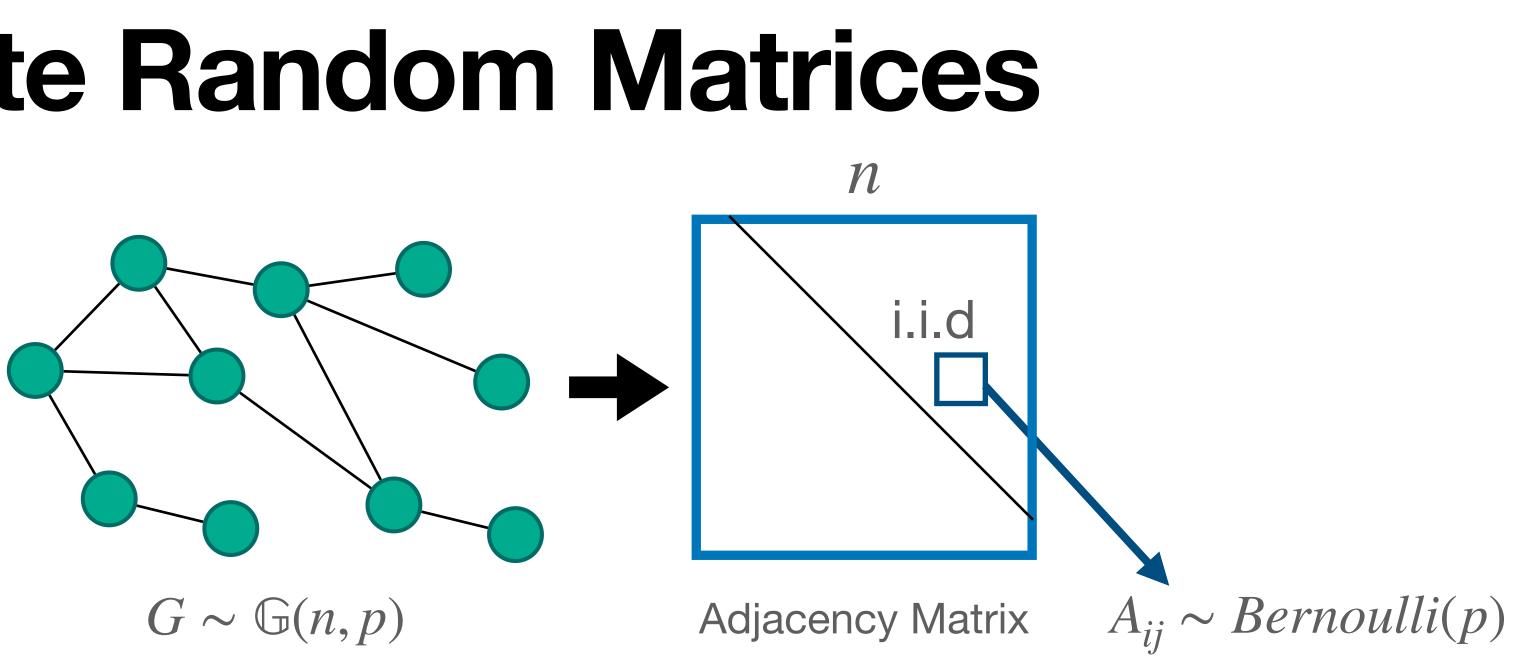
Rank of Erdos-Renyi Graphs Margalit Glasgow

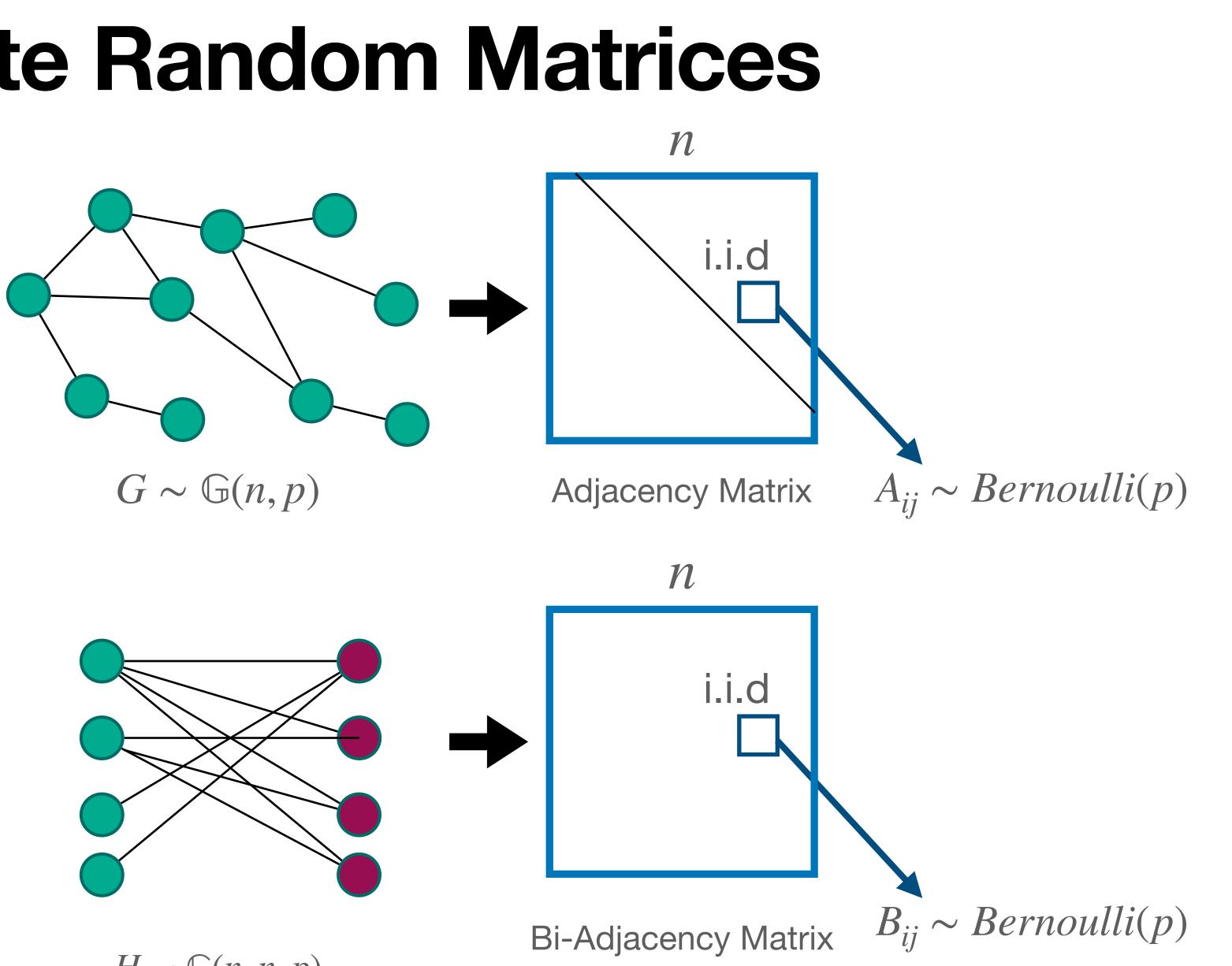
Joint work with Patrick DeMichele, Alex Moreira

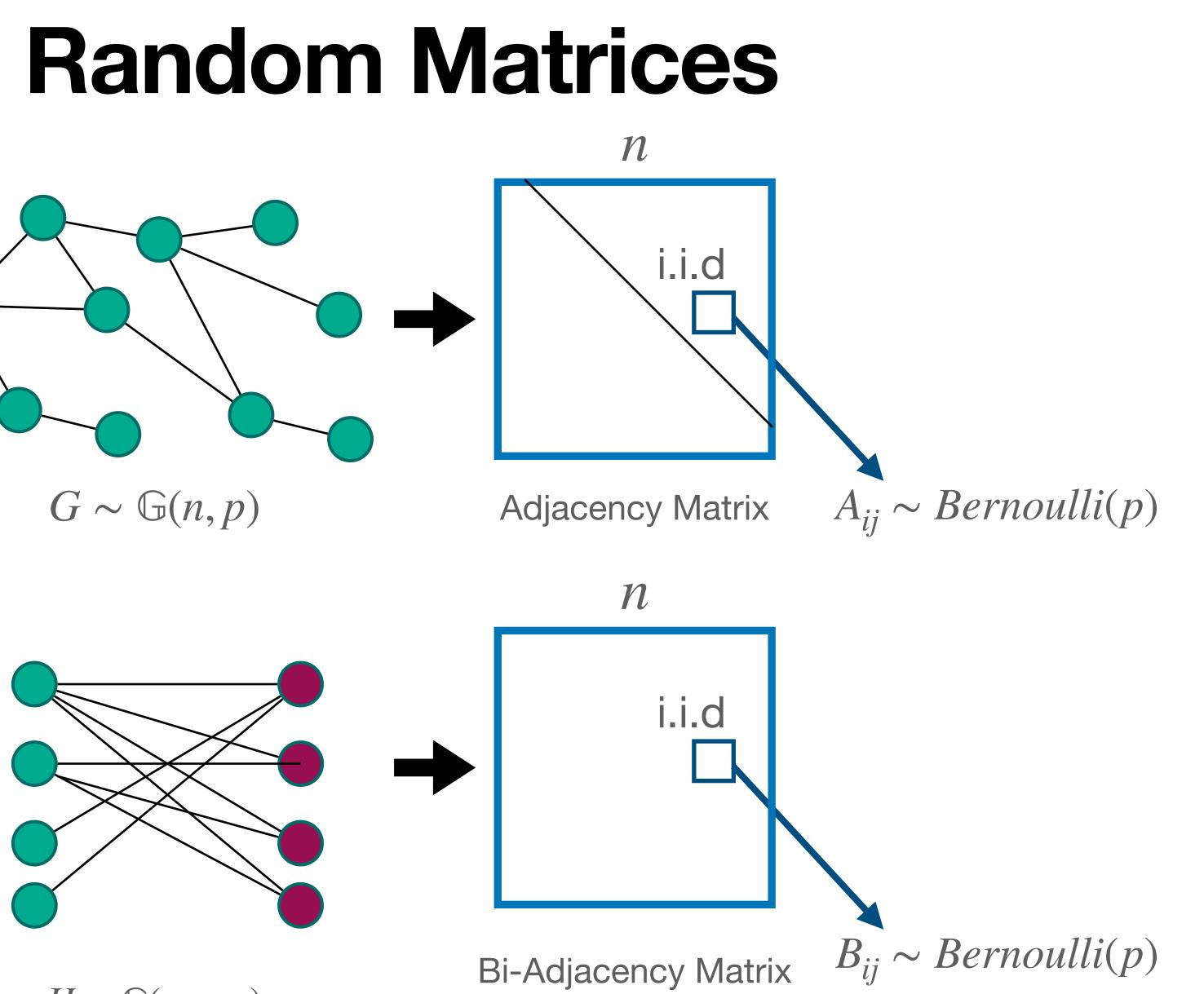
Discrete Random Matrices

Discrete Random Matrices



Discrete Random Matrices





 $H \sim \mathbb{G}(n, n, p)$

Above connectivity threshold $(ln(n) + \omega(1) \le 1)$ are invertible with high probability. [Rudelson, Basak '18]

Above connectivity threshold $(ln(n) + \omega(1) \le pn \le n/2)$, $G \sim \mathbb{G}(n, p)$ and $H \sim \mathbb{G}(n, n, p)$

Above connectivity threshold $(ln(n) + \omega(1) \le pn \le n/2)$, $G \sim \mathbb{G}(n, p)$ and $H \sim \mathbb{G}(n, n, p)$ are invertible with high probability. [Rudelson, Basak '18]

Use G interchangably with Adj(G), H with Bi-Adj(H)

Above connectivity threshold $(ln(n) + \omega(1) \le 1)$ are invertible with high probability. [Rudelson, Basak '18]

Below this threshold $pn \leq (ln(n) - \omega(1))$, (with high probability. [Rudelson, Basak '18] Use G interchangably with Adj(G), H with Bi-Adj(H)

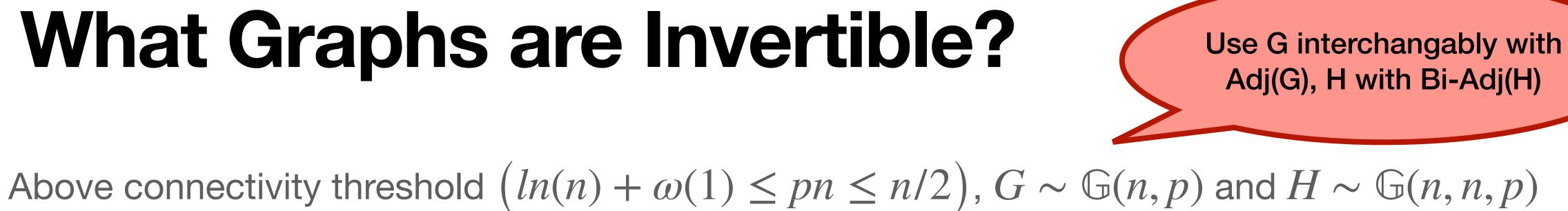
Above connectivity threshold $(ln(n) + \omega(1) \le pn \le n/2)$, $G \sim \mathbb{G}(n, p)$ and $H \sim \mathbb{G}(n, n, p)$

Below this threshold $pn \leq (ln(n) - \omega(1))$, $G \sim \mathbb{G}(n, p)$ and $H \sim \mathbb{G}(n, n, p)$ are not invertible

are invertible with high probability. [Rudelson, Basak '18]

with high probability. [Rudelson, Basak '18]

For $d \geq 3$, random d-regular graphs are invertible with high probability. [Huang '18]

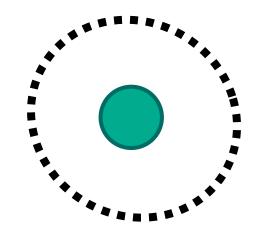


Below this threshold $pn \leq (ln(n) - \omega(1))$, $G \sim \mathbb{G}(n, p)$ and $H \sim \mathbb{G}(n, n, p)$ are not invertible

Sparse ER Graphs Have Linear Dependencies

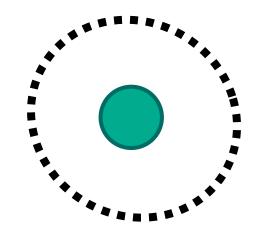
Sparse ER Graphs Have Linear Dependencies

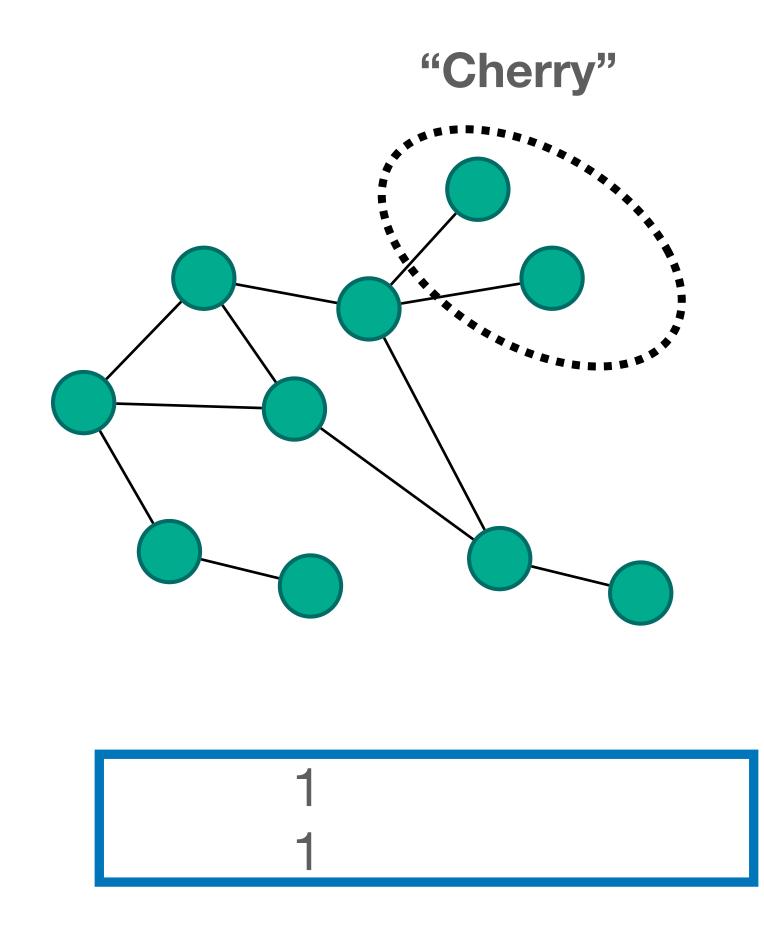
Isolated Vertex



Sparse ER Graphs Have Linear Dependencies

Isolated Vertex



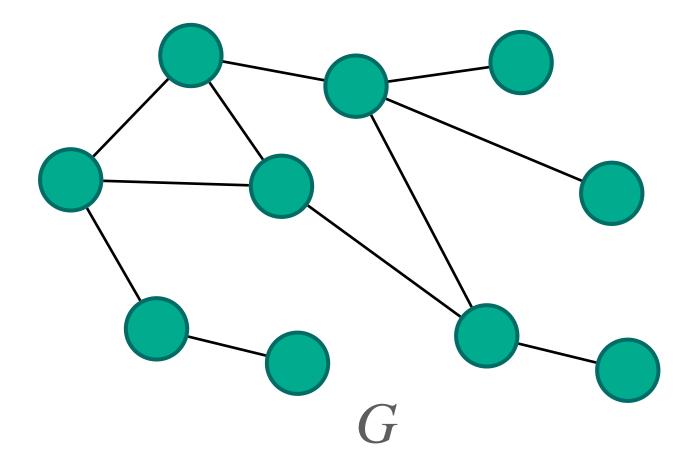


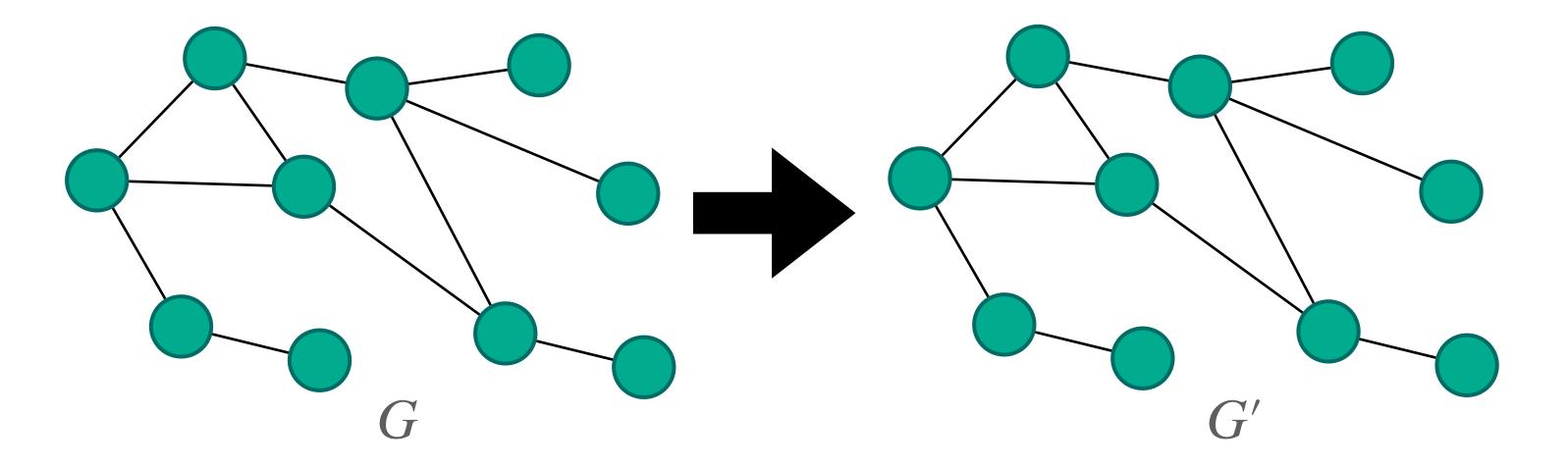
Key Phenomenon: Linear Dependencies come from small structures [Costello Vu, Tikhimirov, Jain et al, etc.]

