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Overview

Entropy and geometric inequalities

The dimensional Brunn–Minkowski problem for measures
(Main question) and our approach

Log-concave measures with homogeneous potential

the Gaussian measure
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The Brunn–Minkowski inequality

Theorem (Brunn–Minkowski)

Let K0,K1 ⊆ Rn be compact sets, then

Voln((1− t)K0 + tK1)
1/n ≥ (1− t)Voln(K0)

1/n + tVoln(K1)
1/n

Here (1− t)K0 + tK1 = {(1− t)x + ty : x ∈ K0, y ∈ K1}.
Says that the Lebesgue measure is “1/n-concave”.

By scaling properties of volume, this is equivalent to the a
priori weaker 0-concavity:
Voln ((1− t)K0 + tK1) ≥ Voln(K0)

1−tVoln(K1)
t .

How to prove this using “entropy”?
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Step 1: find a suitable notion of entropy to encode volume
as maximum entropy

Definition

Let µ be a probability measure on Rn having density f w.r.t. the
Lebesgue measure. Then, the Shannon-Boltzmann entropy is
defined by

h(µ) = −
∫

f log f dx .

If µ does not have density, can be meaningfully set to be −∞.

Sometimes we write h(f ) for h(µ), as well as h(X ), if X is a
random vector with distribution µ.

Thought of as a measure of how spread out µ is.
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Lemma

Let K ⊆ Rn be compact, then

sup
µ∈P(K)

h(µ) = log Voln(K ).

Proof:

If X ∼ µ has density f ,

h(µ) = −
∫

f log f dx = E log
1

f (X )
≤ logE

1

f (X )
≤ log Voln(K ).

Equality if X ∼ Uniform(K ).
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Therefore, if we want to prove

log Voln ((1− t)K0 + tK1) ≥ (1− t) log Voln(K0) + t log Voln(K1),

we can do the following:

For every µ0 ∈ P(K0) and every µ1 ∈ P(K1) find an interpolation
µt ∈ P ((1− t)K0 + tK1), such that

h(µt) ≥ (1− t)h(µ0) + th(µ1).
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Step 2: find a suitable interpolation to show concavity of
entropy chosen earlier

We think of probability distributions as distributions (or
configurations) of the molecules of a gas in space.
Look at all time-dependent vector fields vt which displace µ0
to µ1 between t = 0 and t = 1. Each choice of vt corresponds
to a family µt representing the intermediate distribution at
time t along the flow.
Pick the one which minimises the action

∫ 1
0

∫
|vt |2 dµt dt,

where µt denotes the intermediate distribution at time t along
the flow induced by vt .
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The interpolation {µt} corresponding to the
action-minimising vt is called the displacement interpolation.

It turns out that the optimal vector field is of the form ∇θt ,
and displaces every molecule with constant speed along a
straight line, leading to µt ∈ P((1− t)K0 + tK1).

Two useful properties are:

Continuity equation: For every test function ϕ,

d

dt

∫
ϕ dµt =

∫
⟨∇ϕ,∇θt⟩ dµt .

The Hamilton–Jacobi equation,

∂θt
∂t

+
|∇θt |2

2
= 0.
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An equivalent way to describe things

Let µ0, µ1 ∈ P2,ac(Rn), and consider the Monge problem of
minimising

I =

∫
|x − T (x)|2 dµ0(x),

over all maps T such that T#µ0 = µ1.

(Brenier ’91, McCann ’97) The minimum is uniquely attained
by a map T = ∇ψ, where ψ is convex. The displacement
interpolation is µt = Tt#µ0, where Tt = (1− t)I + tT .

The time-dependent velocity field from before solves,

∇θt(Tt(x)) =
d

dt
Tt(x).
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Displacement concavity of entropy

Theorem (McCann ’97)

The Shannon–Boltzmann entropy is displacement concave:

h(µt) ≥ (1− t)h(µ0) + th(µ1),

for all displacement interpolations.

