimising

$$
I=\int|x-T(x)|^{2} \mathrm{~d} \mu_{0}(x)
$$

over all maps T such that $T_{\#} \mu_{0}=\mu_{1}$.

- (Brenier '91, McCann '97) The minimum is uniquely attained by a map $T=\nabla \psi$, where ψ is convex. The displacement interpolation is $\mu_{t}=T_{t \#} \mu_{0}$, where $T_{t}=(1-t) I+t T$.
- The time-dependent velocity field from before solves,

$$
\nabla \theta_{t}\left(T_{t}(x)\right)=\frac{\mathrm{d}}{\mathrm{~d} t} T_{t}(x)
$$

Displacement concavity of entropy

Theorem (McCann '97)

The Shannon-Boltzmann entropy is displacement concave:

$$
h\left(\mu_{t}\right) \geq(1-t) h\left(\mu_{0}\right)+t h\left(\mu_{1}\right)
$$

for all displacement interpolations.
Proof: Change of variables obtained by the description of μ_{t} as $T_{t \#} \mu_{0}$.

Corollary

For all compact $K_{0}, K_{1} \subseteq \mathbb{R}^{n}$, we have

$$
\operatorname{Vol}_{n}\left((1-t) K_{0}+t K_{1}\right) \geq \operatorname{Vol}_{n}\left(K_{0}\right)^{1-t} \operatorname{Vol}_{n}\left(K_{1}\right)^{t}
$$

How to obtain the dimensional form directly?

- (McCann '97) The functional $\mu \mapsto \int \frac{\mathrm{d} \mu^{1-\frac{1}{n}}}{\mathrm{~d}} \mathrm{dx}$ is displacement concave. Or,

Theorem (Erbar-Kuwada-Sturm, '15)

The functional $e^{h(\cdot) / n}$ is displacement concave:

$$
e^{h\left(\mu_{t}\right) / n} \geq(1-t) e^{h\left(\mu_{0}\right) / n}+t e^{h\left(\mu_{1}\right) / n}
$$

- While they prove something much ${ }^{k}$ more general, the argument specialised to obtain the above is very simple.
- In the language of random vectors, after some change of variables, this implies $e^{h(X+Y) / n} \geq e^{h(X) / n}+e^{h(Y) / n}$, when (X, Y) are coupled so that it minimise $\mathbb{E}|X-Y|^{2}$.
- Compare with the Entropy Power Inequality: $e^{2 h(X+Y) / n} \geq e^{2 h(X) / n}+e^{2 h(Y) / n}$, when X, Y are independent.

Which problem do we want approach using these ideas?

The question of a-concavity of Borel measures ν on \mathbb{R}^{n} :

$$
\nu\left((1-t) K_{0}+t K_{1}\right) \geq\left((1-t) \nu\left(K_{0}\right)^{a}+t \nu\left(K_{1}\right)^{a}\right)^{1 / a}
$$

is relatively well understood.

- (Borell, '75) We know this is equivalent to b-concavity of the density of μ, where $\frac{1}{a}=\frac{1}{b}+n$.
- (EKS, '15) We know this is equivalent to ($0,1 / a$)-convexity of the relative entropy w.r.t. ν.
Broad question: Do concavity properties of a measure improve when K_{0}, K_{1} are restricted to some sub-class of compact sets? In particular: Can 0-concavity (i.e., log-concavity) for an even measure improve when restricted to sets with some convexity and symmetry properties?

Some developments on this theme

- (Livshyts-Marsiglietti-Nayar-Zvavitch, '17) The influential Log-Brunn-Minkowski conjecture of Böröczky, Lutwak, Yang and Zhang, implies that

$$
\nu\left((1-t) K_{0}+t K_{1}\right)^{1 / n} \geq(1-t) \nu\left(K_{0}\right)^{1 / n}+t \nu\left(K_{1}\right)^{1 / n}
$$

holds for every even log-concave measure ν and symmetric convex bodies K_{0}, K_{1}.

- The $1 / n$-concavity question for the Gaussian measure specifically was asked by Gardner and Zvavitch ('10) when $0 \in K_{0} \cap K_{1}$. Nayar and Tkocz ('12) showed that this is not true, and suggested central symmetry may be the correct condition.