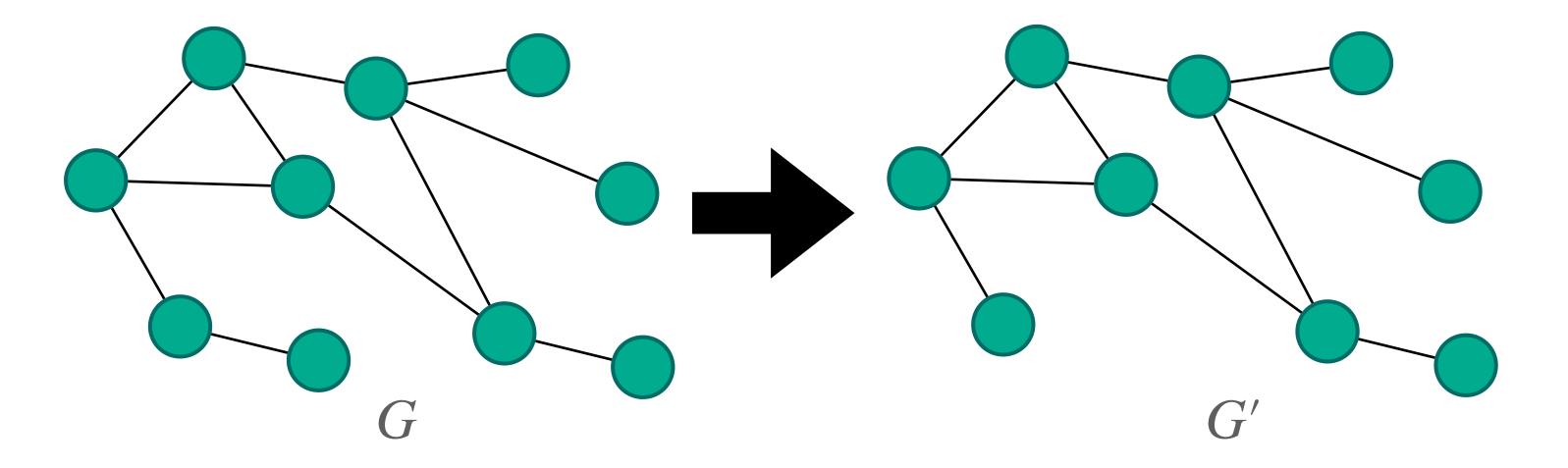
Key Phenomenon: Linear Dependencies come from small structures [Costello Vu, Tikhimirov, Jain et al, etc.]

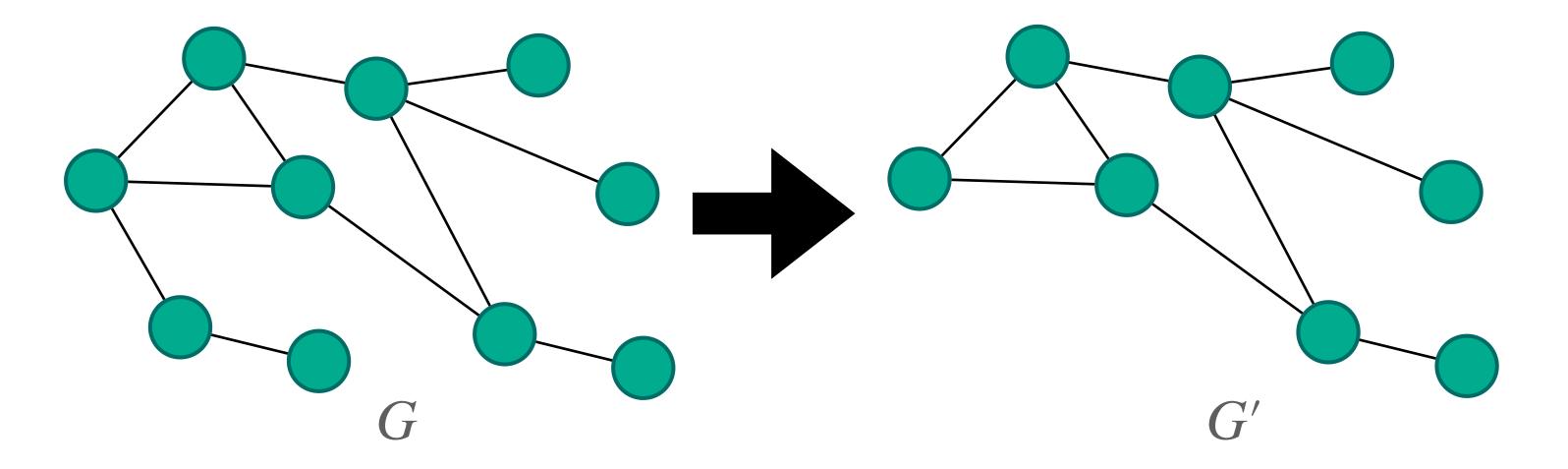
Key Phenomenon: Linear Dependencies come from small structures [Costello Vu, Tikhimirov, Jain et al, etc.]

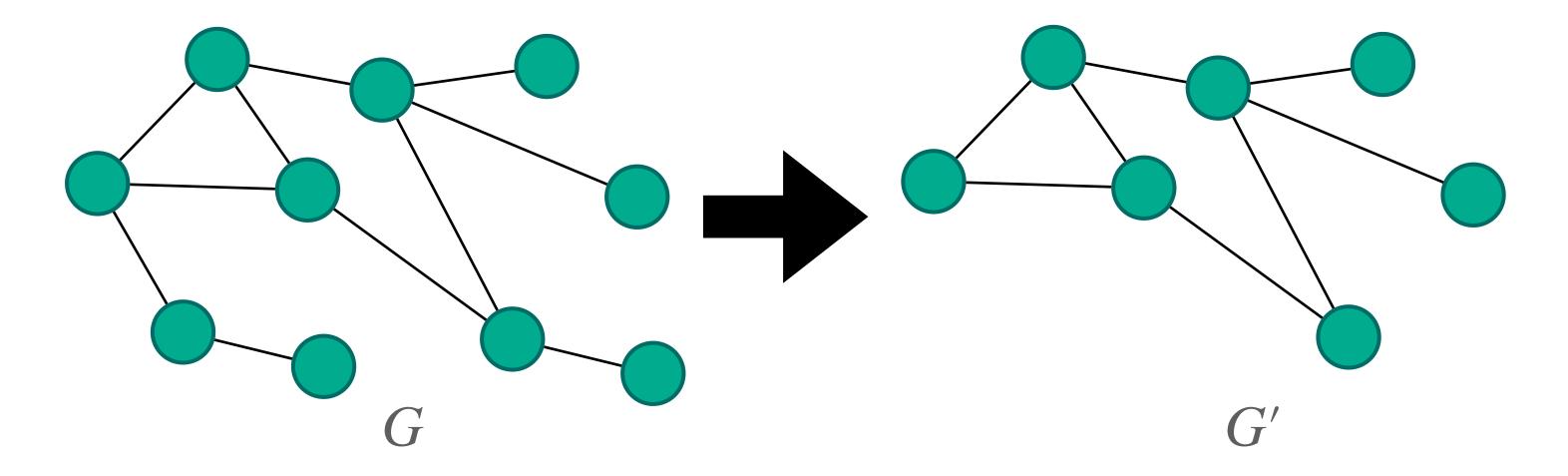
Can we understand the rank of G by removing these structures?

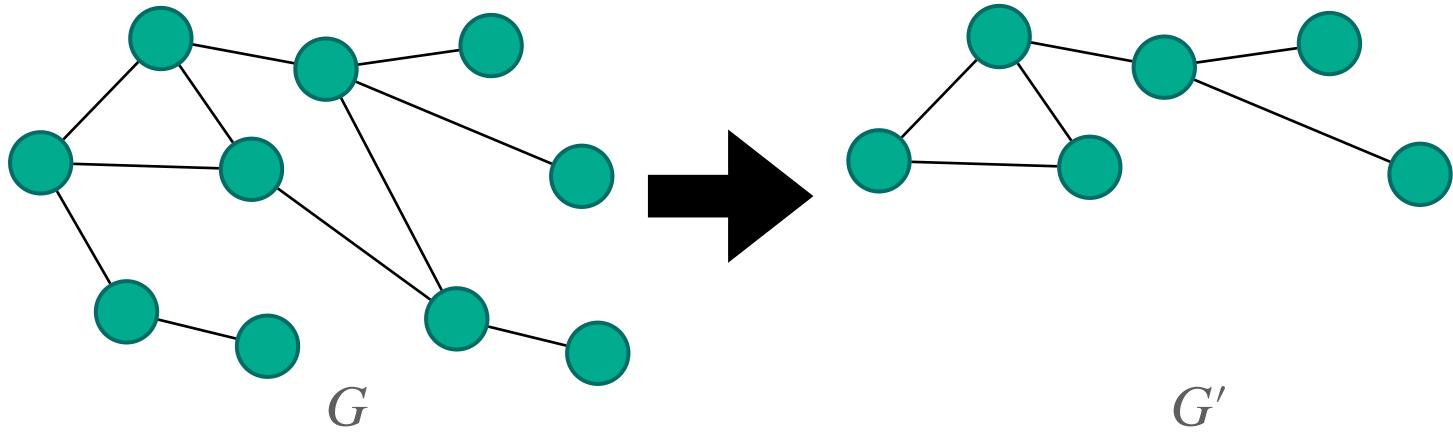


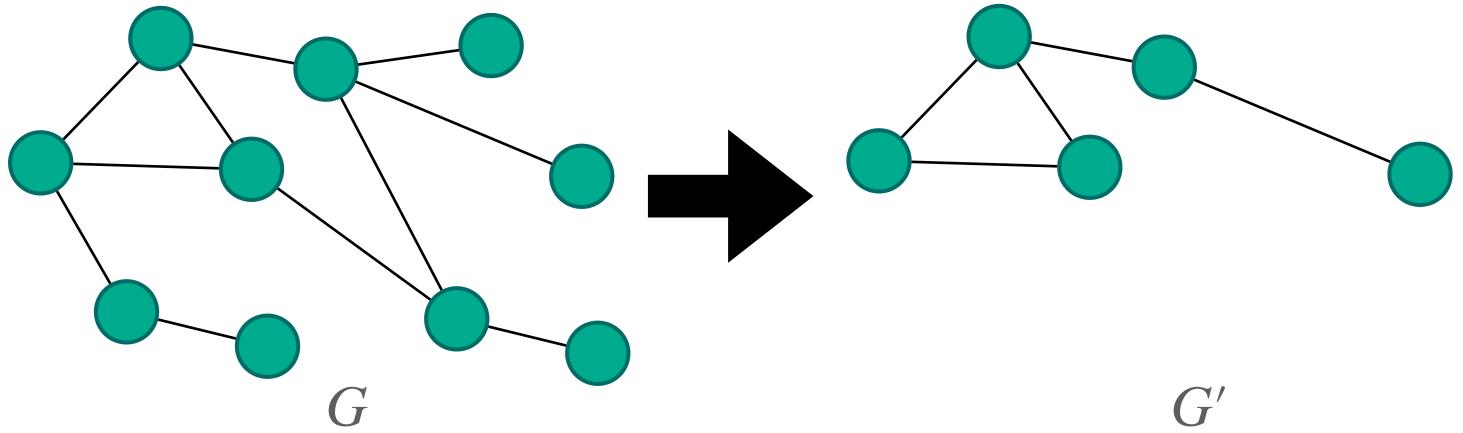


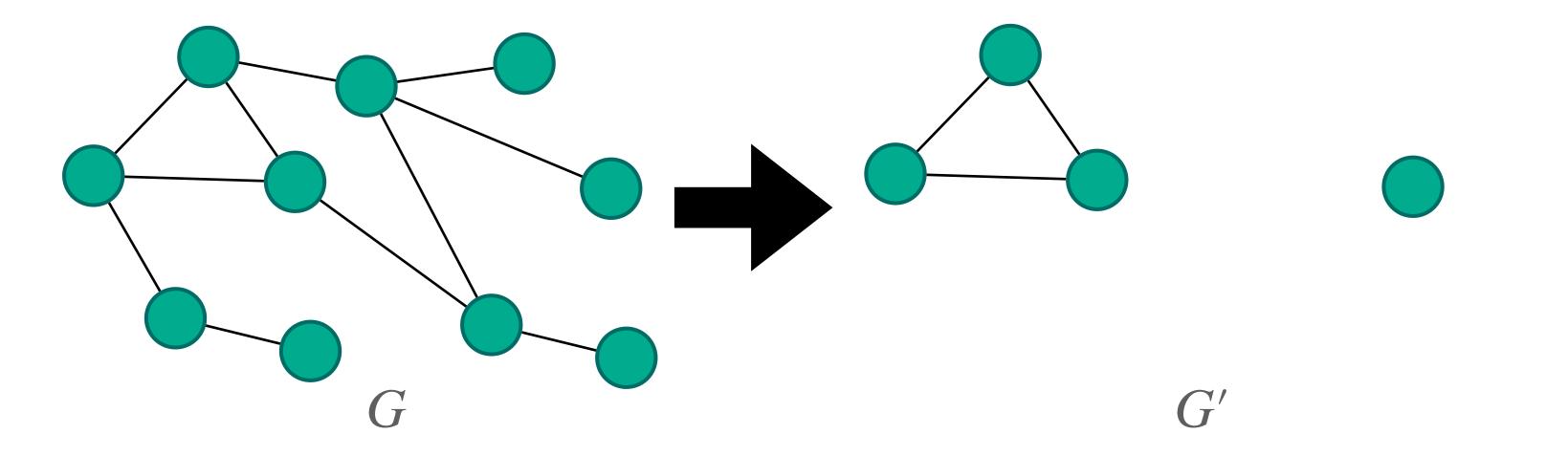


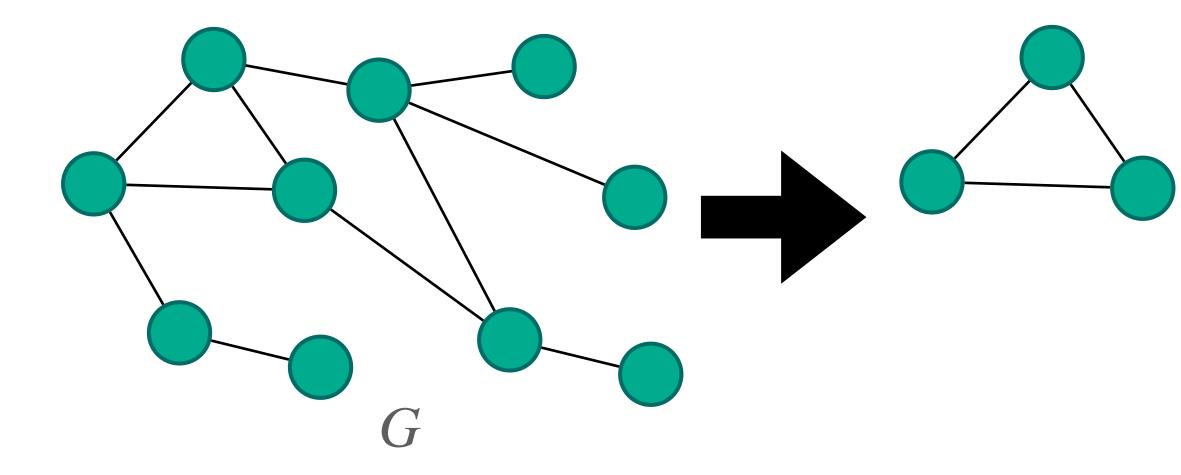


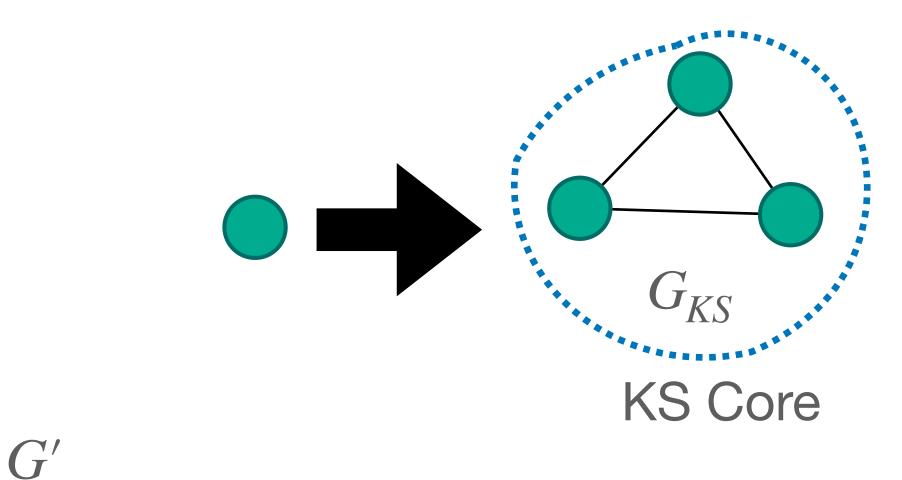




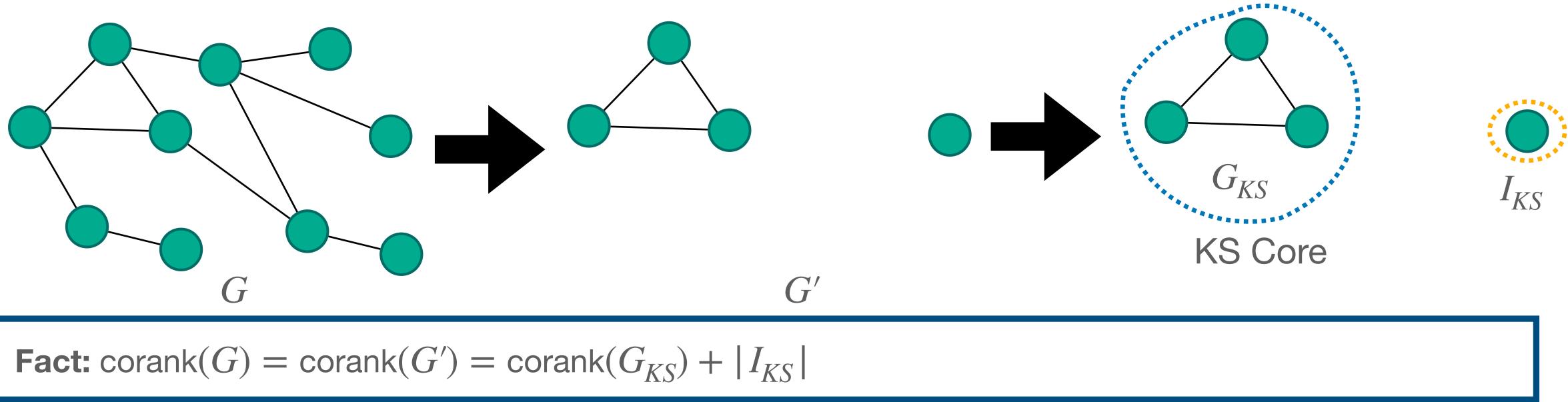




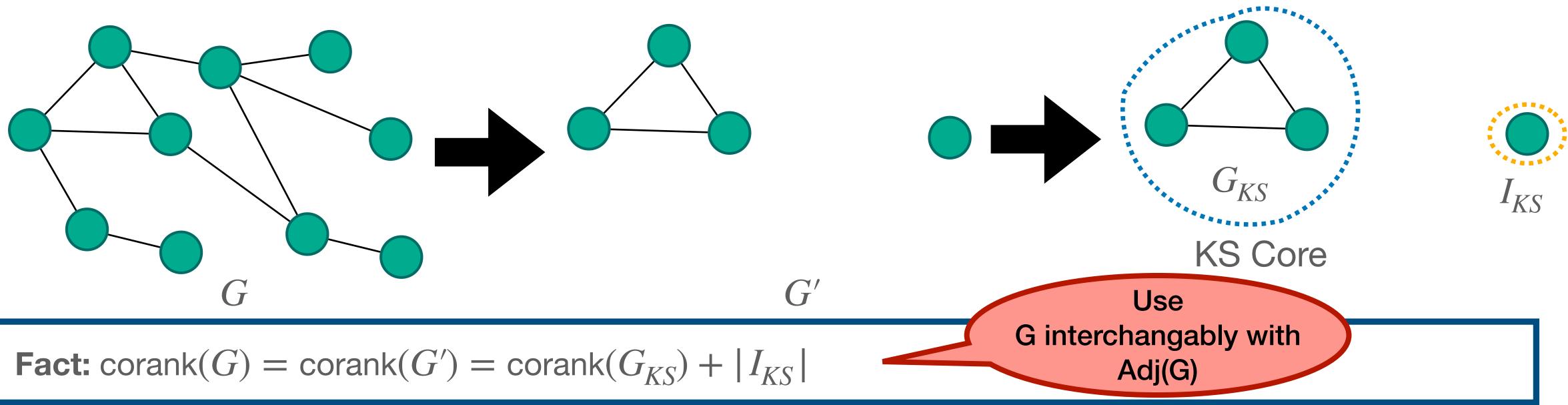




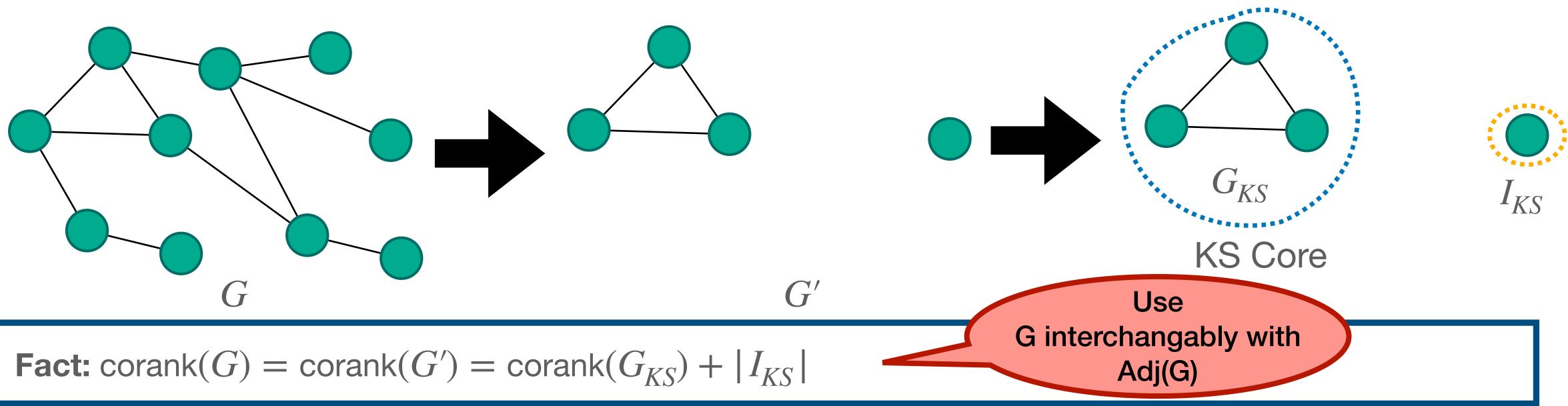
1 and their unique neighbor, and then removing all isolated vertices

