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@ Entropy and geometric inequalities
@ The dimensional Brunn—Minkowski problem for measures
(Main question) and our approach

@ Log-concave measures with homogeneous potential

@ the Gaussian measure
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The Brunn—Minkowski inequality

Theorem (Brunn—Minkowski)

Let Ky, K1 C R" be compact sets, then

Vol,((1 — t)Ko + tK1)Y/™ > (1 — t)Vol,(Ko)Y/™ + tVol,(Ki)Y/"

Here (1 —t)Ko+tKi ={(1—t)x+ty: x € Ko, y € K1}.
@ Says that the Lebesgue measure is "“1/n-concave”.

@ By scaling properties of volume, this is equivalent to the a
priori weaker 0-concavity:

Vol, ((1 — t)Ko 4 tK1) > Vol,(Ko) ~tVol (K1)t
@ How to prove this using “entropy”?
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Step 1: find a suitable notion of entropy to encode volume
as maximum entropy

Definition

Let u be a probability measure on R” having density f w.r.t. the
Lebesgue measure. Then, the Shannon-Boltzmann entropy is
defined by

h(p) = —/flogf dx.

o If u does not have density, can be meaningfully set to be —cc.

e Sometimes we write h(f) for h(u), as well as h(X), if X is a
random vector with distribution p.

@ Thought of as a measure of how spread out y is.
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Let K C R" be compact, then

sup h(u) = log Vol,(K).
HEP(K)

Proof:

@ If X ~ p has density f,

1 1
h(w) /flogf dx = Elog FX) = IogEf(X) < log Vol (K)

e Equality if X ~ Uniform(K).
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Therefore, if we want to prove

[log Vol (1 — t)Ko + tKi1) > (1 — t) log Vols(Ko) + t log Vola(K1), |

we can do the following:

For every po € P(Ko) and every ug € P(Ki) find an interpolation
pe € P((1— t)Ko + tKy), such that

A1) > (1 — t)h(zo) + th(pa). |
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Step 2: find a suitable interpolation to show concavity of
entropy chosen earlier

@ We think of probability distributions as distributions (or
configurations) of the molecules of a gas in space.

@ Look at all time-dependent vector fields v; which displace pg
to p1 between t =0 and t = 1. Each choice of v; corresponds
to a family p; representing the intermediate distribution at
time t along the flow.

@ Pick the one which minimises the action fol [ |ve|? due dt,
where p; denotes the intermediate distribution at time t along

the flow induced by v;. %



@ The interpolation {u:} corresponding to the
action-minimising v; is called the displacement interpolation.

@ It turns out that the optimal vector field is of the form V#,,
and displaces every molecule with constant speed along a
straight line, leading to u: € P((1 — t)Ko + tKy).

Two useful properties are:

o Continuity equation: For every test function ¢,

dt/qb diie = /<v¢, V) dyte.

@ The Hamilton—Jacobi equation,

=0.

90: | V0>
8t+ 2
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An equivalent way to describe things

Let o, 1 € P2,ac(R"), and consider the Monge problem of
minimising

1= [ b= TP dro(x)

over all maps T such that Tupo = ps1.

o (Brenier '91, McCann '97) The minimum is uniquely attained
by a map T = V), where 1 is convex. The displacement
interpolation is y1; = Tyypio, where Ty = (1 —t)/ + tT.

@ The time-dependent velocity field from before solves,

VO(Ti(x)) = %Tt(x).
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Displacement concavity of entropy

Theorem (McCann '97)

The Shannon—Boltzmann entropy is displacement concave:

h(pe) > (1 — t)h(po) + th(pa),

for all displacement interpolations.

Proof: Change of variables obtained by the description of yu: as
Tt#MO-

For all compact Ky, K1 C R", we have

Vol, ((1 — t)Ko + tK1) > Vol,(Ko)' Vol (K1)*.
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How to obtain the dimensional form directly?

1—1
o (McCann '97) The functional s+ [ 927 " dx is
displacement concave. Or,

Theorem (Erbar-Kuwada-Sturm, '15)

The functional e")/" js displacement concave:

ehlee)/m > (1 — p)ehlro)/n 4 ¢ehlra)/n,

@ While they prove something much* more general, the
argument specialised to obtain the above is very simple.

@ In the language of random vectors, after some change of
variables, this implies e"X+Y)/n > h(X)/n 4 oh(Y)/n \when
(X,Y) are coupled so that it minimise E|X — Y2,

@ Compare with the Entropy Power Inequality:
e2h(X+Y)/n > e2h(X)/n + e‘2h(Y)/nv when X, Y are
independent.
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Which problem do we want approach using these ideas?