Proof: Change of variables obtained by the description of µt as
Tt#µ0.

Corollary

For all compact K0,K1 ⊆ Rn, we have

Voln ((1− t)K0 + tK1) ≥ Voln(K0)
1−tVoln(K1)

t .
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How to obtain the dimensional form directly?

(McCann ’97) The functional µ 7→
∫ dµ

dx

1− 1
n dx is

displacement concave. Or,

Theorem (Erbar-Kuwada-Sturm, ’15)

The functional eh(·)/n is displacement concave:

eh(µt)/n ≥ (1− t)eh(µ0)/n + teh(µ1)/n.

While they prove something muchk more general, the
argument specialised to obtain the above is very simple.

In the language of random vectors, after some change of
variables, this implies eh(X+Y )/n ≥ eh(X )/n + eh(Y )/n, when
(X ,Y ) are coupled so that it minimise E|X − Y |2.
Compare with the Entropy Power Inequality:
e2h(X+Y )/n ≥ e2h(X )/n + e2h(Y )/n, when X ,Y are
independent.
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Which problem do we want approach using these ideas?

The question of a-concavity of Borel measures ν on Rn:

ν ((1− t)K0 + tK1) ≥ ((1− t)ν(K0)
a + tν(K1)

a)1/a ,

is relatively well understood.

(Borell, ’75) We know this is equivalent to b-concavity of the
density of µ, where 1

a = 1
b + n.

(EKS, ’15) We know this is equivalent to (0, 1/a)-convexity of
the relative entropy w.r.t. ν.

Broad question: Do concavity properties of a measure improve
when K0,K1 are restricted to some sub-class of compact sets?
In particular: Can 0-concavity (i.e., log-concavity) for an even
measure improve when restricted to sets with some convexity and
symmetry properties?
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Some developments on this theme

(Livshyts-Marsiglietti-Nayar-Zvavitch, ’17) The influential
Log-Brunn–Minkowski conjecture of Böröczky, Lutwak, Yang
and Zhang, implies that

ν((1− t)K0 + tK1)
1/n ≥ (1− t)ν(K0)

1/n + tν(K1)
1/n,

holds for every even log-concave measure ν and symmetric
convex bodies K0,K1.

The 1/n-concavity question for the Gaussian measure
specifically was asked by Gardner and Zvavitch (’10) when
0 ∈ K0 ∩ K1. Nayar and Tkocz (’12) showed that this is not
true, and suggested central symmetry may be the correct
condition.
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General strategy: (initiated by Kolesnikov-Milman, ’18, ’22)

Try to prove d2

dt2
(µ ((1− t)K + tL)a) ≤ 0 by directly

computing this second derivative.

Enough to check at t = 0, which gives a functional inequality
for f : ∂K → R.
Transform this inequality to an inequality for functions
u : K → R by taking u to be the solution of a certain elliptic
PDE with f as its Neumann boundary condition.

As far as we can tell, the convexity of K , L is crucial.
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More developments

(Kolesnikov-Livshyts, ’21) Obtained 1/2n-concavity,

γn ((1− t)K0 + tK1)
1
2n ≥ (1− t)γn(K0)

1
2n + tγn(K1)

1
2n , for all

convex sets K0,K1 ⊆ Rn containing 0.

(Eskenazis-Moschidis, ’21) Using a sufficiency criteria obtained
in the above work, obtained 1/n-concavity of the Gaussian
measure when restricted to origin symmetric convex sets.

(Cordero-Erasquin and Rotem, ’23) 1/n-concavity for
Rotationally-invariant log-concave measures and symmetric
convex sets

(Livshyts, ’21) 1
n4+o(1) -concavity for all even log-concave

measures and symmetric convex sets.
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Our Approach

Let ν be a log-concave measure on Rn.

Step 1: Find the right notion of entropy to encode the ν-measure
as maximum entropy.