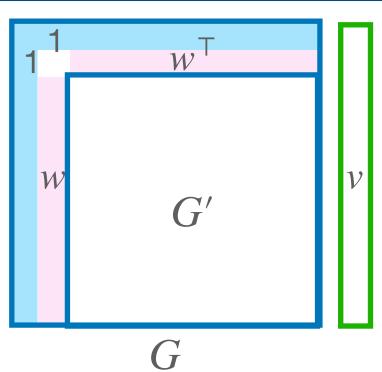


Definition: The *Karp-Sipser core* of a graph G is the graph that remains after peeling vertices of degree



Definition: The *Karp-Sipser core* of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices





 $Gv = 0 \Leftrightarrow G'v' = 0$ $v = (-w^{\top}v', 0, v')$

Prior Results

Let 0 < q < 1 be the smallest solution to $q = \exp(-c \exp(-cq))$. Then in almost surely, $|I_{KS}(G)|/n \rightarrow q + e^{-cq} + cqe^{-cq} - 1$

$$p(-c \exp(-cq))$$

Prior Results

Bourdenave Lelarge Salez '11: For $G \sim \mathbb{G}(n, p)$ with $p = \Theta(1/n)$, almost surely, $\lim \operatorname{corank}(\operatorname{Adj}(G_{KS}))/n = 0$ $n \rightarrow \infty$

Let 0 < q < 1 be the smallest solution to $q = \exp(-c \exp(-cq))$. Then in almost surely, $|I_{KS}(G)|/n \rightarrow q + e^{-cq} + cqe^{-cq} - 1$

Prior Results

Bourdenave Lelarge Salez '11: For $G \sim \mathbb{G}(n, p)$ with $p = \Theta(1/n)$, almost surely, $\lim \operatorname{corank}(\operatorname{Adj}(G_{KS}))/n = 0$ $n \rightarrow \infty$

Coja-Oghlan, Ergür, Gao, Hetterich, Rolvien '20: For $H \sim \mathbb{G}(n, n, p)$, with $p = \Theta(1/n)$, in probability,

> $\lim \operatorname{corank}(\operatorname{Bi-Adj}(H_{KS}))/n = 0$ $n \rightarrow \infty$

Let 0 < q < 1 be the smallest solution to $q = \exp(q)$

Then in almost surely, $|I_{KS}(G)|/n \rightarrow q + e^{-cq} + cqe$

$$(-c \exp(-cq)).$$

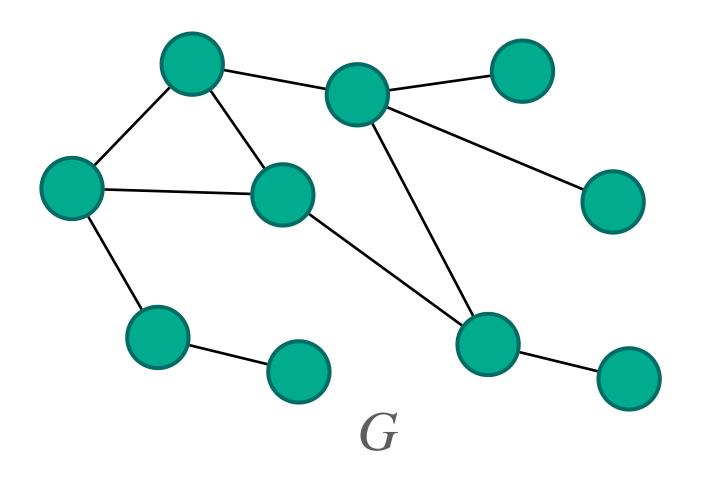
Main Result: Symmetric Bernoulli Matrices

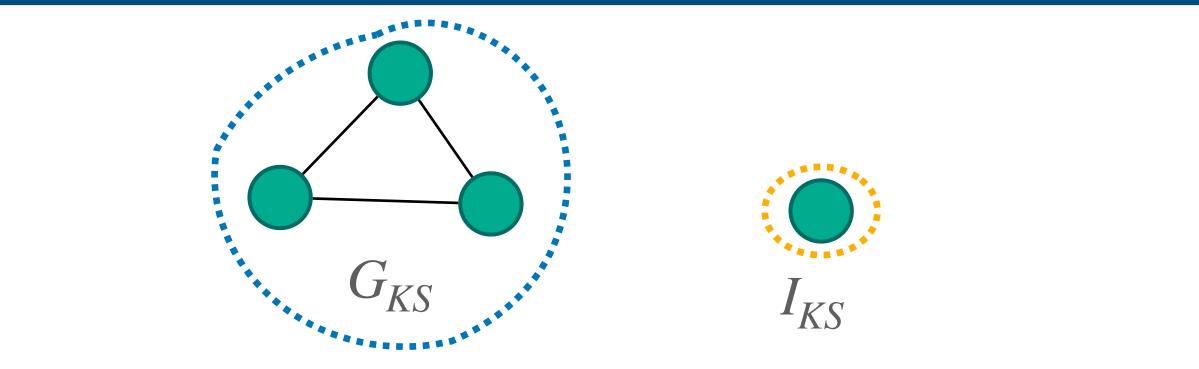
Main Result: Symmetric Bernoulli Matrices

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$. Let G_{KS} be the Karp-Sipser core of G and let I_{KS} be the set of isolated vertices removed to form the KS core.

Theorem 1: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$. Let G_{KS} be the Karp-Sipser core of G and let I_{KS} be the set of isolated vertices removed to form the KS core.

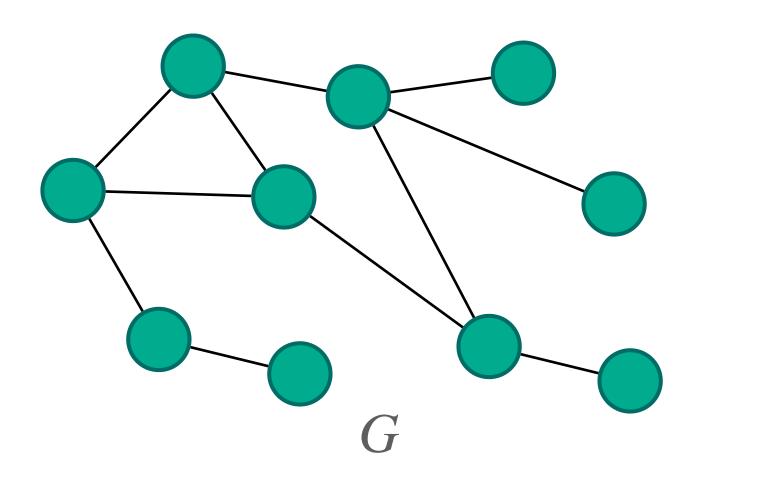




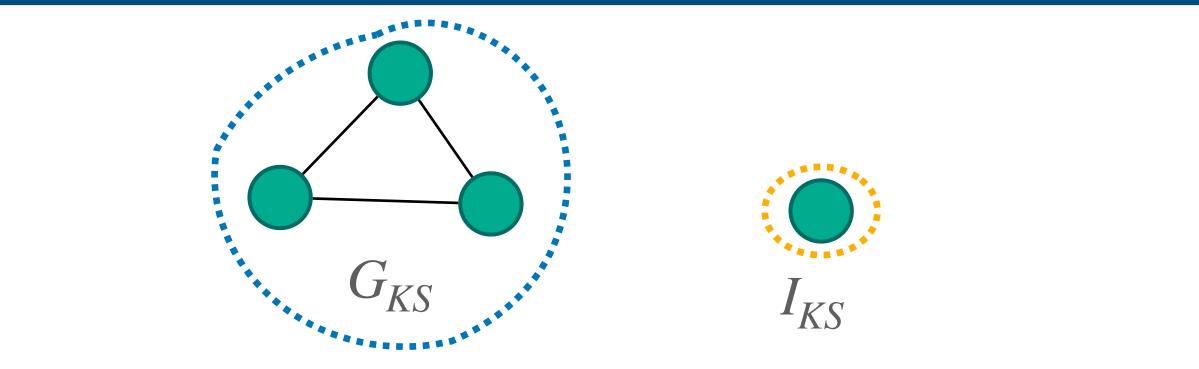
and let I_{KS} be the set of isolated vertices removed to form the KS core.

With probability 1 - o(1):

1.
$$Adj(G_{KS})$$
 is invertible.



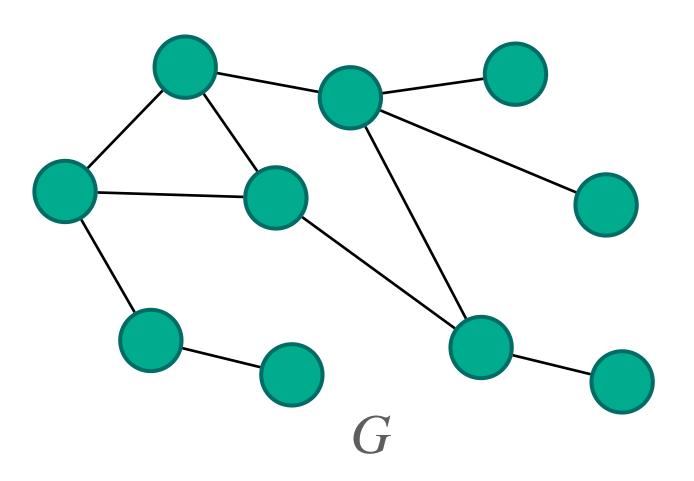
Theorem 1: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$. Let G_{KS} be the Karp-Sipser core of G



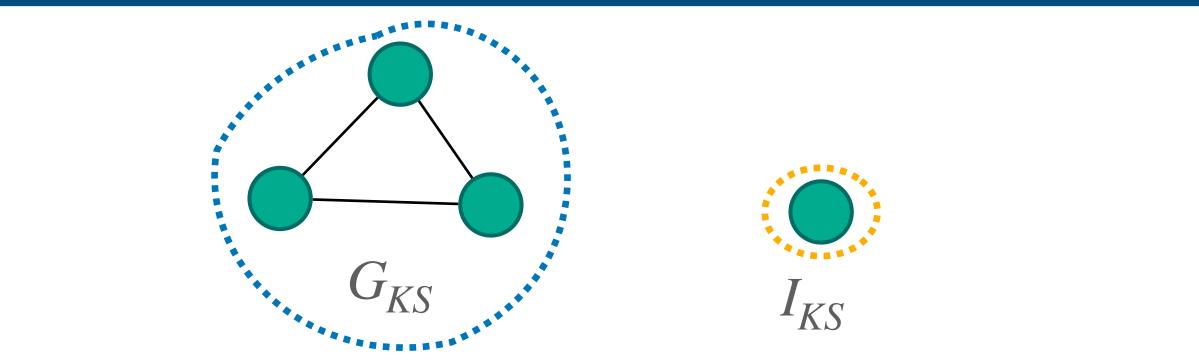
and let I_{KS} be the set of isolated vertices removed to form the KS core.

With probability 1 - o(1):

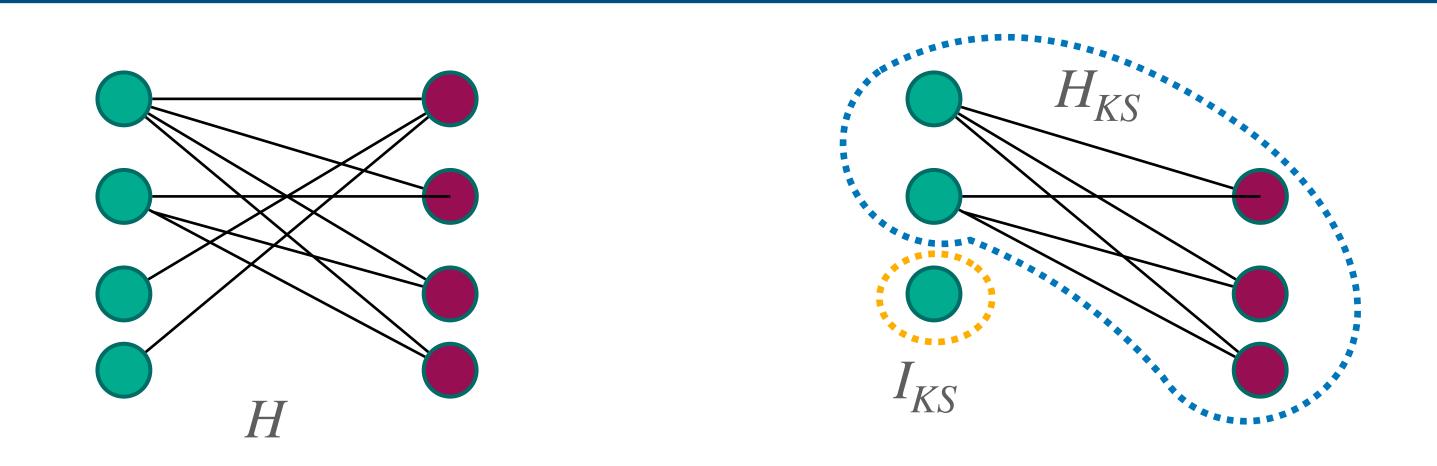
- 1. Adj (G_{KS}) is invertible.
- 2. Equivalently, corank(Adj(G)) = $|I_{KS}|$.



Theorem 1: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$. Let G_{KS} be the Karp-Sipser core of G



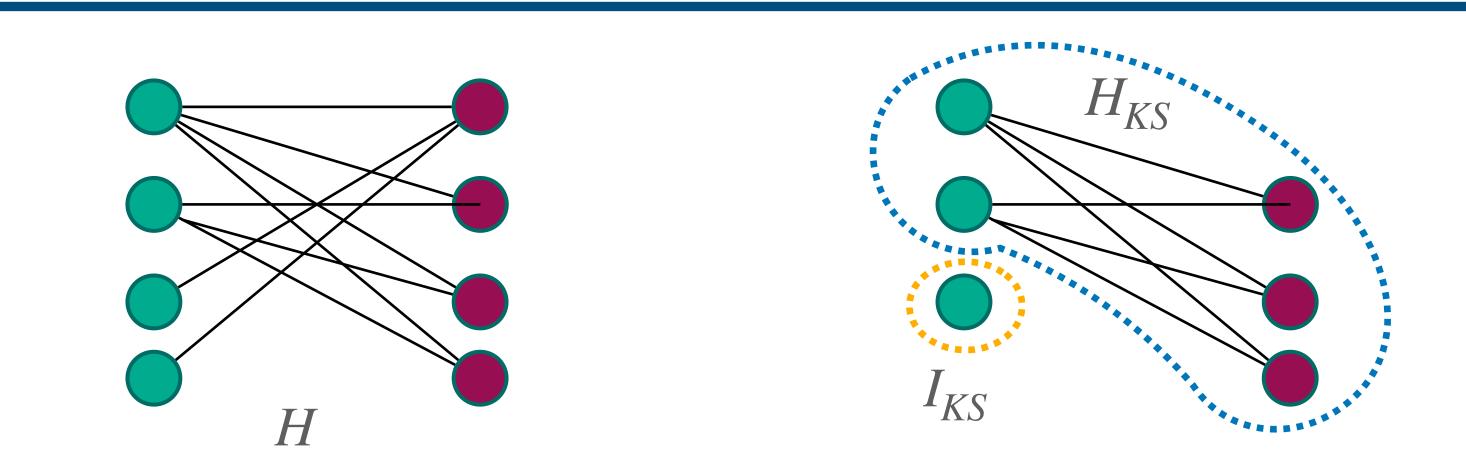
Theorem 2: Let $H = ((L, R), E) \sim \mathbb{G}(n, n, d/n)$ where $d = \omega(1)$. Let H_{KS} be the Karp-Sipser core of H and let I_{KS} be the set of isolated vertices removed to form the KS core.



Theorem 2: Let $H = ((L, R), E) \sim \mathbb{G}(n, n, d/n)$ where $d = \omega(1)$. Let H_{KS} be the Karp-Sipser core of H and let I_{KS} be the set of isolated vertices removed to form the KS core.

Theorem 2: Let $H = ((L, R), E) \sim \mathbb{G}(n, n, d/n)$ where $d = \omega(1)$. Let H_{KS} be the Karp-Sipser core of H and let I_{KS} be the set of isolated vertices removed to form the KS core.

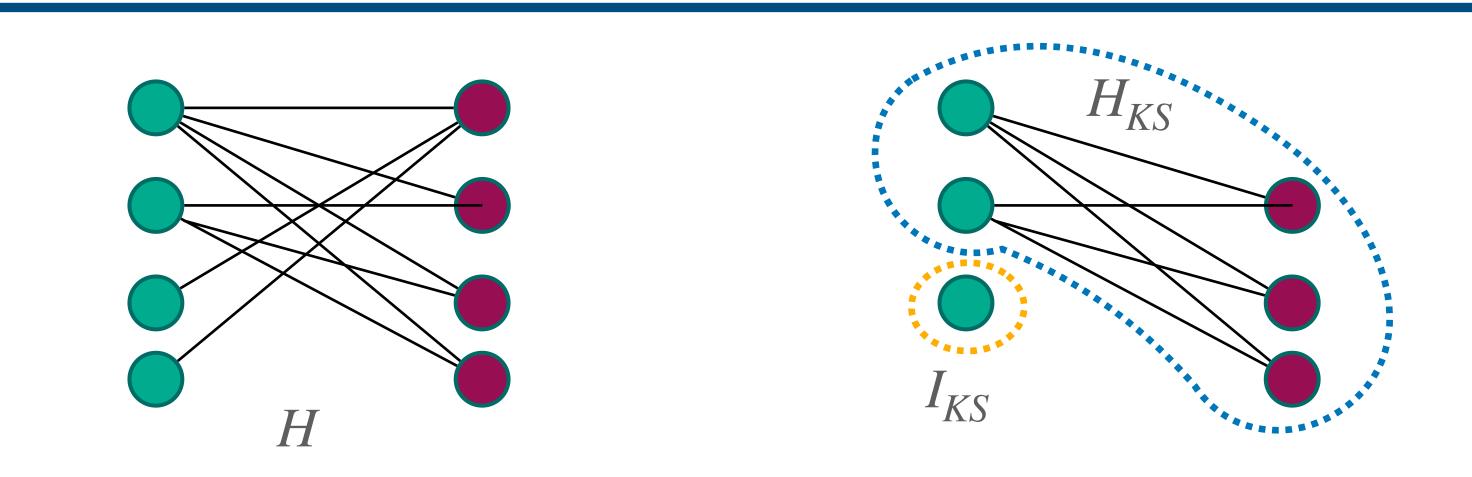
With probability 1 - o(1): 1. Bi-Adj (H_{KS}) or Bi-Adj $(H_{KS})^{\top}$ has full column rank.