The question of a-concavity of Borel measures v on R":
v((1—1t)Ko+ tK1) > ((1 — t)v(Ko)? + tV(K]_)a)l/a,

is relatively well understood.
e (Borell, '75) We know this is equivalent to b-concavity of the
: 1_1
density of u1, where 5 = ¢ + n.
e (EKS, '15) We know this is equivalent to (0, 1/a)-convexity of
the relative entropy w.r.t. v.
Broad question: Do concavity properties of a measure improve
when Kjp, K1 are restricted to some sub-class of compact sets?
In particular: Can 0-concavity (i.e., log-concavity) for an even
measure improve when restricted to sets with some convexity and
symmetry properties?
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Some developments on this theme

o (Livshyts-Marsiglietti-Nayar-Zvavitch, '17) The influential
Log-Brunn—Minkowski conjecture of Boroczky, Lutwak, Yang
and Zhang, implies that

v((1— t)Ko + tKi)Y" > (1 — t)u(Ko)/™ + tu(K1)Y/",

holds for every even log-concave measure v and symmetric
convex bodies Ky, Ki.

@ The 1/n-concavity question for the Gaussian measure
specifically was asked by Gardner and Zvavitch ('10) when
0 € Ko N Ki. Nayar and Tkocz ('12) showed that this is not
true, and suggested central symmetry may be the correct
condition.
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General strategy: (initiated by Kolesnikov-Milman, '18, '22)

e Try to prove dt2 (1 ((1 = t)K + tL)?) < 0 by directly
computing this second derivative.

@ Enough to check at t = 0, which gives a functional inequality
for f : 0K — R.

@ Transform this inequality to an inequality for functions
u: K — R by taking u to be the solution of a certain elliptic
PDE with f as its Neumann boundary condition.

@ As far as we can tell, the convexity of K, L is crucial.
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More developments

o (Kolesnikov-Livshyts, '21) Obtained 1/2n-concavity,
1
v (1 = t)Ko + tK1) 2 > (1 — t)yn(Ko)? + tyn(K1)2, for all
convex sets Kp, K1 C R" containing 0.

o (Eskenazis-Moschidis, '21) Using a sufficiency criteria obtained
in the above work, obtained 1/n-concavity of the Gaussian
measure when restricted to origin symmetric convex sets.

o (Cordero-Erasquin and Rotem, '23) 1/n-concavity for
Rotationally-invariant log-concave measures and symmetric
convex sets

o (Livshyts, '21) 4+O —remy-concavity for all even log-concave
measures and symmetric convex sets.
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Our Approach

Let v be a log-concave measure on R”.

Step 1: Find the right notion of entropy to encode the v-measure
as maximum entropy.

Step 2: Prove the right displacement concavity property for this
entropy.

Main difference: Differentiate entropy instead of differentiating the
v-measure of interpolating convex bodies.
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Step 1: Relative entropy

Definition (Relative entropy)
Let v be a g-additive Borel measure on R". We define the relative
entropy of p with respect to v by,

[ flogf dv, if u has density f w.r.t. v,
400, otherwise.

D(ullv) = {

e D(u|lv) quantifies how much p is “spread out” from the
viewpoint of v.

@ We get an absolute measure of spread by looking at negative
the amount y is spread out from the most spread out measure
Vol,, h(u) = —D(ul|Vol,).
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v-measure as maximum entropy

Let K C R" be a compact set, then

Sup e_D(M”V) — I/(K)
HEP(K)

Proof:
o If X ~ p € P(K) has density f w.r.t. v,

—D(p||v) = —/flogf dv = ]Elog(i() < IogEf(IX) < log v(K).

e Equality if % is constant, that is, if u(-) = vk(:) = S(K) -
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General method

@ Suppose S C Po(RY) is a displacement convex set, that is,
to, 1 € S implies {u:} C S.
@ Let v be a o-finite Borel measure on R". Assume that

{vk : K € K} C S, for some class I of compact sets.

aD(:|l

o If e~ ¥) is displacement concave, a > 0, on S:

e_aD(u/f”V) Z (1 — t)e_aD(p‘O”V) + te_aD(MlHV);
then,
V(1 = Ko + tK1)? > (1 — t)(Ko)® + tr(Ki)?,

for all Ky, K1 € K.
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Idea 1: Decompose relative entropy, work on pieces

@ Suppose v = e~ dx, V convex. (that is, v is log-concave
with potential V)