General strategy: (initiated by Kolesnikov-Milman, '18, '22)

- Try to prove $\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left(\mu((1-t) K+t L)^{a}\right) \leq 0$ by directly computing this second derivative.
- Enough to check at $t=0$, which gives a functional inequality for $f: \partial K \rightarrow \mathbb{R}$.
- Transform this inequality to an inequality for functions $u: K \rightarrow \mathbb{R}$ by taking u to be the solution of a certain elliptic PDE with f as its Neumann boundary condition.
- As far as we can tell, the convexity of K, L is crucial.

More developments

- (Kolesnikov-Livshyts, '21) Obtained $1 / 2 n$-concavity, $\gamma_{n}\left((1-t) K_{0}+t K_{1}\right)^{\frac{1}{2 n}} \geq(1-t) \gamma_{n}\left(K_{0}\right)^{\frac{1}{2 n}}+t \gamma_{n}\left(K_{1}\right)^{\frac{1}{2 n}}$, for all convex sets $K_{0}, K_{1} \subseteq \mathbb{R}^{n}$ containing 0 .
- (Eskenazis-Moschidis, '21) Using a sufficiency criteria obtained in the above work, obtained $1 / n$-concavity of the Gaussian measure when restricted to origin symmetric convex sets.
- (Cordero-Erasquin and Rotem, '23) $1 / n$-concavity for Rotationally-invariant log-concave measures and symmetric convex sets
- (Livshyts, '21) $\frac{1}{n^{4+o(1)}}$-concavity for all even log-concave measures and symmetric convex sets.

Our Approach

Let ν be a log-concave measure on \mathbb{R}^{n}.
Step 1: Find the right notion of entropy to encode the ν-measure as maximum entropy.

Step 2: Prove the right displacement concavity property for this entropy.

Main difference: Differentiate entropy instead of differentiating the ν-measure of interpolating convex bodies.

Definition (Relative entropy)

Let ν be a σ-additive Borel measure on \mathbb{R}^{n}. We define the relative entropy of μ with respect to ν by,

$$
D(\mu \| \nu)= \begin{cases}\int f \log f \mathrm{~d} \nu, & \text { if } \mu \text { has density } f \text { w.r.t. } \nu \\ +\infty, & \text { otherwise }\end{cases}
$$

- $D(\mu \| \nu)$ quantifies how much μ is "spread out" from the viewpoint of ν.
- We get an absolute measure of spread by looking at negative the amount μ is spread out from the most spread out measure $\mathrm{Vol}_{n}, h(\mu)=-D\left(\mu \| \mathrm{Vol}_{n}\right)$.

ν-measure as maximum entropy

Lemma

Let $K \subseteq \mathbb{R}^{n}$ be a compact set, then

$$
\sup _{\mu \in \mathcal{P}(K)} e^{-D(\mu \| \nu)}=\nu(K)
$$

Proof:

- If $X \sim \mu \in \mathcal{P}(K)$ has density f w.r.t. ν,

$$
-D(\mu \| \nu)=-\int f \log f \mathrm{~d} \nu=\mathbb{E} \log \frac{1}{f(X)} \leq \log \mathbb{E} \frac{1}{f(X)} \leq \log \nu(K)
$$

- Equality if $\frac{\mathrm{d} \mu}{\mathrm{d} \nu}$ is constant, that is, if $\mu(\cdot)=\nu_{K}(\cdot)=\frac{\nu(\cdot \cap K)}{\nu(K)}$.

General method

- Suppose $S \subseteq \mathcal{P}_{2}\left(R^{d}\right)$ is a displacement convex set, that is, $\mu_{0}, \mu_{1} \in S$ implies $\left\{\mu_{t}\right\} \subseteq S$.
- Let ν be a σ-finite Borel measure on \mathbb{R}^{n}. Assume that $\left\{\nu_{K}: K \in \mathcal{K}\right\} \subseteq S$, for some class \mathcal{K} of compact sets.
- If $e^{-a D(\cdot \| \nu)}$ is displacement concave, $a>0$, on S :

$$
e^{-a D\left(\mu_{t} \| \nu\right)} \geq(1-t) e^{-a D\left(\mu_{0} \| \nu\right)}+t e^{-a D\left(\mu_{1} \| \nu\right)}
$$

then,

$$
\nu\left((1-t) K_{0}+t K_{1}\right)^{a} \geq(1-t) \nu\left(K_{0}\right)^{a}+t \nu\left(K_{1}\right)^{a}
$$

for all $K_{0}, K_{1} \in \mathcal{K}$.