Step 2: Prove the right displacement concavity property for this
entropy.

Main difference: Differentiate entropy instead of differentiating the
ν-measure of interpolating convex bodies.
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Step 1: Relative entropy

Definition (Relative entropy)

Let ν be a σ-additive Borel measure on Rn. We define the relative
entropy of µ with respect to ν by,

D(µ∥ν) =

{∫
f log f dν, if µ has density f w.r.t. ν,

+∞, otherwise.

D(µ∥ν) quantifies how much µ is “spread out” from the
viewpoint of ν.

We get an absolute measure of spread by looking at negative
the amount µ is spread out from the most spread out measure
Voln, h(µ) = −D(µ∥Voln).
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ν-measure as maximum entropy

Lemma

Let K ⊆ Rn be a compact set, then

sup
µ∈P(K)

e−D(µ∥ν) = ν(K )

.

Proof:

If X ∼ µ ∈ P(K ) has density f w.r.t. ν,

−D(µ∥ν) = −
∫

f log f dν = E log
1

f (X )
≤ logE

1

f (X )
≤ log ν(K ).

Equality if dµ
dν is constant, that is, if µ(·) = νK (·) = ν(·∩K)

ν(K) .
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General method

Suppose S ⊆ P2(R
d) is a displacement convex set, that is,

µ0, µ1 ∈ S implies {µt} ⊆ S .

Let ν be a σ-finite Borel measure on Rn. Assume that
{νK : K ∈ K} ⊆ S , for some class K of compact sets.

If e−aD(·∥ν) is displacement concave, a > 0, on S :

e−aD(µt∥ν) ≥ (1− t)e−aD(µ0∥ν) + te−aD(µ1∥ν);

then,

ν((1− t)K0 + tK1)
a ≥ (1− t)ν(K0)

a + tν(K1)
a,

for all K0,K1 ∈ K.
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Idea 1: Decompose relative entropy, work on pieces

Suppose ν = e−V dx , V convex. (that is, ν is log-concave
with potential V )

D(µ∥ν) = −h(µ) + V(µ) , where V(µ) =
∫
V dµ.

Thus,
e−aD(·∥ν) = eah(·)︸ ︷︷ ︸

know

e−aV(·)︸ ︷︷ ︸
want

.

Concavity of e−aV(·) is equivalent to

d2

dt2
V(µt) ≥ a

(
d

dt
V(µt)

)2

.
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These derivatives can be calculated in terms of the
velocity-field ∇θt associated with the displacement
interpolation {µt}t∈[0,1]:

d

dt
V(µt) =

∫
⟨∇V ,∇θt⟩ dµt ,

d2

dt2
V(µt) =

∫
⟨∇2V · ∇θt ,∇θt⟩ dµt .

These quantities can be related by a Hölder-type inequality,(
d

dt
V(µt)

)2

=

(∫
⟨∇θt ,∇V ⟩ dµt

)2

≤
∫
⟨∇2V · ∇θt ,∇θt⟩ dµt ·

∫
⟨
(
∇2V

)−1 · ∇V ,∇V ⟩ dµt

=

(
d2

dt2
V(µt)

)
·
∫
⟨
(
∇2V

)−1 · ∇V ,∇V ⟩ dµt
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Therefore, displacement concavity of e−aV on S can be
obtained by showing

∫
⟨
(
∇2V

)−1 · ∇V ,∇V ⟩ dµ ≤ 1
a on S .

When V is p-homogeneous, that is, when V (λx) = λpV (x)
for all λ > 0, the quantity we need to bound becomes simpler
allowing several computations.

In this case, set S = {µ : V(µ) ≤ n
p}.

This set is displacement concave and contains all measures
whose density with respect to ν is radially decreasing.

Theorem (A-Rotem, ’23+)

Let V : Rn → [0,∞) be a p-homogeneous convex function,
p ∈ (1,∞). Let dν = e−V+c dx ∈ P(Rn), for some constant c..