’ D(pllv) = —h(u) + V(u)‘ where V(u) = [V dp.
@ Thus,

e 3D(IV) — gah() g—av()
vg,_/

know want

e Concavity of e=2Y(") is equivalent to

A= a(Evi)
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@ These derivatives can be calculated in terms of the
velocity-field V8, associated with the displacement

interpolation {1t }¢efo,1]:

d

EV(H{') = /<V\/, V9t> d,LLt,

d2

WV(,U/t) = /<V2V . VGt, V9t> d/,Lt

@ These quantities can be related by a Holder-type inequality,

<ddtV(Mt)>2 = (/(V9t>VV> dﬂt>2

S /<V2VV9t,V9t> dﬂt/<(v2V)_1 VV,VV) d/l/t

- (:;v(ut)> '/<(v2v)‘1 YV, VV) dus
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@ Therefore, displacement concawty of e on S can be
obtained by showing [( (V2V) VV,VV)du<lons.

e When V is p-homogeneous, that is, when V(Ax) = )\P V(x)
for all A > 0, the quantity we need to bound becomes simpler
allowing several computations.

@ In this case, set S = {u: V(p) < 2}.

@ This set is displacement concave and contains all measures
whose density with respect to v is radially decreasing.

Theorem (A-Rotem, '23+)

Let V : R" — [0,00) be a p-homogeneous convex function,
pe(l,00). Let dv=e"V*cdx e P(R”) for some constant c..
Then, the functional e~ % V), where V(p)= [V dpy,is
displacement concave on S.
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Putting things together

h(-) _p=1lyy. .
@ So now we know e n and e~ "n Y() are both displacement
concave on S.

1 1
2= p(||v) P;1C< A\ 1=5 _e=ly)) b

@ e —er  |en e is a

geometric-mean of concave functions, hence is itself concave.

Theorem (A-Rotem, '23+)

Let V : R" — [0,00) be a p-homogeneous convex function,

p € (1,00). Let dv = e+ dx € P(R"), for some constant c.

_p=1p(. ..
Then, the functional e »r DCIY) g displacement concave on the

set S.
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A dimensional Brunn—Minkowski for star bodies

Since every vk, for a star-shaped body K (i.e., [0,1]K C K), has a
radially decreasing density with respect to v, we have:

Theorem (A-Rotem, 23+)

Let V : R" — [0,00) be a p-homogeneous convex function for
1< p<oo, and let dv=e"" dx. Suppose Ky, K C R" are star
bodies. Then for all 0 < t <1 we have

V(1= t)Ko + K1) > (1 — t)u(Ko) ™ + tw (Ki) ™

A

Yo ((1 — t)Ko + tK1)2n (1- t)’y,,(Kg)zn + t’y,,(Kl) for all
star-shaped compact sets Ky, K1 C R".
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Idea 2: work directly with the relative entropy

Formally, we can directly differentiate the relative entropy itself.

e Consider a measure v having density e~" with respect to the

Lebesgue measure, and the Markov semigroup generated by
L=A—-(VV,V).

@ Denote by I, > the carré du champ operator and its iteration,
respectively, of this semigroup.

Then,
—dD( I )—/L9 d
it nel|lv) = t Alt,
d2

dtzD(MtHV)Z/D(Qt) due,

where V0, is the velocity-field of {1}
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To obtain the displacement concavity e 2P(1) on a set S, we

need to prove
2
/r2(6t) d/,Lt 2 a </ L@t d/J/t> .

e Using exponentiated relative entropy (as we do) is perhaps
better than using Rényi entropy when working with a proper
subset S.

@ Remarkably similar to the Livshyts-Kolesnikov criteria for

V="
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The Gaussian case

Let S, C P2(R") be the collection of all even measures p satisfying
the Poincére inequality

/f2 duﬁ/!VfF du,

for all odd test functions f.

Theorem (A-Rotem, '23+)

Suppose the displacment interpolation {iit}+c[0,1] completely lies in
S,,, then e Puellm) s concave in t. Moreover, S; C Pz(Rl) is itself
displacement convex, thus e~ PCI") js displacement concave on Si.

@ The proof of the first part uses an idea very similar to the one
used by Eskenazis and Moschidis.
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What do we know about the contents of S,

We know that S, contains:

O All even measures whose density is log-concave with respect
to the standard Gaussian (that is, even strongly log-concave
measures). This class corresponds to origin-symmetric convex
bodies.

@ The displacement convex set consisting of all Gaussians with
covariance dominated by the identity matrix.

© All displacemet interpolation {fit}c[0,o] Such that one
endpoint is the Gaussian, and the other endpoint is even and
strong log-concave.

28/30



Open Questions

e Is S, C P, displacement convex in general?

@ Does S, contain a displacement convex set containing all even
strongly log-concave probability measures?
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