Theorem 2: Let $H = ((L, R), E) \sim \mathbb{G}(n, n, d/n)$ where $d = \omega(1)$. Let H_{KS} be the Karp-Sipser core of H and let I_{KS} be the set of isolated vertices removed to form the KS core.

With probability 1 - o(1):

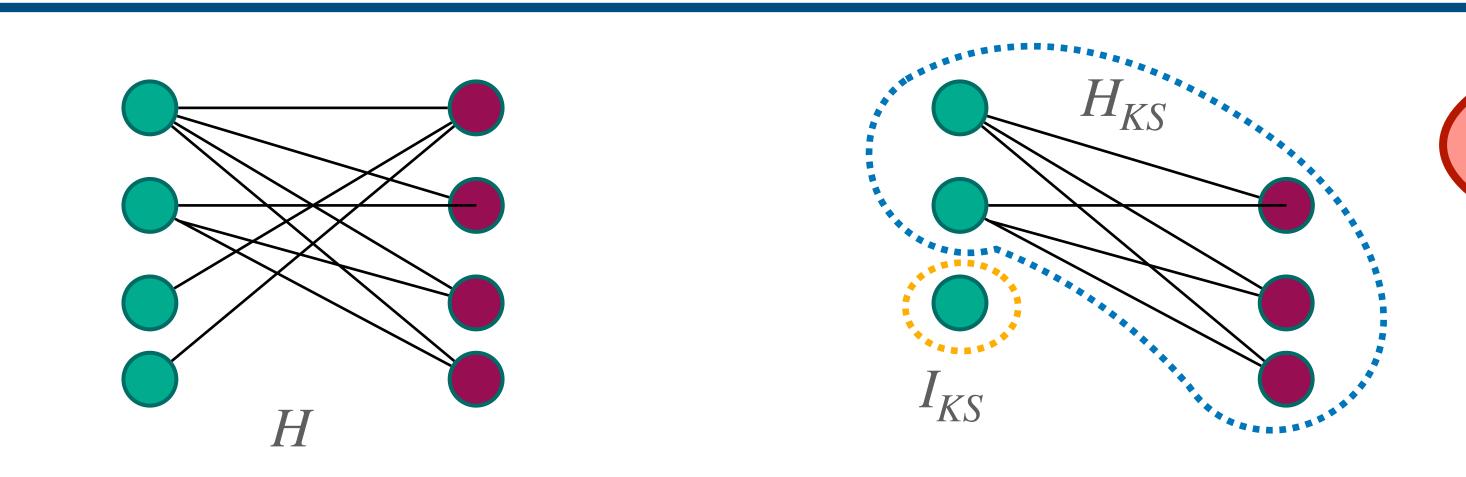
- 1. Bi-Adj (H_{KS}) or Bi-Adj $(H_{KS})^{\top}$ has full column rank.
- 2. Equivalently, corank(Bi-Adj(H)) = max($|I_{KS} \cap R|, |I_{KS} \cap L|$).



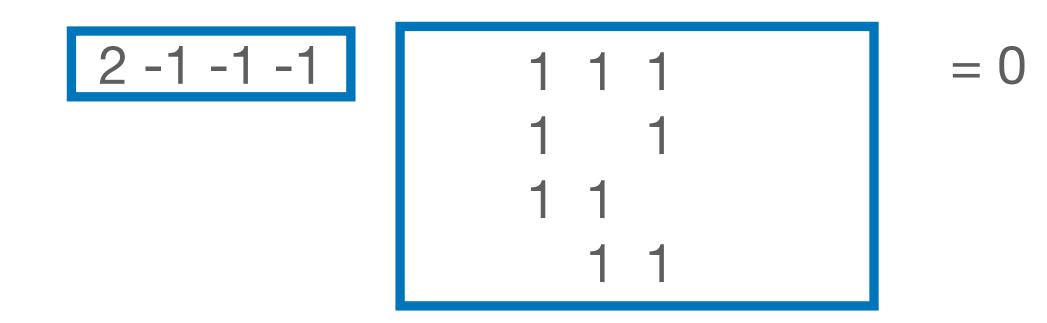
Theorem 2: Let $H = ((L, R), E) \sim \mathbb{G}(n, n, d/n)$ where $d = \omega(1)$. Let H_{KS} be the Karp-Sipser core of H and let I_{KS} be the set of isolated vertices removed to form the KS core.

With probability 1 - o(1):

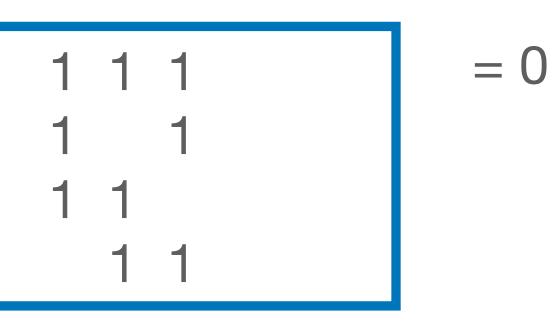
- 1. Bi-Adj (H_{KS}) or Bi-Adj $(H_{KS})^{\top}$ has full column rank.
- 2. Equivalently, corank(Bi-Adj(H)) = max($|I_{KS} \cap R|, |I_{KS} \cap L|$).

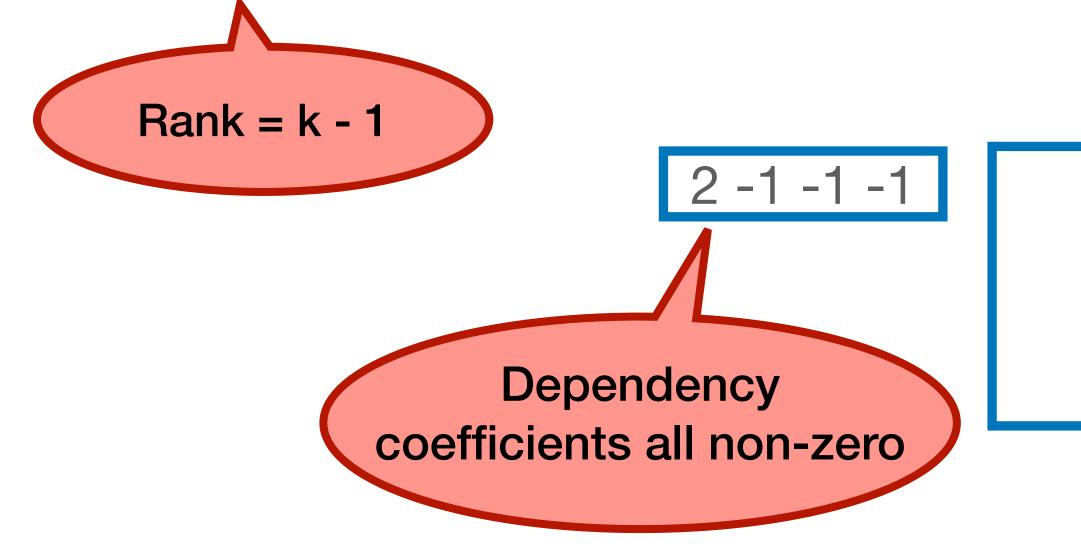


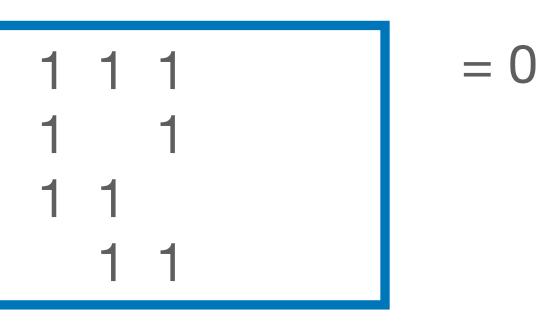
If these numbers different, then $Bi-Adj(H_{KS})$ rectangular

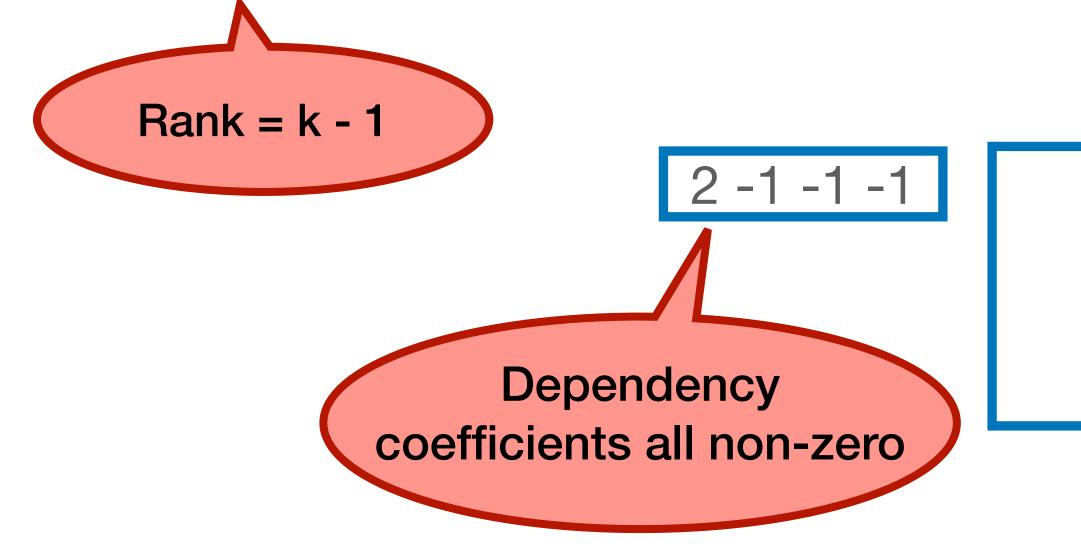


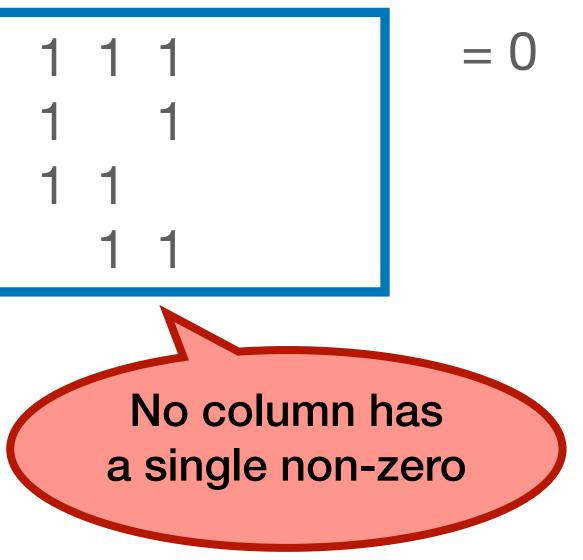
2 -1 -1 -



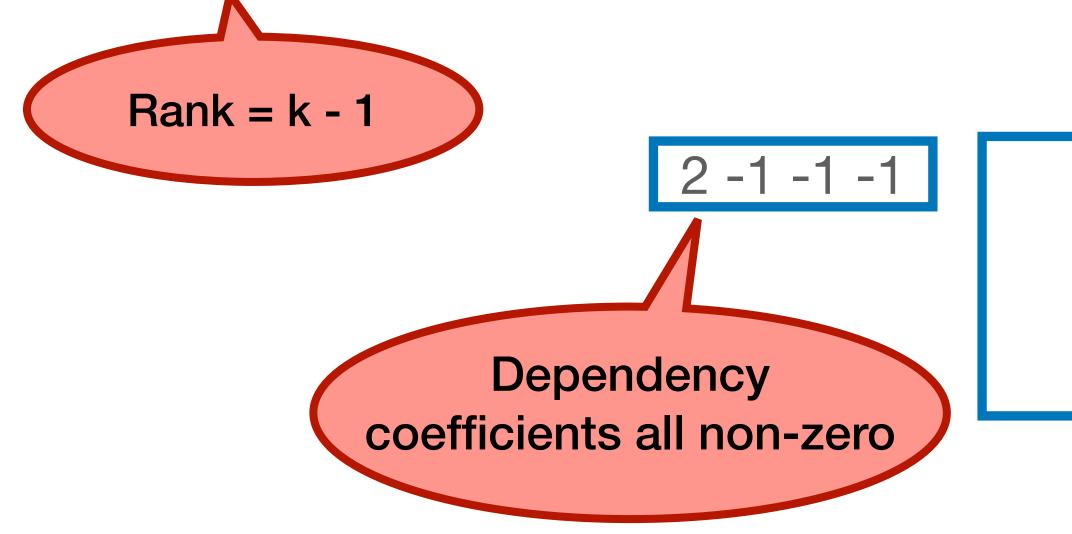




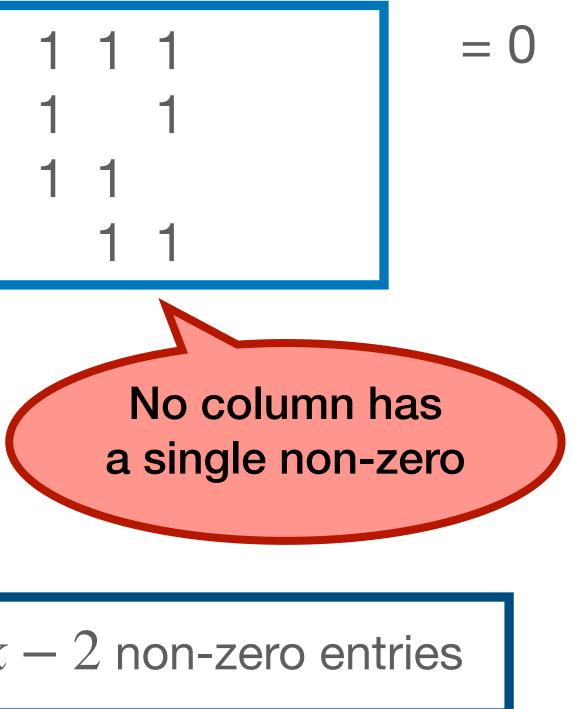




A **k-minimal** dependency is a set of k linearly dependent rows where all strict subsets of the k rows are linearly independent.



Fact: Any k-minimal dependency must have $\geq 2k - 2$ non-zero entries



Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$, and let $A = \operatorname{Adj}(G)$.

Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$, and let $A = \operatorname{Adj}(G)$.

With probability 1 - o(1), all k-minimal dependencies among rows of A have 2k - 2non-zero entries.

Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$, and let $A = \operatorname{Adj}(G)$.

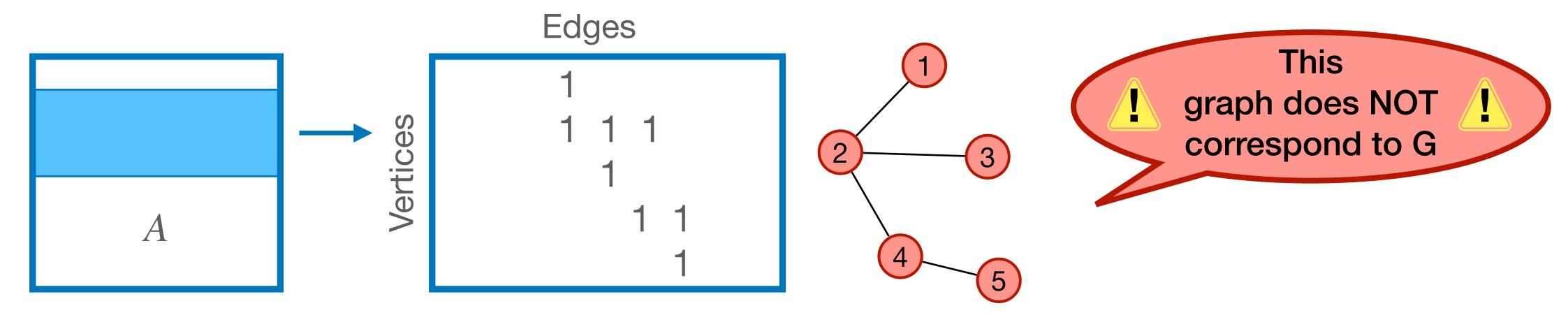
With probability 1 - o(1), all k-minimal dependencies among rows of A have 2k - 2non-zero entries.

In particular, they have the following 'tree' structure:

Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$, and let $A = \operatorname{Adj}(G)$.

non-zero entries.

In particular, they have the following 'tree' structure:



- With probability 1 o(1), all k-minimal dependencies among rows of A have 2k 2

Theorem 3: Let $H \sim \mathbb{G}(n, n, d/n)$ where $d = \omega(1)$, and let B = Bi-Adj(G).

Theorem 3: Let $H \sim \mathbb{G}(n, n, d/n)$ where $d = \omega(1)$, and let B = Bi-Adj(G).

With probability 1 - o(1), at least one of the following occurs: 1)

All k-minimal dependencies among rows of B have exactly 2k - 2 non-zero entries.

Theorem 3: Let $H \sim \mathbb{G}(n, n, d/n)$ where $d = \omega(1)$, and let B = Bi-Adj(G).

With probability 1 - o(1), at least one of the following occurs: 1)

All k-minimal dependencies among rows of B have exactly 2k - 2 non-zero entries.

2) All k-minimal dependencies among rows of B^{\top} have exactly 2k - 2 non-zero entries.

Theorem 3: Let $H \sim \mathbb{G}(n, n, d/n)$ where $d = \omega(1)$, and let B = Bi-Adj(G).

With probability 1 - o(1), at least one of the following occurs: 1)

All k-minimal dependencies among rows of B have exactly 2k - 2 non-zero entries.

2) All k-minimal dependencies among rows of B^{\top} have exactly 2k - 2 non-zero entries.

Theorem 3: Let $H \sim \mathbb{G}(n, n, d/n)$ where $d = \omega(1)$, and let B = Bi-Adj(G).

With probability 1 - o(1), at least one of the following occurs: 1)

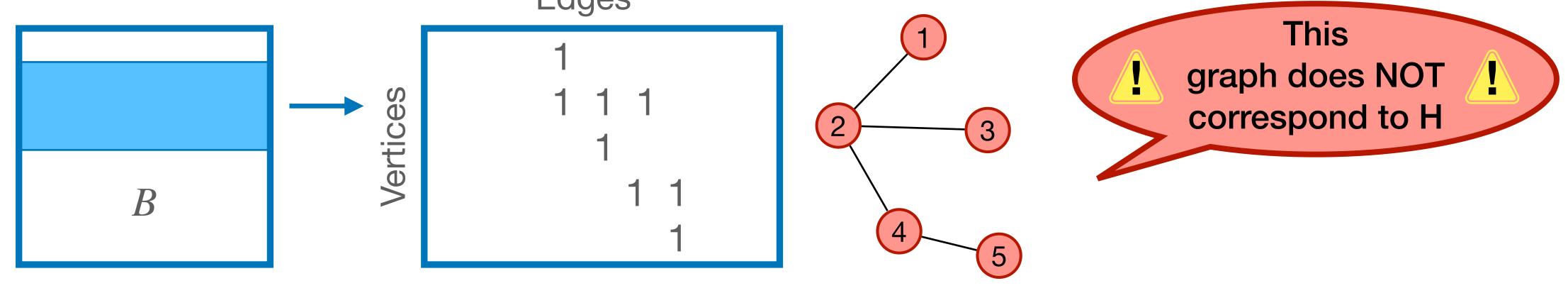
In particular, all such dependencies have the following 'tree' structure:

- All k-minimal dependencies among rows of B have exactly 2k 2 non-zero entries.
- 2) All k-minimal dependencies among rows of B^{\top} have exactly 2k 2 non-zero entries.

Theorem 3: Let $H \sim \mathbb{G}(n, n, d/n)$ where $d = \omega(1)$, and let B = Bi-Adj(G).