Then, the functional e−
p−1
n

V(·), where V(µ) =
∫
V dµ, is

displacement concave on S.
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Putting things together

So now we know e
h(·)
n and e−

p−1
n

V(·) are both displacement
concave on S .

e−
p−1
pn

D(·∥ν) = e
p−1
pn

c
(
e

h(·)
n

)1− 1
p
(
e−

p−1
n

V(·)
) 1

p
is a

geometric-mean of concave functions, hence is itself concave.

Theorem (A-Rotem, ’23+)

Let V : Rn → [0,∞) be a p-homogeneous convex function,
p ∈ (1,∞). Let dν = e−V+c dx ∈ P(Rn), for some constant c.

Then, the functional e−
p−1
pn

D(·∥ν) is displacement concave on the
set S.
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A dimensional Brunn–Minkowski for star bodies

Since every νK , for a star-shaped body K (i.e., [0, 1]K ⊆ K ), has a
radially decreasing density with respect to ν, we have:

Theorem (A-Rotem, 23+)

Let V : Rn → [0,∞) be a p-homogeneous convex function for
1 < p <∞, and let dν = e−V dx. Suppose K0,K1 ⊆ Rn are star
bodies. Then for all 0 ≤ t ≤ 1 we have

ν ((1− t)K0 + tK1)
p−1
pn ≥ (1− t)ν(K0)

p−1
pn + tν (K1)

p−1
pn .

Corollary

γn ((1− t)K0 + tK1)
1
2n ≥ (1− t)γn(K0)

1
2n + tγn(K1)

1
2n , for all

star-shaped compact sets K0,K1 ⊆ Rn.
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Idea 2: work directly with the relative entropy

Formally, we can directly differentiate the relative entropy itself.

Consider a measure ν having density e−V with respect to the
Lebesgue measure, and the Markov semigroup generated by
L = ∆− ⟨∇V ,∇⟩.
Denote by Γ, Γ2 the carré du champ operator and its iteration,
respectively, of this semigroup.

Then,

d

dt
D(µt∥ν) = −

∫
Lθt dµt ,

d2

dt2
D(µt∥ν) =

∫
Γ2(θt) dµt ,

where ∇θt is the velocity-field of {µt}.
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To obtain the displacement concavity e−aD(·∥ν) on a set S , we
need to prove ∫

Γ2(θt) dµt ≥ a

(∫
Lθt dµt

)2

.

Using exponentiated relative entropy (as we do) is perhaps
better than using Rényi entropy when working with a proper
subset S .

Remarkably similar to the Livshyts-Kolesnikov criteria for
ν = γn.
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The Gaussian case

Let Sn ⊆ P2(Rn) be the collection of all even measures µ satisfying
the Poincáre inequality∫

f 2 dµ ≤
∫

|∇f |2 dµ,

for all odd test functions f .

Theorem (A-Rotem, ’23+)

Suppose the displacment interpolation {µt}t∈[0,1] completely lies in

Sn, then e−D(µt∥γn) is concave in t. Moreover, S1 ⊆ P2(R1) is itself
displacement convex, thus e−D(·∥γ) is displacement concave on S1.

The proof of the first part uses an idea very similar to the one
used by Eskenazis and Moschidis.
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What do we know about the contents of Sn

We know that Sn contains:

1 All even measures whose density is log-concave with respect
to the standard Gaussian (that is, even strongly log-concave
measures). This class corresponds to origin-symmetric convex
bodies.

2 The displacement convex set consisting of all Gaussians with
covariance dominated by the identity matrix.

3 All displacemet interpolation {µt}t∈[0,∞] such that one
endpoint is the Gaussian, and the other endpoint is even and
strong log-concave.
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Open Questions

Is Sn ⊆ P2 displacement convex in general?

Does Sn contain a displacement convex set containing all even
strongly log-concave probability measures?
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