Idea 1: Decompose relative entropy, work on pieces

- Suppose $\nu=e^{-V} \mathrm{~d} x, V$ convex. (that is, ν is log-concave with potential V)
- $D(\mu \| \nu)=-h(\mu)+\mathcal{V}(\mu)$, where $\mathcal{V}(\mu)=\int V \mathrm{~d} \mu$.
- Thus,

$$
e^{-a D(\cdot \| \nu)}=\underbrace{e^{a h(\cdot)}}_{\text {know }} \underbrace{e^{-a \mathcal{V}(\cdot)}}_{\text {want }} .
$$

- Concavity of $e^{-a \mathcal{V}(\cdot)}$ is equivalent to

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \mathcal{V}\left(\mu_{t}\right) \geq a\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \mathcal{V}\left(\mu_{t}\right)\right)^{2}
$$

- These derivatives can be calculated in terms of the velocity-field $\nabla \theta_{t}$ associated with the displacement interpolation $\left\{\mu_{t}\right\}_{t \in[0,1]}$:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{V}\left(\mu_{t}\right)=\int\left\langle\nabla V, \nabla \theta_{t}\right\rangle \mathrm{d} \mu_{t}, \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \mathcal{V}\left(\mu_{t}\right)=\int\left\langle\nabla^{2} V \cdot \nabla \theta_{t}, \nabla \theta_{t}\right\rangle \mathrm{d} \mu_{t}
\end{aligned}
$$

- These quantities can be related by a Hölder-type inequality,

$$
\begin{aligned}
& \left(\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{V}\left(\mu_{t}\right)\right)^{2}=\left(\int\left\langle\nabla \theta_{t}, \nabla V\right\rangle \mathrm{d} \mu_{t}\right)^{2} \\
& \leq \int\left\langle\nabla^{2} V \cdot \nabla \theta_{t}, \nabla \theta_{t}\right\rangle \mathrm{d} \mu_{t} \cdot \int\left\langle\left(\nabla^{2} V\right)^{-1} \cdot \nabla V, \nabla V\right\rangle \mathrm{d} \mu_{t} \\
& =\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \mathcal{V}\left(\mu_{t}\right)\right) \cdot \int\left\langle\left(\nabla^{2} V\right)^{-1} \cdot \nabla V, \nabla V\right\rangle \mathrm{d} \mu_{t}
\end{aligned}
$$

- Therefore, displacement concavity of $e^{-a \mathcal{V}}$ on S can be obtained by showing $\int\left\langle\left(\nabla^{2} V\right)^{-1} \cdot \nabla V, \nabla V\right\rangle \mathrm{d} \mu \leq \frac{1}{a}$ on S.
- When V is p-homogeneous, that is, when $V(\lambda x)=\lambda^{p} V(x)$ for all $\lambda>0$, the quantity we need to bound becomes simpler allowing several computations.
- In this case, set $S=\left\{\mu: \mathcal{V}(\mu) \leq \frac{n}{p}\right\}$.
- This set is displacement concave and contains all measures whose density with respect to ν is radially decreasing.

Theorem (A-Rotem, '23+)

Let $V: \mathbb{R}^{n} \rightarrow[0, \infty)$ be a p-homogeneous convex function, $p \in(1, \infty)$. Let $\mathrm{d} \nu=e^{-V+c} \mathrm{~d} x \in \mathcal{P}\left(\mathbb{R}^{n}\right)$, for some constant c..
Then, the functional $e^{-\frac{p-1}{n} \mathcal{V}(\cdot)}$, where $\mathcal{V}(\mu)=\int V \mathrm{~d} \mu$, is displacement concave on S.

Putting things together

- So now we know $e^{\frac{h(\cdot)}{n}}$ and $e^{-\frac{p-1}{n} \mathcal{V}(\cdot)}$ are both displacement concave on S.
- $e^{-\frac{p-1}{p n} D(\cdot \| \nu)}=e^{\frac{p-1}{p n} c}\left(e^{\frac{n(\cdot)}{n}}\right)^{1-\frac{1}{\rho}}\left(e^{-\frac{p-1}{n} \mathcal{V}(\cdot)}\right)^{\frac{1}{p}}$ is a geometric-mean of concave functions, hence is itself concave.

Theorem (A-Rotem, '23+)

Let $V: \mathbb{R}^{n} \rightarrow[0, \infty)$ be a p-homogeneous convex function, $p \in(1, \infty)$. Let $\mathrm{d} \nu=e^{-V+c} \mathrm{~d} x \in \mathcal{P}\left(\mathbb{R}^{n}\right)$, for some constant c. Then, the functional $e^{-\frac{p-1}{p n} D(\cdot \| \nu)}$ is displacement concave on the set S.