With probability 1 - o(1), at least one of the following occurs: 1) 2)

In particular, all such dependencies have the following 'tree' structure: Edges



- All k-minimal dependencies among rows of B have exactly 2k 2 non-zero entries.
- All k-minimal dependencies among rows of B^{\top} have exactly 2k 2 non-zero entries.

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If x is a kernel vector of G_{KS} , then there must be a kernel vector y of G whose

support contains the support of *x*.

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If x is a kernel vector of G_{KS} , then there must be a kernel vector y of G whose

support contains the support of *x*.

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If x is a kernel vector of G_{KS} , then there must be a kernel vector y of G whose

support contains the support of *x*.

Claim 3: If y is a kernel vector of G, then for any $v \in \text{supp}(y)$, vertex v is involved in some k-minimal dependency.

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If x is a kernel vector of G_{KS} , then there must be a kernel vector y of G whose

support contains the support of *x*.

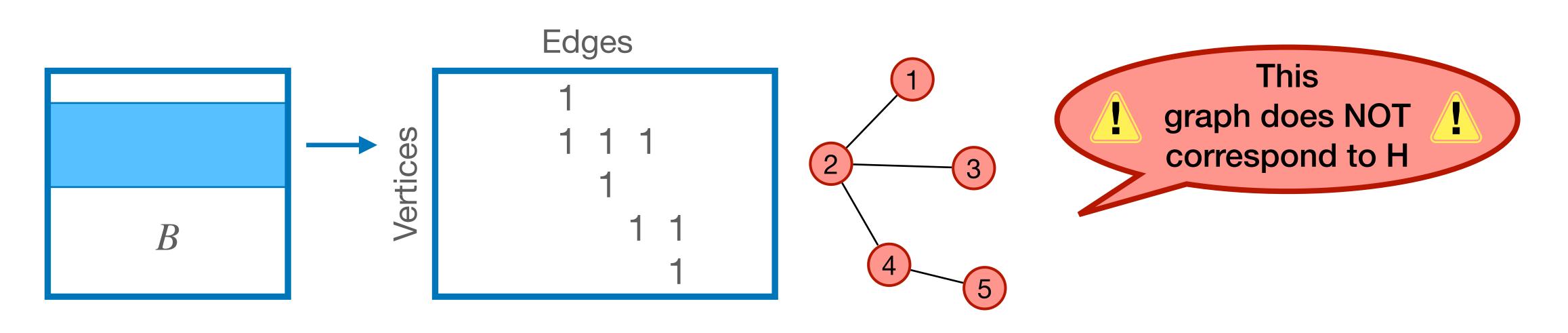
Claim 3: If y is a kernel vector of G, then for any $v \in \text{supp}(y)$, vertex v is involved in some k-minimal dependency.

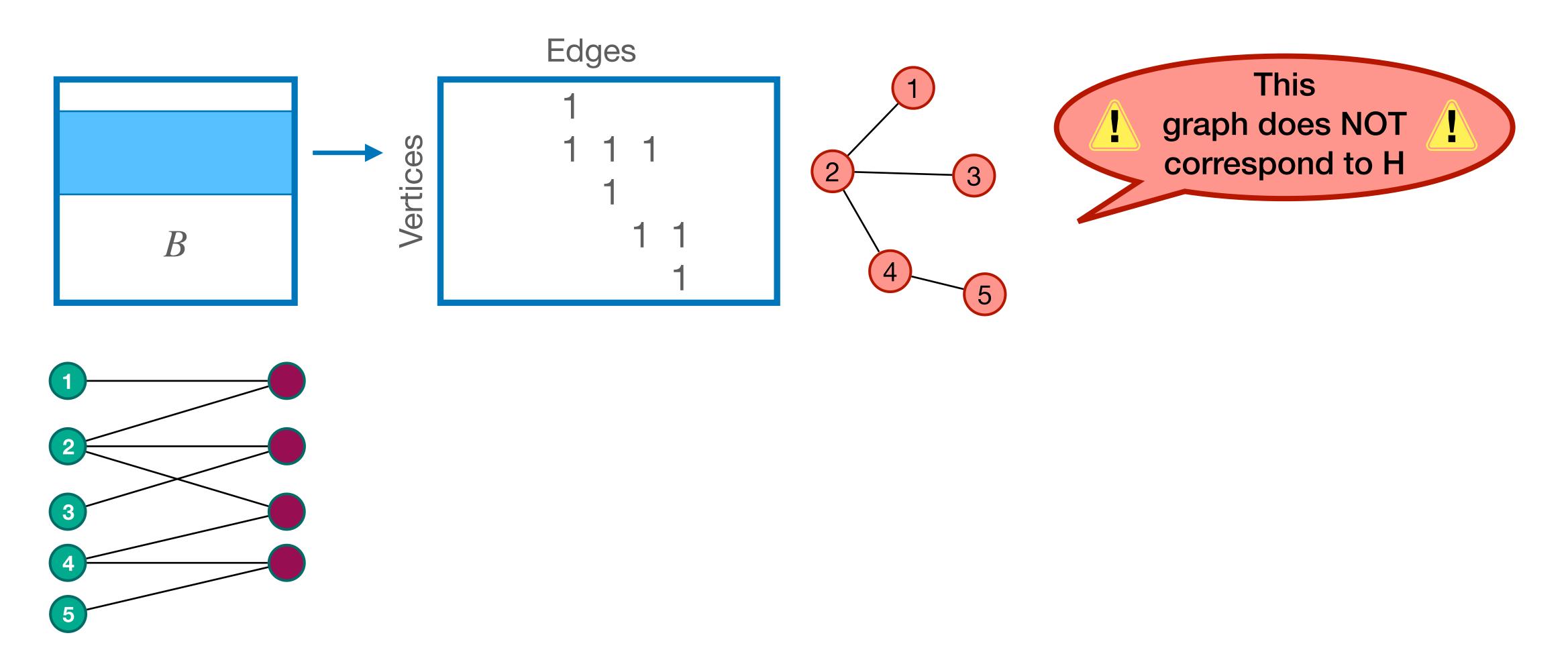
Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

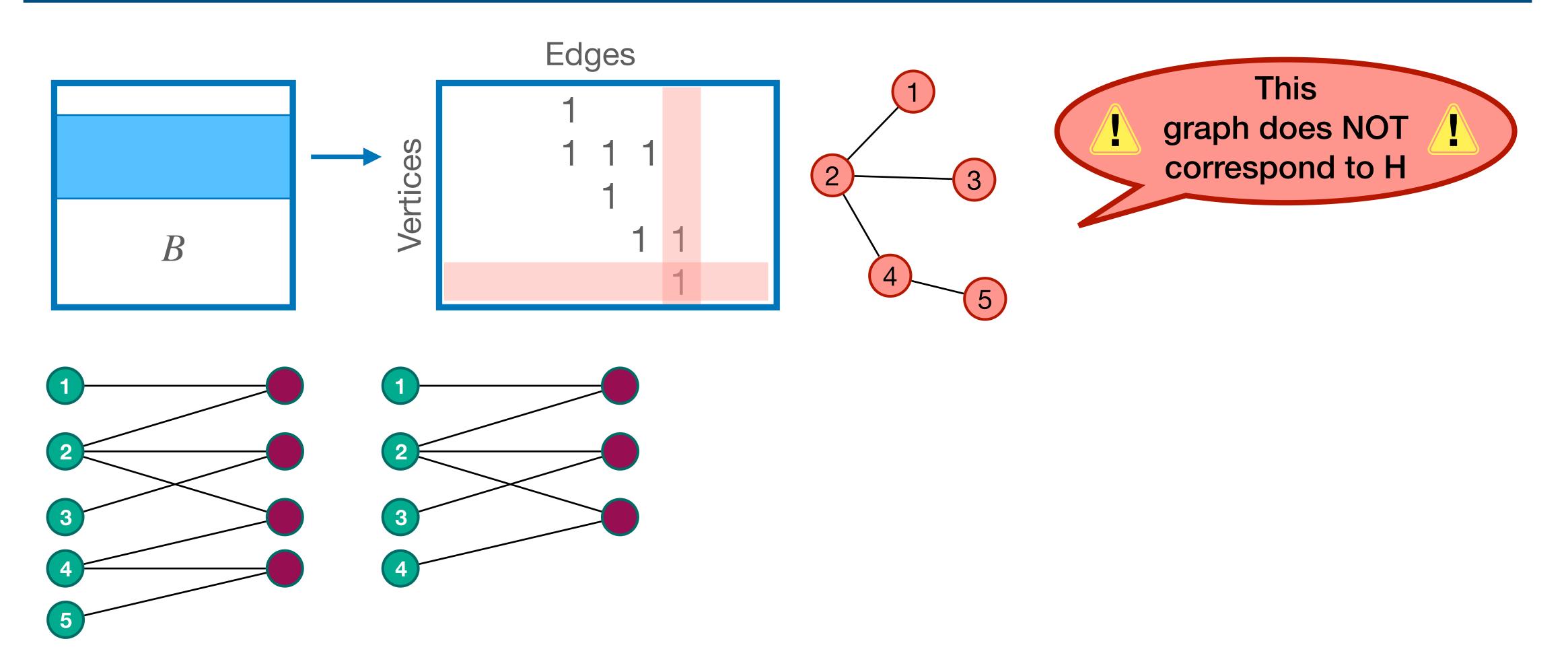
Claim 2: If *x* is a kernel vector of G_{KS} , then there must be a kernel vector *y* of *G* whose support contains the support of *x*.

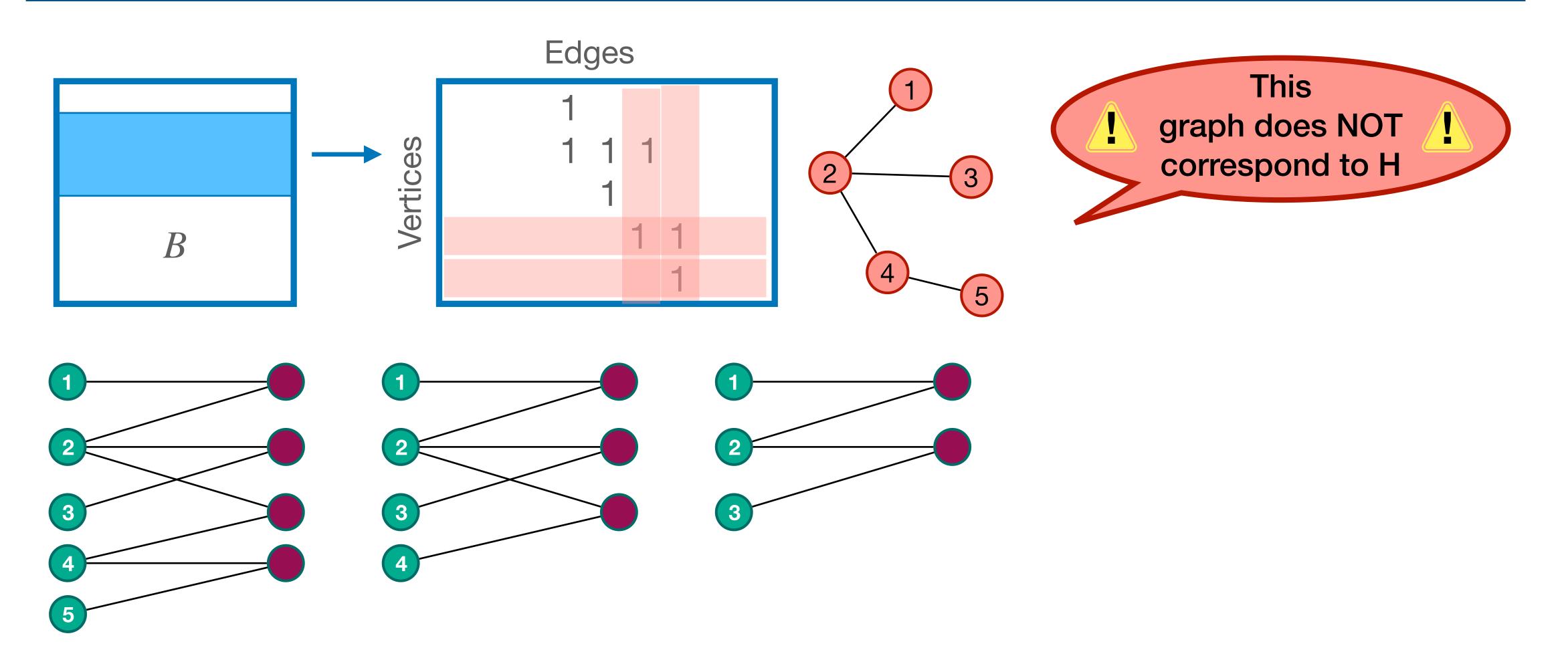
Claim 3: If y is a kernel vector of G, then for any $v \in \text{supp}(y)$, vertex v is involved in some k-minimal dependency.

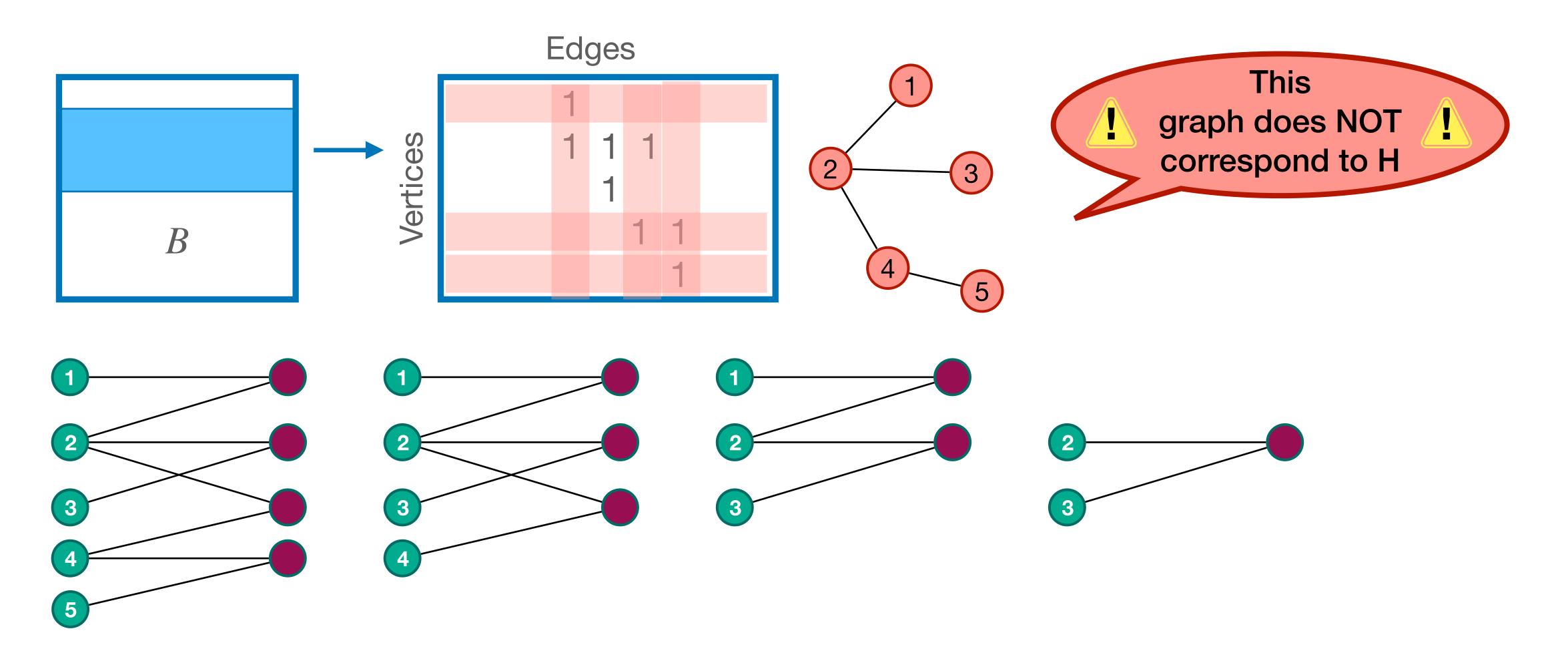
Claim 4: If vertex *v* is involved in some k-minimal dependency, then that vertex is peeled by the KS leaf-removal process or becomes isolated after this process.

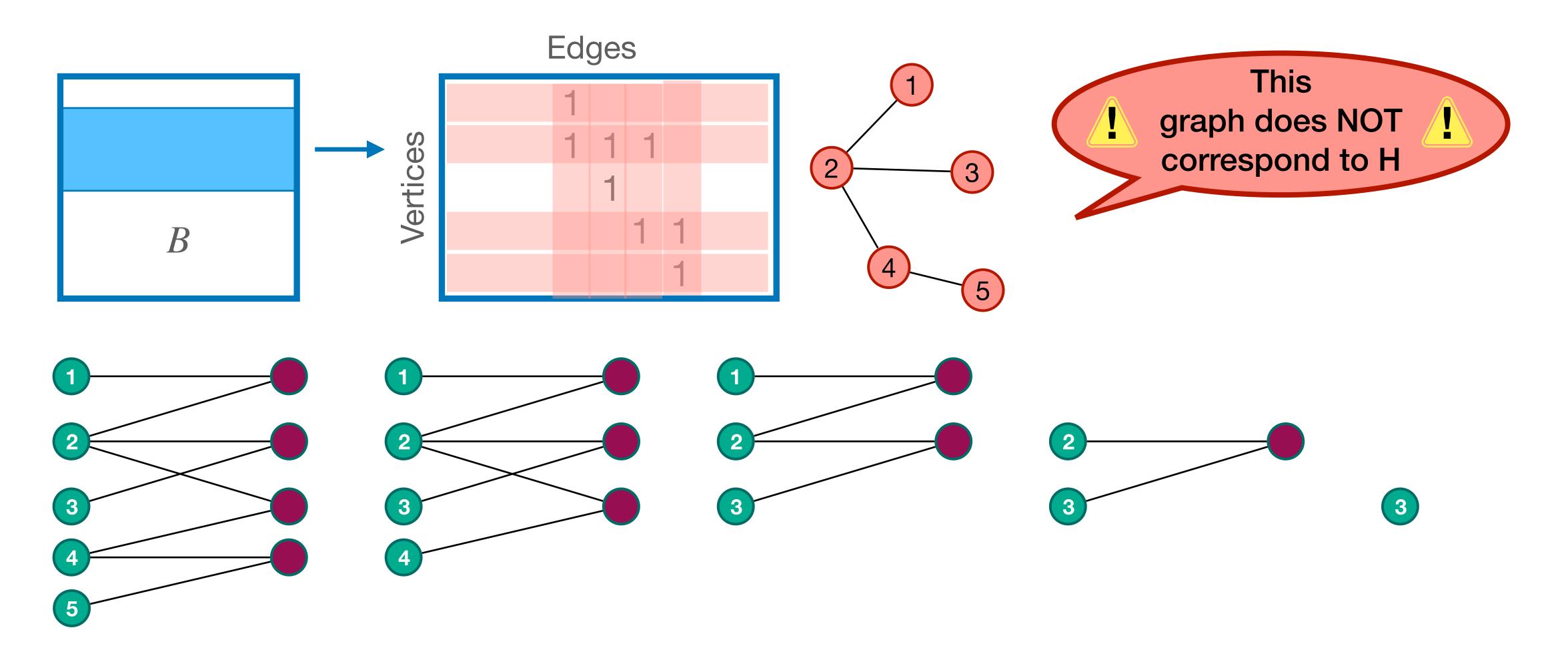


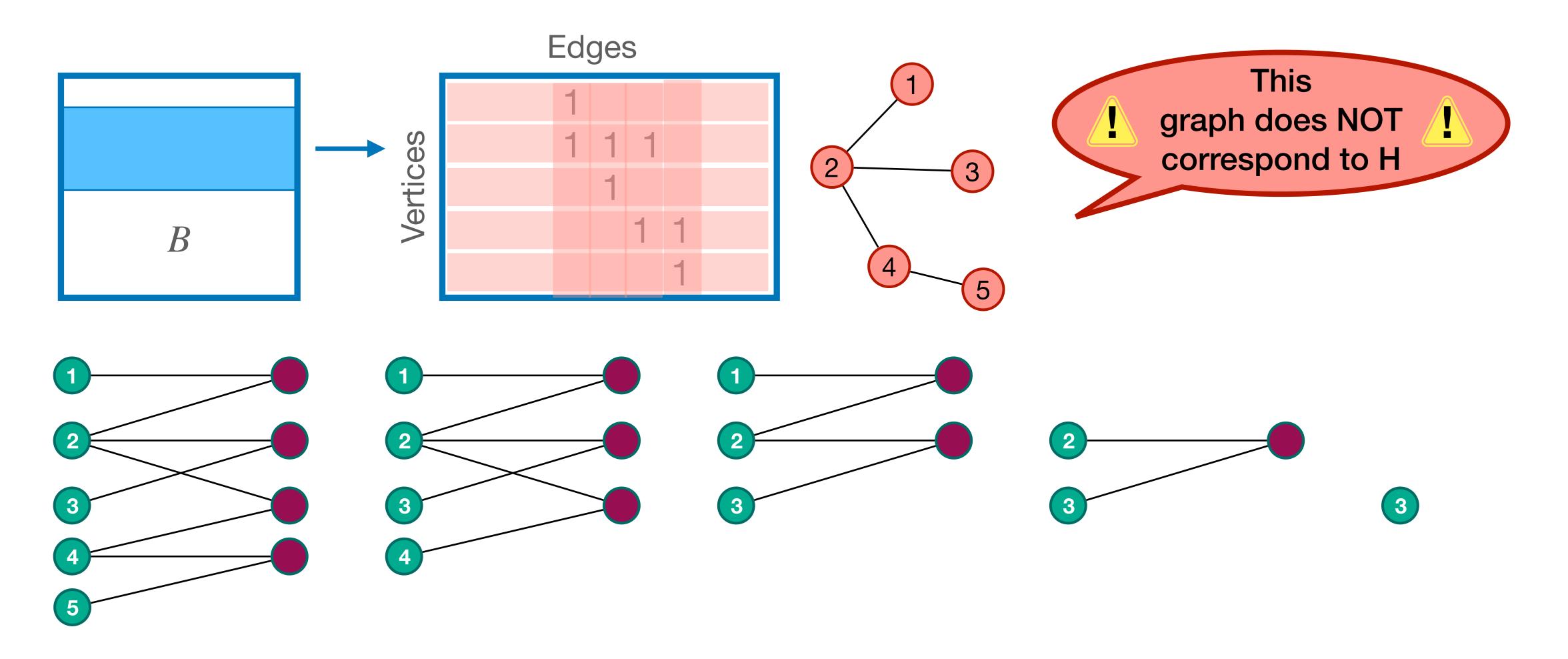












Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$, and let $A = \operatorname{Adj}(G)$.

Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$, and let $A = \operatorname{Adj}(G)$.

non-zero entries.

With probability 1 - o(1), all k-minimal dependencies among rows of A have 2k - 2

Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$, and let $A = \operatorname{Adj}(G)$.

With probability 1 - o(1), all k-minimal dependencies among rows of A have 2k - 2non-zero entries.

Proof Outline:

Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$, and let $A = \operatorname{Adj}(G)$.

non-zero entries.

Proof Outline:

With probability 1 - o(1), all k-minimal dependencies among rows of A have 2k - 2

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$, and let $A = \operatorname{Adj}(G)$.

non-zero entries.

Proof Outline:

- - Union bound over all sets of k rows.

With probability 1 - o(1), all k-minimal dependencies among rows of A have 2k - 2

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where $d = \omega(1)$, and let $A = \operatorname{Adj}(G)$.

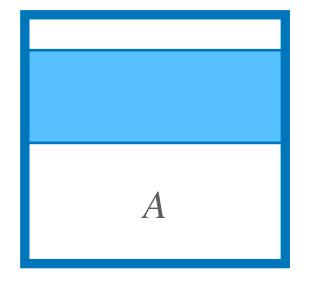
non-zero entries.

Proof Outline:

- - Union bound over all sets of k rows.
 - Show that some column in the set of rows has a single 1.

With probability 1 - o(1), all k-minimal dependencies among rows of A have 2k - 2

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.



Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where d

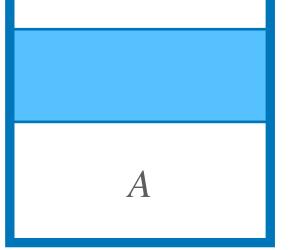
non-zero entries.

Proof Outline:

- 1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k 1 non-zero entries.
 - Union bound over all sets of k rows.
 - Show that some column in the set of rows has a single 1.
- 2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

$$l = \omega(1)$$
, and let $A = \operatorname{Adj}(G)$.

With probability 1 - o(1), all k-minimal dependencies among rows of A have 2k - 2



Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where d

non-zero entries.

Proof Outline:

- 1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k 1 non-zero entries.
 - Union bound over all sets of k rows.
 - Show that some column in the set of rows has a single 1.
- 2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)
 - Main Technique: Littlewood-Offord anti-concentration bounds.

$$l = \omega(1)$$
, and let $A = \operatorname{Adj}(G)$.

With probability 1 - o(1), all k-minimal dependencies among rows of A have 2k - 2

A

Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where d

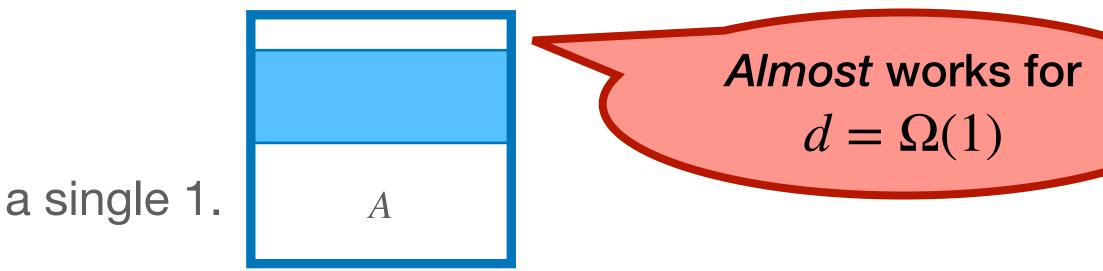
non-zero entries.

Proof Outline:

- 1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k 1 non-zero entries.
 - Union bound over all sets of k rows.
 - Show that some column in the set of rows has a single 1.
- 2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)
 - Main Technique: Littlewood-Offord anti-concentration bounds.

$$l = \omega(1)$$
, and let $A = \operatorname{Adj}(G)$.

With probability 1 - o(1), all k-minimal dependencies among rows of A have 2k - 2



Theorem 3: Let $G \sim \mathbb{G}(n, d/n)$ where d

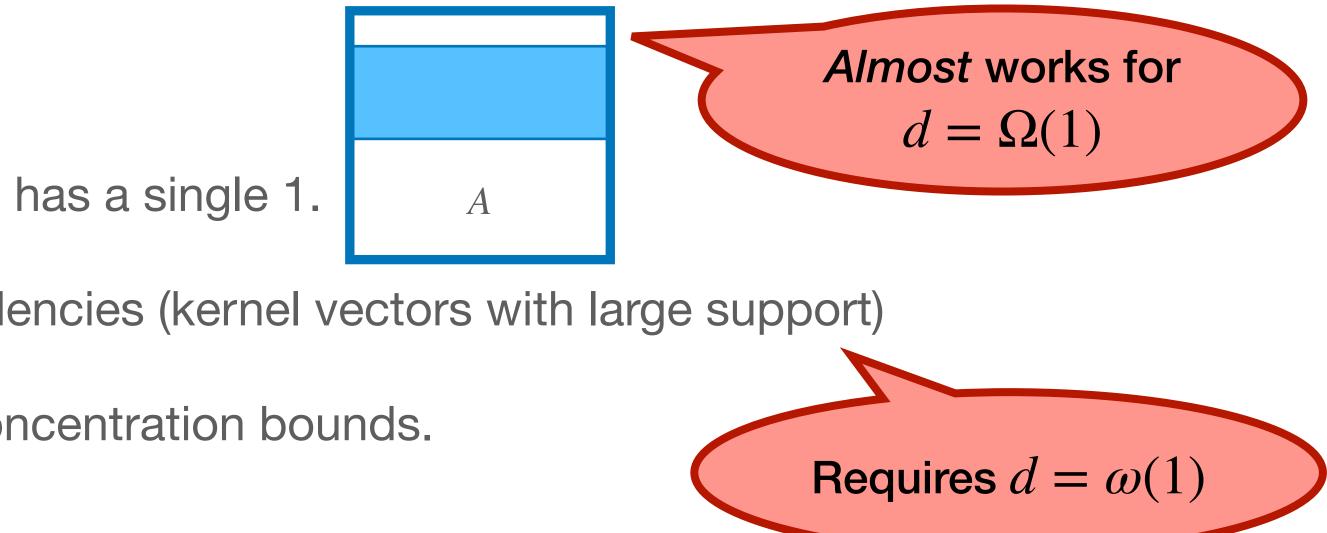
non-zero entries.

Proof Outline:

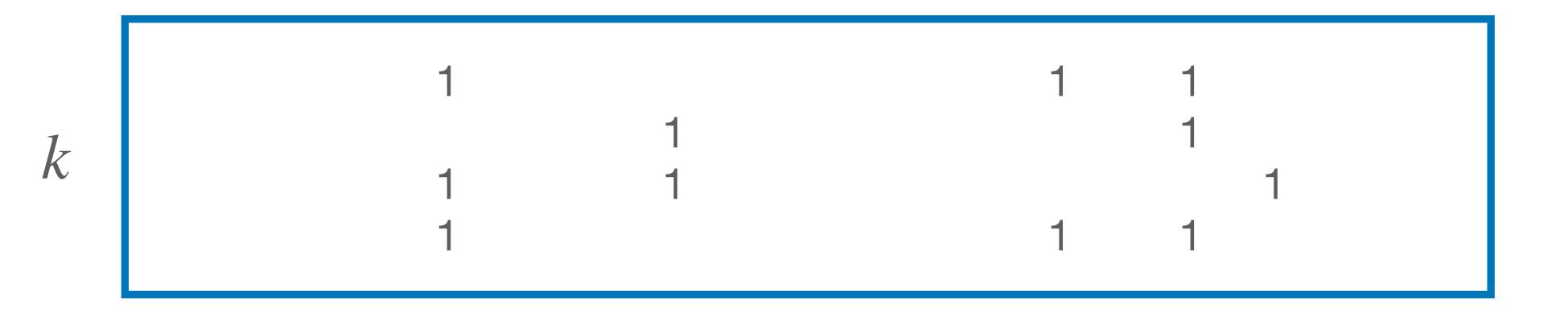
- 1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k 1 non-zero entries.
 - Union bound over all sets of k rows.
 - Show that some column in the set of rows has a single 1.
- 2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)
 - Main Technique: Littlewood-Offord anti-concentration bounds.

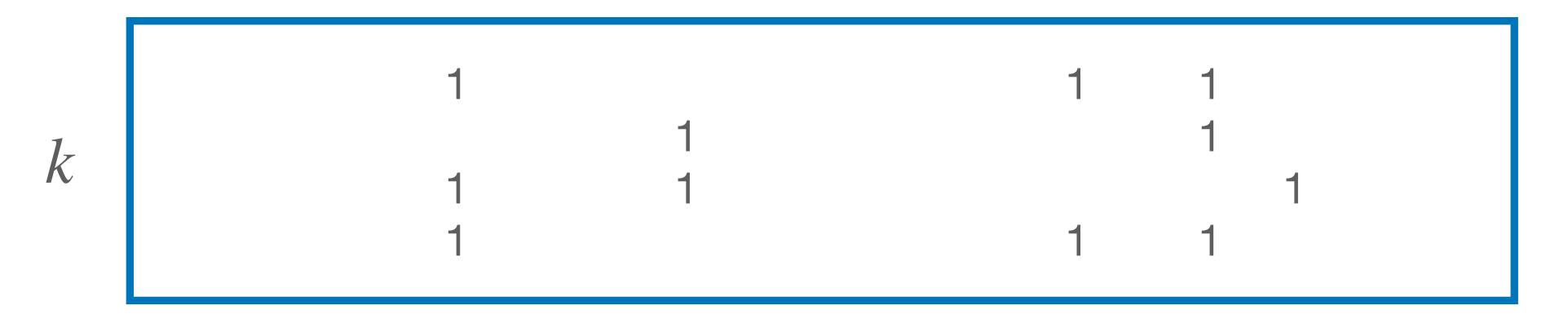
$$l = \omega(1)$$
, and let $A = \operatorname{Adj}(G)$.

With probability 1 - o(1), all k-minimal dependencies among rows of A have 2k - 2

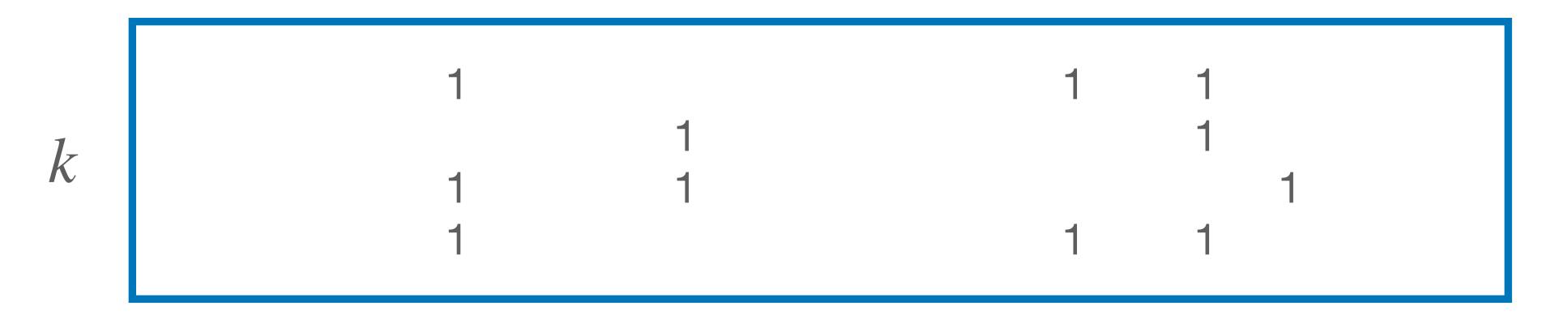


Small Case: k < n/poly(d) rows

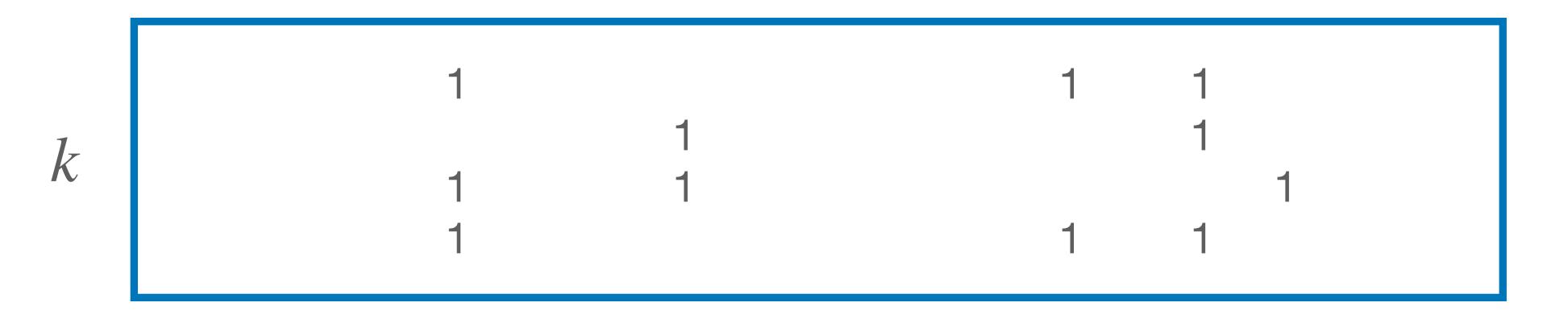




Tool: Show that there is a column with exactly one non-zero entry

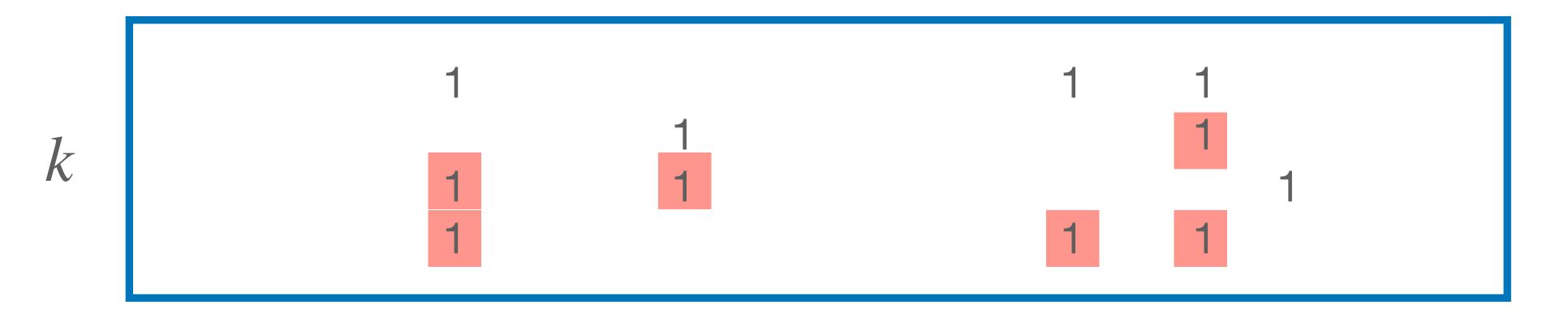


Tool: Show that there is a column with exactly one non-zero entry R = number of non-zero entries among the k rows



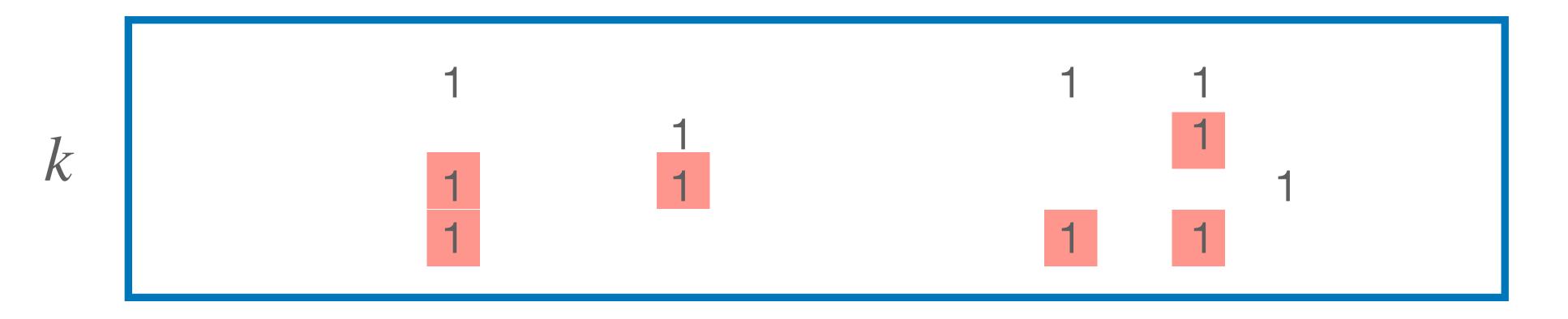
Tool: Show that there is a column with exactly one non-zero entry R = number of non-zero entries among the k rows

B = number of non-zero entries that are **not first in their column**



Tool: Show that there is a column with exactly one non-zero entry R = number of non-zero entries among the k rows

B = number of non-zero entries that are **not first in their column**

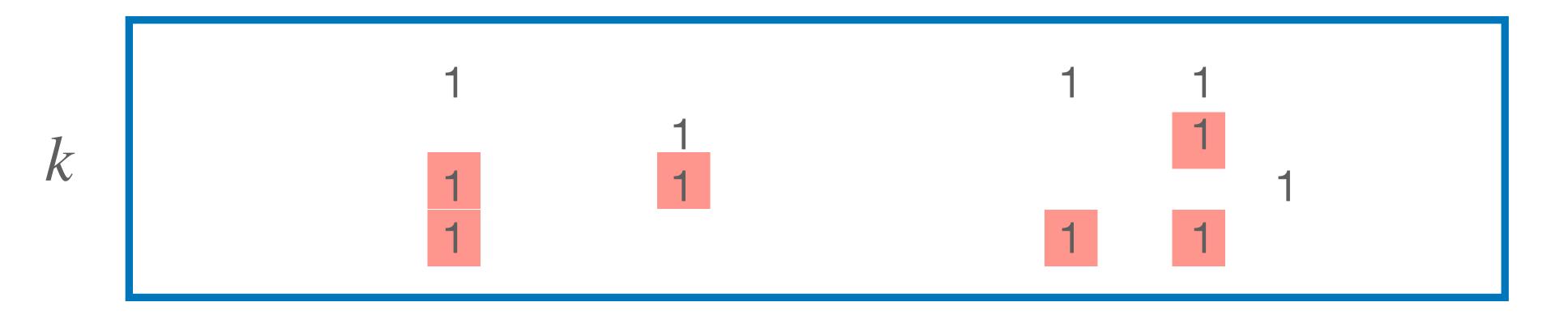


Tool: Show that there is a column with exactly one non-zero entry

R = number of non-zero entries among the k rows

B = number of non-zero entries that are **not first in their column**

Observation: $B < \lceil R/2 \rceil \Rightarrow$ Number of non-zero columns = R - B > R/2