A dimensional Brunn-Minkowski for star bodies

Since every ν_{K}, for a star-shaped body K (i.e., $[0,1] K \subseteq K$), has a radially decreasing density with respect to ν, we have:

Theorem (A-Rotem, 23+)

Let $V: \mathbb{R}^{n} \rightarrow[0, \infty)$ be a p-homogeneous convex function for $1<p<\infty$, and let $\mathrm{d} \nu=e^{-V} \mathrm{~d} x$. Suppose $K_{0}, K_{1} \subseteq \mathbb{R}^{n}$ are star bodies. Then for all $0 \leq t \leq 1$ we have

$$
\nu\left((1-t) K_{0}+t K_{1}\right)^{\frac{p-1}{\rho n}} \geq(1-t) \nu\left(K_{0}\right)^{\frac{p-1}{\rho n}}+t \nu\left(K_{1}\right)^{\frac{p-1}{\rho n}} .
$$

Corollary

$\gamma_{n}\left((1-t) K_{0}+t K_{1}\right)^{\frac{1}{2 n}} \geq(1-t) \gamma_{n}\left(K_{0}\right)^{\frac{1}{2 n}}+t \gamma_{n}\left(K_{1}\right)^{\frac{1}{2 n}}$, for all star-shaped compact sets $K_{0}, K_{1} \subseteq \mathbb{R}^{n}$.

Idea 2: work directly with the relative entropy

Formally, we can directly differentiate the relative entropy itself.

- Consider a measure ν having density e^{-V} with respect to the Lebesgue measure, and the Markov semigroup generated by $L=\Delta-\langle\nabla V, \nabla\rangle$.
- Denote by Γ, Γ_{2} the carré du champ operator and its iteration, respectively, of this semigroup.
Then,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} D\left(\mu_{t} \| \nu\right) & =-\int L \theta_{t} \mathrm{~d} \mu_{t} \\
\frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} D\left(\mu_{t} \| \nu\right) & =\int \Gamma_{2}\left(\theta_{t}\right) \mathrm{d} \mu_{t}
\end{aligned}
$$

where $\nabla \theta_{t}$ is the velocity-field of $\left\{\mu_{t}\right\}$.

To obtain the displacement concavity $e^{-a D(\cdot \| \nu)}$ on a set S, we need to prove

$$
\int \Gamma_{2}\left(\theta_{t}\right) \mathrm{d} \mu_{t} \geq a\left(\int L \theta_{t} \mathrm{~d} \mu_{t}\right)^{2}
$$

- Using exponentiated relative entropy (as we do) is perhaps better than using Rényi entropy when working with a proper subset S.
- Remarkably similar to the Livshyts-Kolesnikov criteria for $\nu=\gamma_{n}$.

Let $S_{n} \subseteq \mathcal{P}_{2}\left(\mathbb{R}^{n}\right)$ be the collection of all even measures μ satisfying the Poincáre inequality

$$
\int f^{2} \mathrm{~d} \mu \leq \int|\nabla f|^{2} \mathrm{~d} \mu
$$

for all odd test functions f.

Theorem (A-Rotem, '23+)

Suppose the displacment interpolation $\left\{\mu_{t}\right\}_{t \in[0,1]}$ completely lies in S_{n}, then $e^{-D\left(\mu_{t} \| \gamma_{n}\right)}$ is concave in t. Moreover, $S_{1} \subseteq \mathcal{P}_{2}\left(\mathbb{R}^{1}\right)$ is itself displacement convex, thus $e^{-D(\cdot \| \gamma)}$ is displacement concave on S_{1}.

- The proof of the first part uses an idea very similar to the one used by Eskenazis and Moschidis.

What do we know about the contents of S_{n}

We know that S_{n} contains:
(1) All even measures whose density is log-concave with respect to the standard Gaussian (that is, even strongly log-concave measures). This class corresponds to origin-symmetric convex bodies.
(2) The displacement convex set consisting of all Gaussians with covariance dominated by the identity matrix.
(3) All displacemet interpolation $\left\{\mu_{t}\right\}_{t \in[0, \infty]}$ such that one endpoint is the Gaussian, and the other endpoint is even and strong log-concave.

Open Questions

- Is $S_{n} \subseteq \mathcal{P}_{2}$ displacement convex in general?
- Does S_{n} contain a displacement convex set containing all even strongly log-concave probability measures?

THANK YOU!