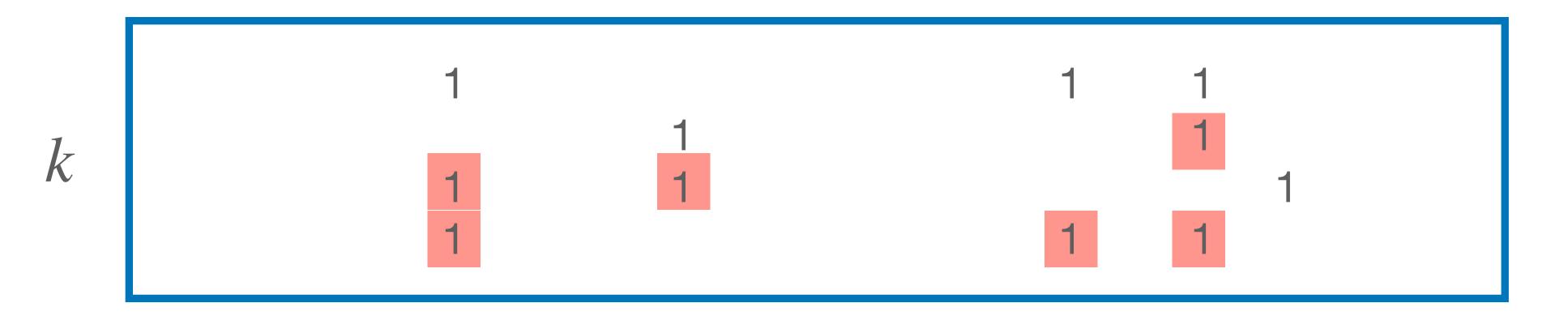


Tool: Show that there is a column with exactly one non-zero entry R = number of non-zero entries among the k rows

B = number of non-zero entries that are **not first in their column**

Observation: $B < \lceil R/2 \rceil \Rightarrow$ Number of non-zero columns = R - B > R/2

- \Rightarrow At least 1 column with exactly 1 non-zero

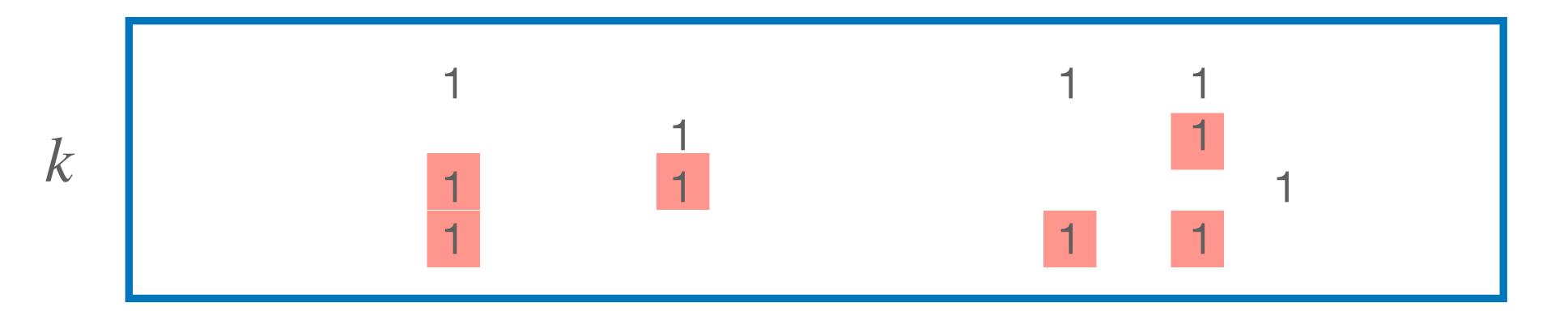


Tool: Show that there is a column with exactly one non-zero entry R = number of non-zero entries among the k rows

B = number of non-zero entries that are **not first in their column**

Observation: $B < \lceil R/2 \rceil \Rightarrow$ Number of non-zero columns = R - B > R/2

- \Rightarrow At least 1 column with exactly 1 non-zero
- \Rightarrow No minimal dependency in these k rows



Tool: Show that there is a column with exactly one non-zero entry R = number of non-zero entries among the k rows

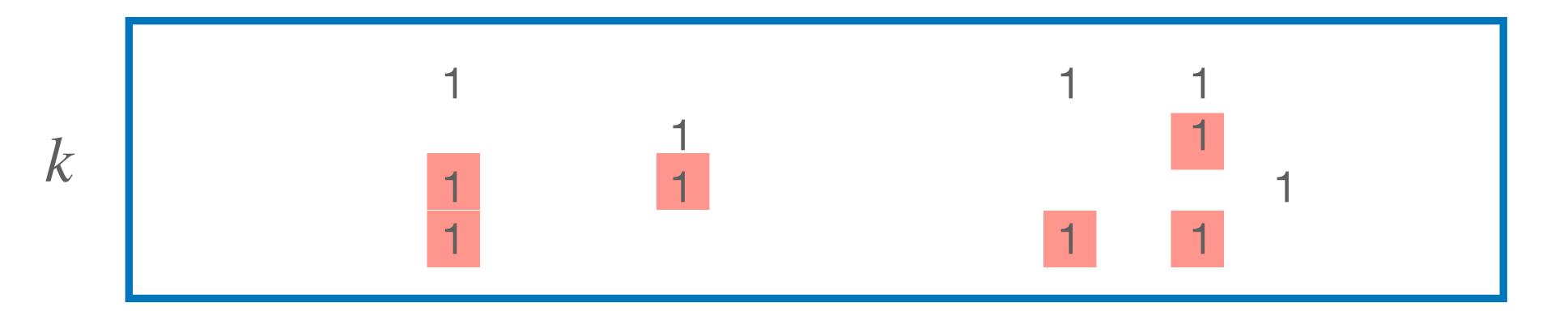
B = number of non-zero entries that are **not first in their column**

Observation: $B < \lceil R/2 \rceil \Rightarrow$ Number of non-zero columns = R - B > R/2

- \Rightarrow At least 1 column with exactly 1 non-zero

$$\Pr[B \ge \lceil R/2 \rceil] \lessapprox e^{-d} \left(\frac{k}{n}\right)$$

Small Case: k < n/poly(d) rows: Symmetric



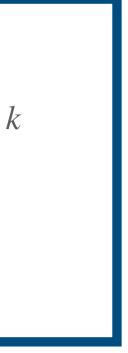
Tool: Show that there is a column with exactly one non-zero entry R = number of non-zero entries among the k rows

B = number of non-zero entries that are **not first in their column**

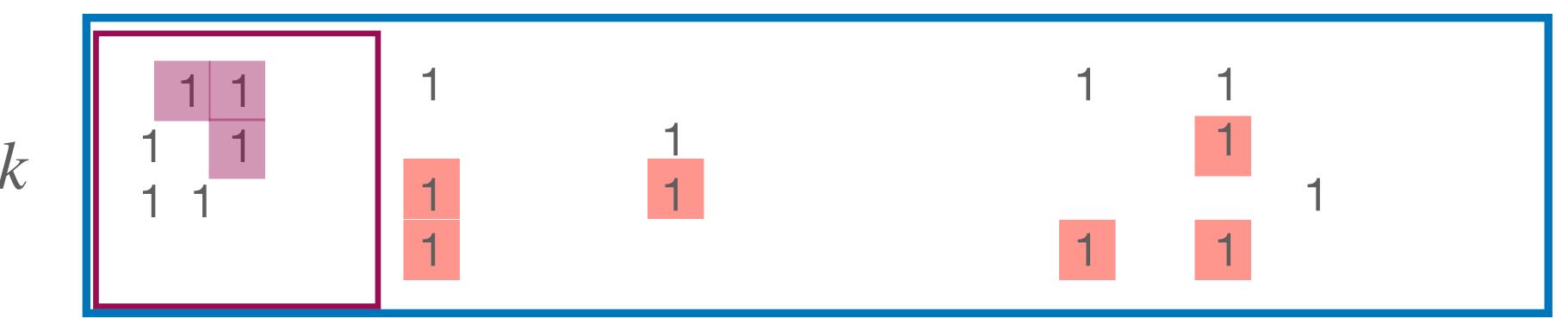
Observation: $B < \lceil R/2 \rceil \Rightarrow$ Number of non-zero columns = R - B > R/2

- \Rightarrow At least 1 column with exactly 1 non-zero

$$\Pr[B \ge \lceil R/2 \rceil] \lessapprox e^{-d} \left(\frac{k}{n}\right)$$



Small Case: k < n/poly(d) rows: Symmetric



Symmetric Part

Tool: Show that there is a column with exactly one non-zero entry

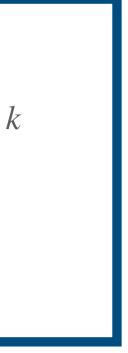
R = number of non-zero entries among the k rows

B = number of non-zero entries that are **not first in their column**

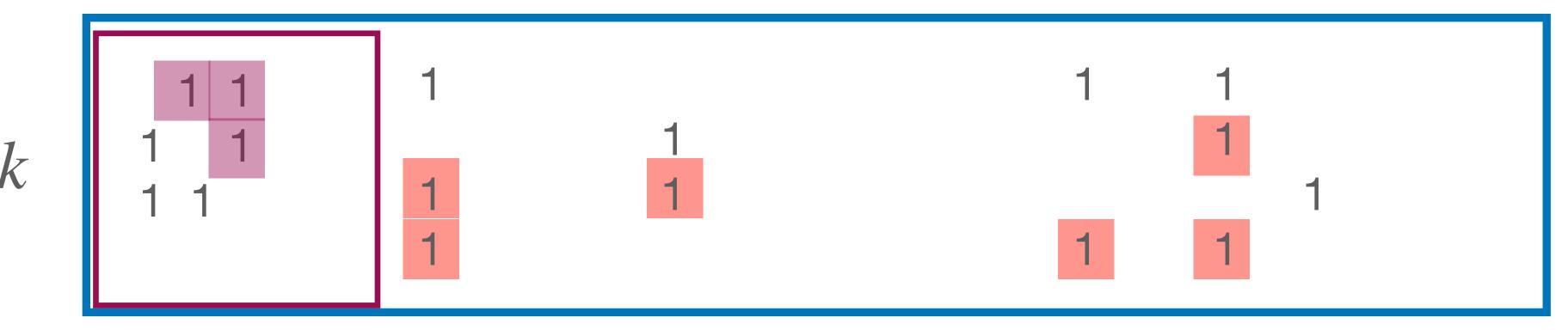
Observation: $B < \lceil R/2 \rceil \Rightarrow$ Number of non-zero columns = R - B > R/2

- \Rightarrow At least 1 column with exactly 1 non-zero

$$\Pr[B \ge \lceil R/2 \rceil] \lessapprox e^{-d} \left(\frac{k}{n}\right)$$



Small Case: k < n/poly(d) rows: Symmetric



Symmetric Part

Tool: Show that there is a column with exactly one non-zero entry

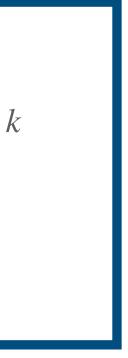
R = number of non-zero entries among the k rows

Observation: $B < \lceil R/2 \rceil \Rightarrow$ Number of non-zero columns = R - B > R/2

B = number of non-zero entries that are **not first in their column** or **in upper diagonal of symmetric part**

- \Rightarrow At least 1 column with exactly 1 non-zero

$$\Pr[B \ge \lceil R/2 \rceil] \lessapprox e^{-d} \left(\frac{k}{n}\right)$$



Large Case: Anticoncentration Hammer

Large Case: Anticoncentration Hammer

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]: Let $X_i \sim \text{Bernoulli}(p)$ for $i \in [n]$. Let $v \in \mathbb{R}^n$ have support of size at least m. Then $\Pr[X^T v = 0] \leq O\left(1/\sqrt{pm}\right)$

Large Case: Anticoncentration Hammer

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]: Let $X_i \sim \text{Bernoulli}(p)$ for $i \in [n]$. Let $v \in \mathbb{R}^n$ have support of size at least m. Then $\Pr[X^T v = 0] \le O\left(1/\sqrt{pm}\right)$

Quadratic Littlewood Offord Theorem [Costello, Vu '06]: Let $X_i \sim \text{Bernoulli}(p)$ for $i \in [n]$. Let $M \in \mathbb{R}^{n \times n}$ contain at least m columns with at least m non-zeros. Then $\Pr[X^T M X = 0] \leq O\left(1/\sqrt[4]{pm}\right)$

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]: Let $X_i \sim \text{Bernoulli}(p)$ for $i \in [n]$. Let $v \in \mathbb{R}^n$ have support of size at least m. Then $\Pr[X^T v = 0] \leq O\left(1/\sqrt{pm}\right)$

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]: Let $X_i \sim \text{Bernoulli}(p)$ for $i \in [n]$. Let $v \in \mathbb{R}^n$ have support of size at least m. Then $\Pr[X^T v = 0] \leq O\left(1/\sqrt{pm}\right)$

—> Add columns one at a time and "knock off" remaining row dependencies.

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]: Let $X_i \sim \text{Bernoulli}(p)$ for $i \in [n]$. Let $v \in \mathbb{R}^n$ have support of size at least m. Then $\Pr[X^T v = 0] \leq O\left(1/\sqrt{pm}\right)$

—> Add columns one at a time and "knock off" remaining row dependencies.

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]: Let $X_i \sim \text{Bernoulli}(p)$ for $i \in [n]$. Let $v \in \mathbb{R}^n$ have support of size at least m. Then $\Pr[X^T v = 0] \leq O\left(1/\sqrt{pm}\right)$

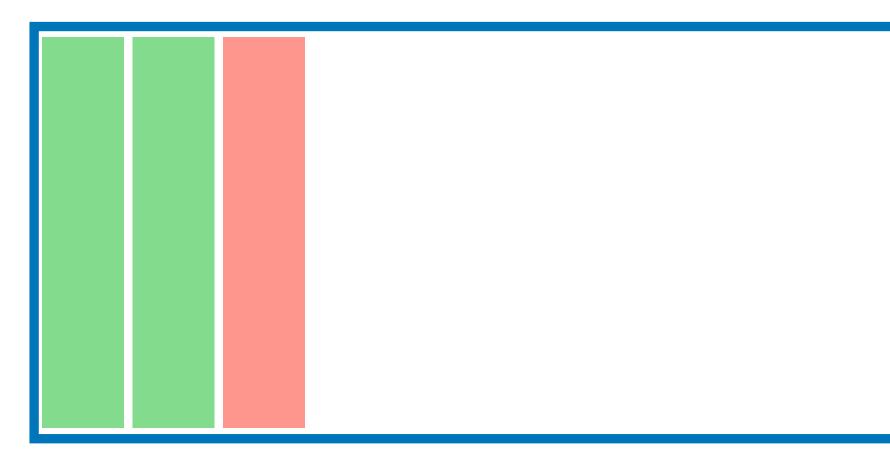
—> Add columns one at a time and "knock off" remaining row dependencies.

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]: Let $X_i \sim \text{Bernoulli}(p)$ for $i \in [n]$. Let $v \in \mathbb{R}^n$ have support of size at least m. Then $\Pr[X^T v = 0] \leq O\left(1/\sqrt{pm}\right)$

—> Add columns one at a time and "knock off" remaining row dependencies.

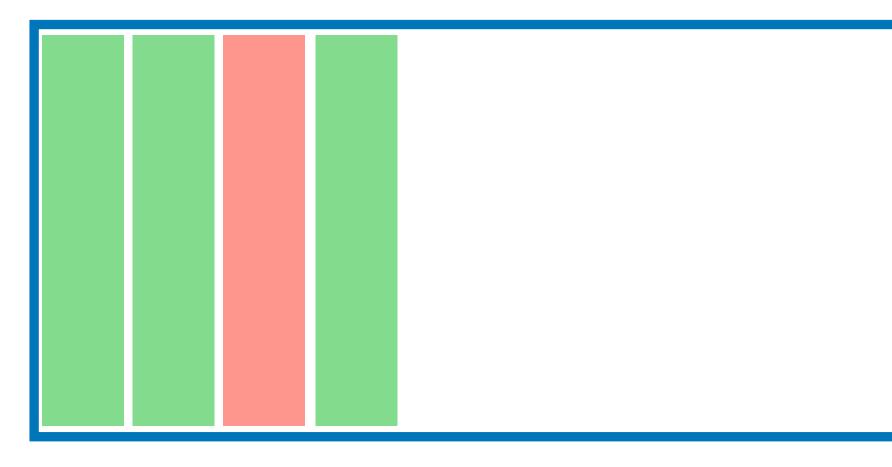
Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]: Let $X_i \sim \text{Bernoulli}(p)$ for $i \in [n]$. Let $v \in \mathbb{R}^n$ have support of size at least m. Then $\Pr[X^T v = 0] \leq O\left(1/\sqrt{pm}\right)$

—> Add columns one at a time and "knock off" remaining row dependencies.



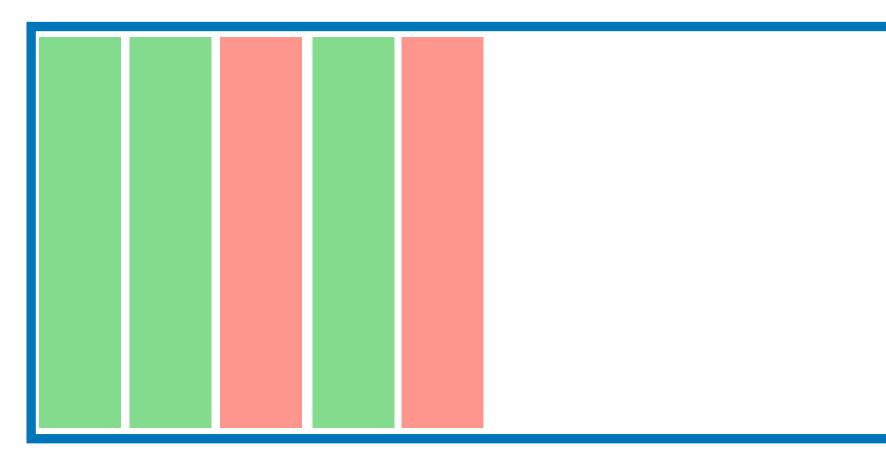
Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]: Let $X_i \sim \text{Bernoulli}(p)$ for $i \in [n]$. Let $v \in \mathbb{R}^n$ have support of size at least m. Then $\Pr[X^T v = 0] \leq O\left(1/\sqrt{pm}\right)$

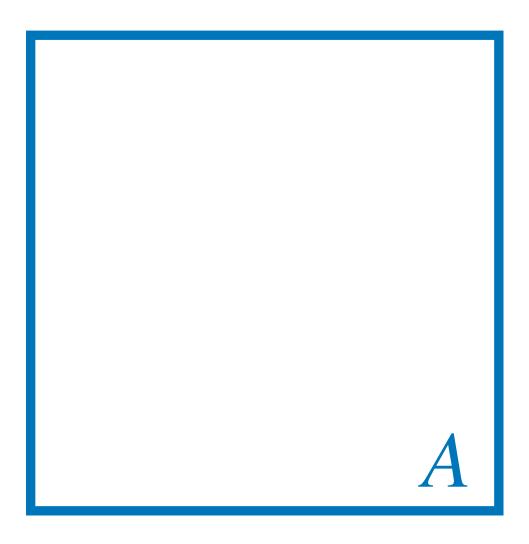
—> Add columns one at a time and "knock off" remaining row dependencies.

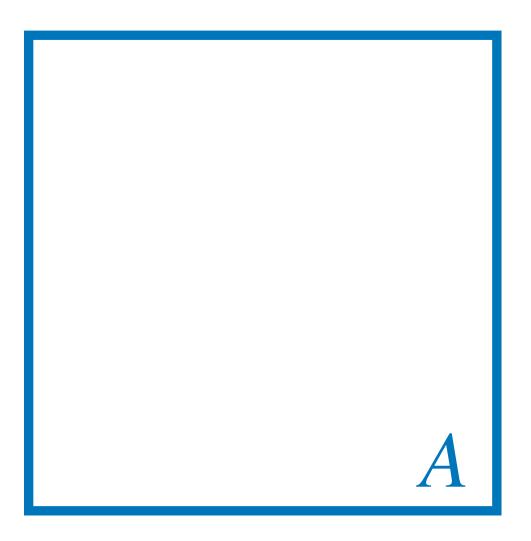


Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]: Let $X_i \sim \text{Bernoulli}(p)$ for $i \in [n]$. Let $v \in \mathbb{R}^n$ have support of size at least m. Then $\Pr[X^T v = 0] \leq O\left(1/\sqrt{pm}\right)$

—> Add columns one at a time and "knock off" remaining row dependencies.

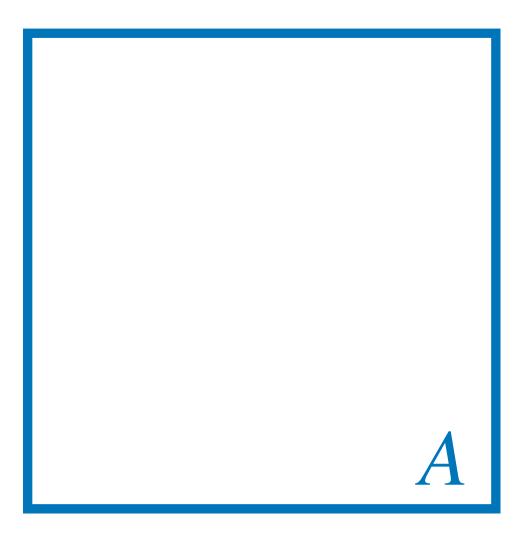






Fact:

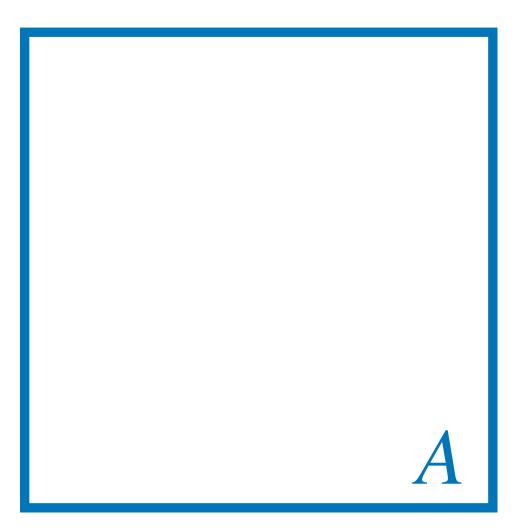
$Ax = 0 \Rightarrow A_i \in \text{Span}(\{A_j\}_{j \neq i}) \quad \forall i \in \text{supp}(x)$



Fact:

 $X_i := 1(A_i \in \operatorname{Span}(\{A_j\}_{j \neq i}))$

$Ax = 0 \Rightarrow A_i \in \text{Span}(\{A_j\}_{j \neq i}) \quad \forall i \in \text{supp}(x)$



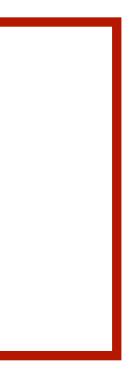
Fact:

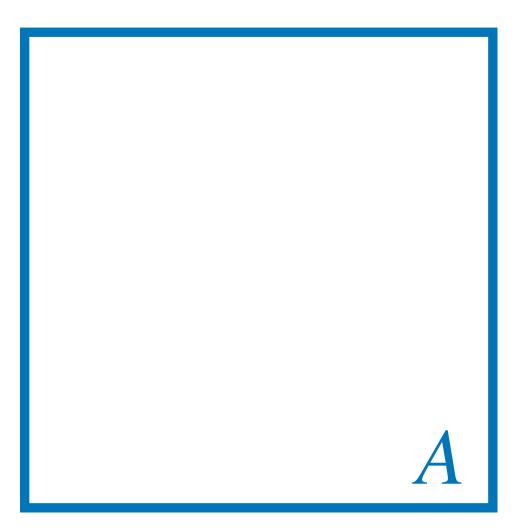
 $X_i := 1(A_i \in \operatorname{Span}(\{A_i\}_{i \neq i}))$

Markov's Inequality:

$Ax = 0 \Rightarrow A_i \in \text{Span}(\{A_i\}_{i \neq i}) \quad \forall i \in \text{supp}(x)$

$\Pr[\exists x : \operatorname{supp}(x) \ge t, Ax = 0] \le \Pr[\sum X_i \ge t]$





Fact:

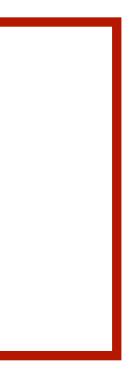
 $X_i := 1(A_i \in \operatorname{Span}(\{A_i\}_{i \neq i}))$

Markov's Inequality: $\Pr[\exists x : \operatorname{supp}(x) \ge t,$

$Ax = 0 \Rightarrow A_i \in \text{Span}(\{A_j\}_{j \neq i}) \quad \forall i \in \text{supp}(x)$

$$Ax = 0] \le \Pr[\sum_{i \in I} X_i \ge t]$$

 $\le \frac{n}{t} \Pr[A_n \in \operatorname{Span}(\{A_i\}_{i \ne n})]$



Markov's Inequality:

 $\Pr[\exists x : \operatorname{supp}(x) \ge t,$

Goal: Bound $\Pr[A_n \in \operatorname{Span}(\{A_i\}_{i < n})]$

$$Ax = 0] \le \frac{n}{t} \Pr[A_n \in \operatorname{Span}(\{A_i\}_{i \ne n})]$$

Markov's Inequality:

 $\Pr[\exists x : \operatorname{supp}(x) \ge t,$

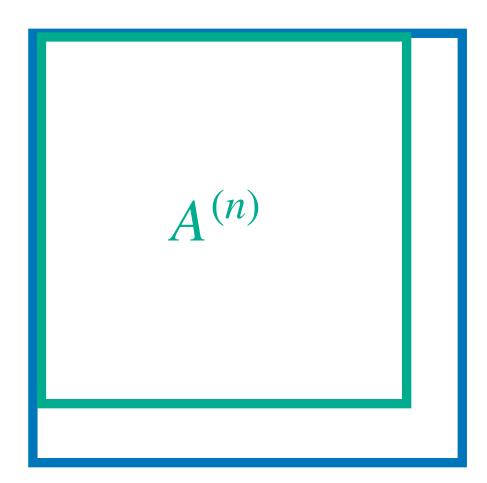
Goal: Bound $\Pr[A_n \in \operatorname{Span}(\{A_i\}_{i < n})]$

Technique: Construct witness vectors w_i :

 $A_i \notin \operatorname{Span}(\{A_i\}_{i \neq i})$

$$Ax = 0] \le \frac{n}{t} \Pr[A_n \in \operatorname{Span}(\{A_i\}_{i \ne n})]$$

$$(i) \leftrightarrow \exists w : w^T A = e_i^T$$



Markov's Inequality:

 $\Pr[\exists x : \operatorname{supp}(x) \ge t,$

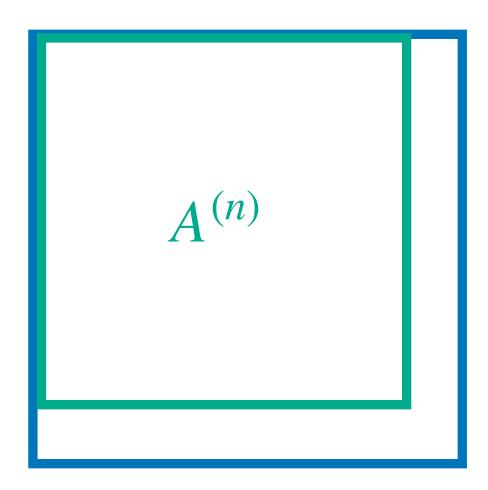
Goal: Bound $\Pr[A_n \in \operatorname{Span}(\{A_i\}_{i < n})]$

Technique: Construct witness vectors w_i :

 $A_i \notin \operatorname{Span}(\{A_i\}_{i \neq i})$

$$Ax = 0] \le \frac{n}{t} \Pr[A_n \in \operatorname{Span}(\{A_i\}_{i \ne n})]$$

$$(i) \leftrightarrow \exists w : w^T A = e_i^T$$



Markov's Inequality:

 $\Pr[\exists x : \operatorname{supp}(x) \ge t,$

Goal: Bound $\Pr[A_n \in \operatorname{Span}(\{A_i\}_{i < n})]$

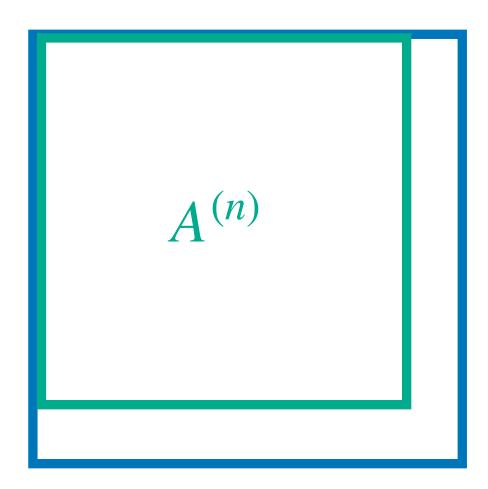
Technique: Construct witness vectors w_i :

 $A_i \notin \operatorname{Span}(\{A_i\}_{i \neq i})$

Case 1: $A^{(n)}$ has kernel vector with large support

$$Ax = 0] \le \frac{n}{t} \Pr[A_n \in \operatorname{Span}(\{A_i\}_{i \ne n})]$$

$$(i) \leftrightarrow \exists w : w^T A = e_i^T$$



Markov's Inequality:

 $\Pr[\exists x : \operatorname{supp}(x) \ge t,$

Goal: Bound $\Pr[A_n \in \operatorname{Span}(\{A_i\}_{i < n})]$

Technique: Construct witness vectors w_i :

 $A_i \notin \operatorname{Span}(\{A_i\}_{i \neq i})$

Case 1: $A^{(n)}$ has kernel vector with large support **Case 2:** $A^{(n)}$ has no kernel vector with large support

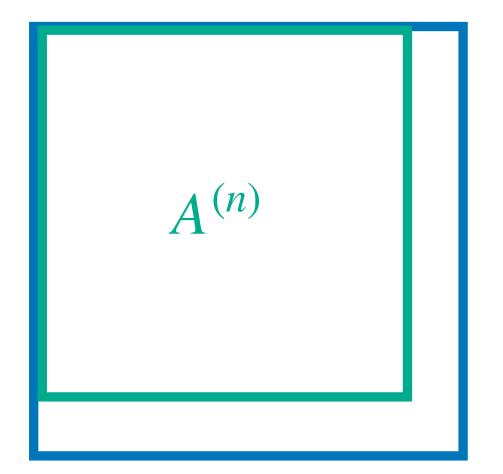
$$Ax = 0] \le \frac{n}{t} \Pr[A_n \in \operatorname{Span}(\{A_i\}_{i \ne n})]$$

$$(i) \leftrightarrow \exists w : w^T A = e_i^T$$

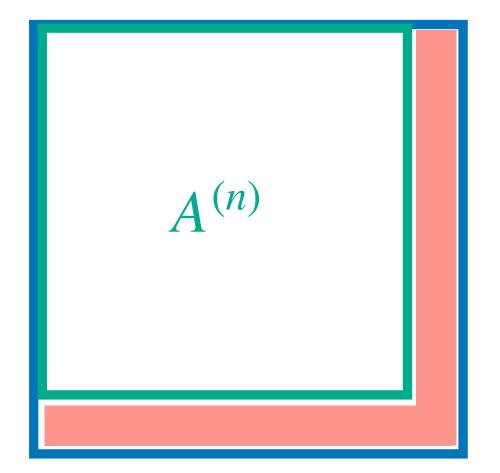
Goal: Bound $\Pr[A_n \in \operatorname{Span}(\{A_i\}_{i < n})]$

Goal: Bound $\Pr[A_n \in \operatorname{Span}(\{A_i\}_{i < n})]$

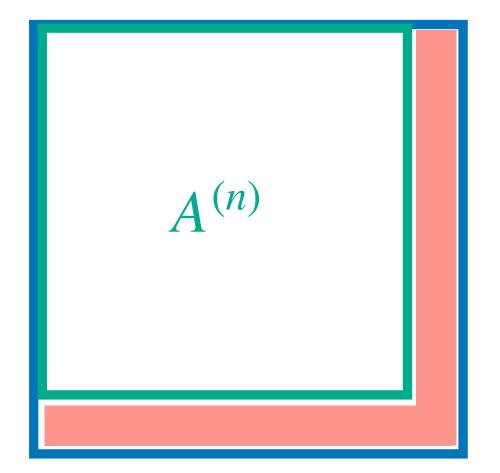
Goal: Bound $\Pr[A_n \in \operatorname{Span}(\{A_i\}_{i < n})]$



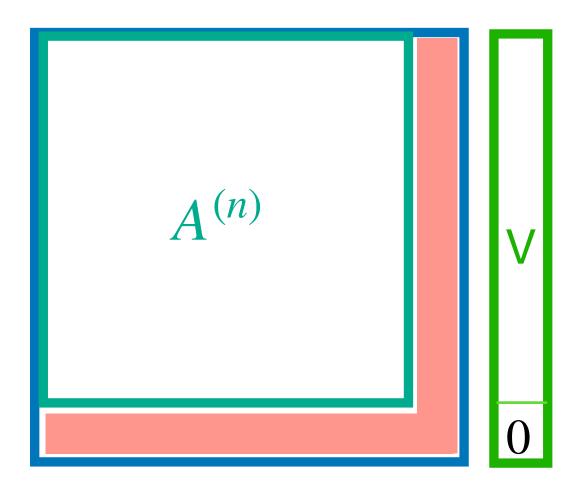
Goal: Bound $\Pr[A_n \in \operatorname{Span}(\{A_i\}_{i < n})]$



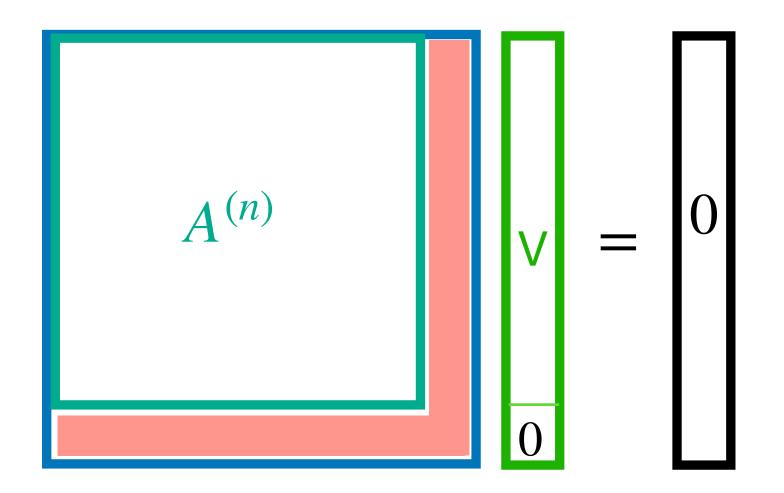
Goal: Bound $\Pr[A_n \in \operatorname{Span}(\{A_i\}_{i < n})]$



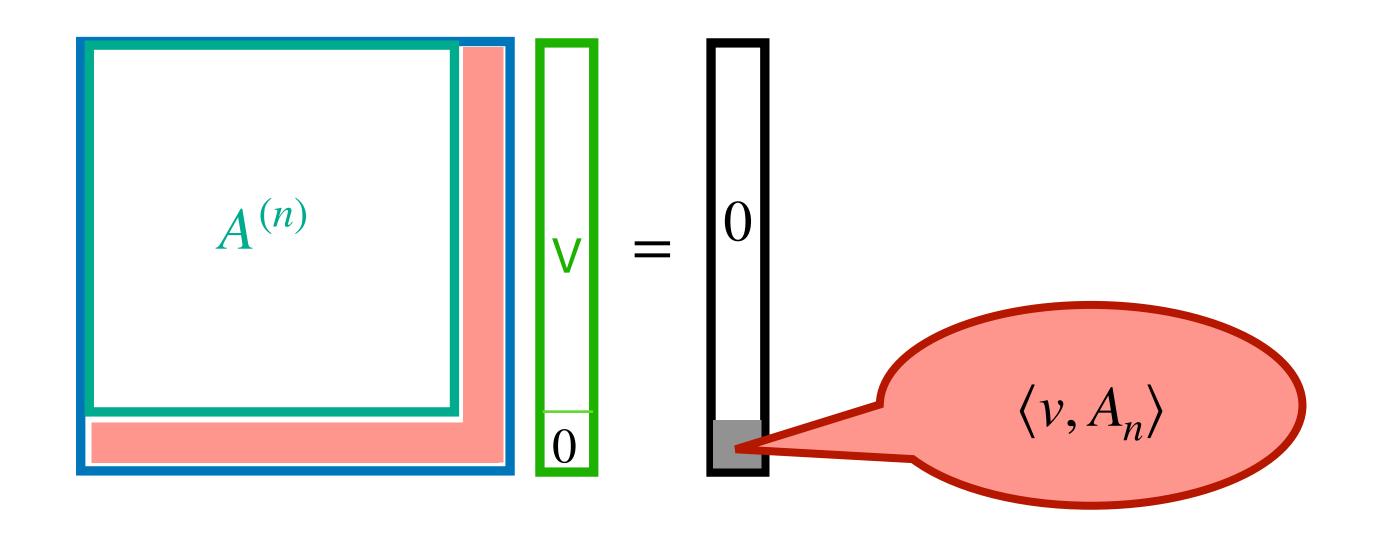
Goal: Bound $Pr[A_n \in Span(\{A_i\}_{i < n})]$



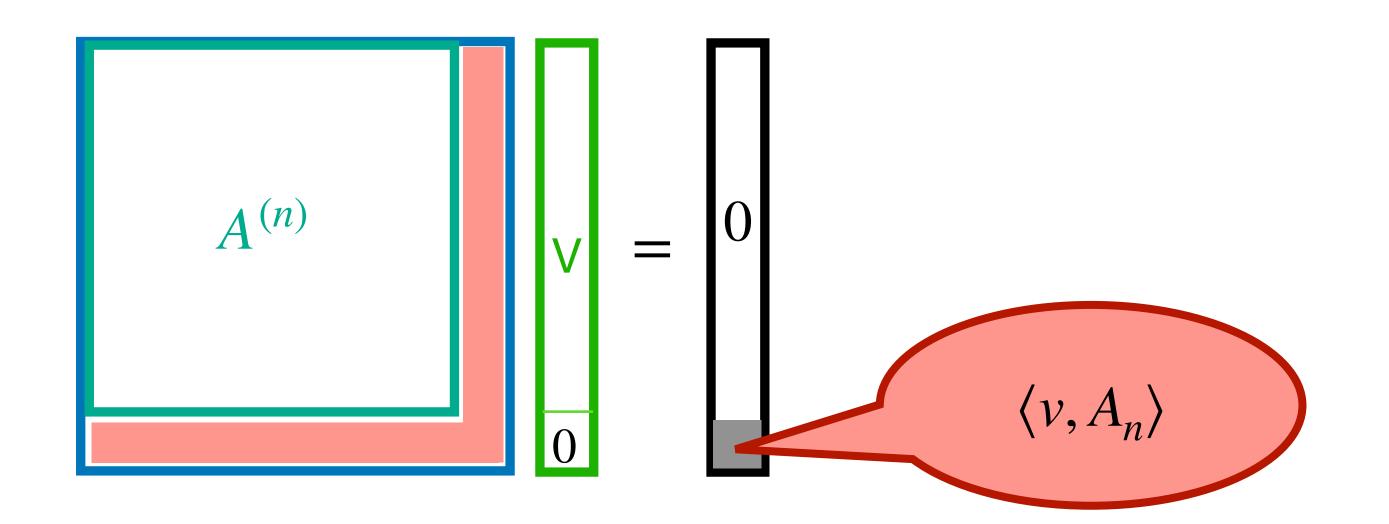
Goal: Bound $Pr[A_n \in Span(\{A_i\}_{i < n})]$



Goal: Bound $Pr[A_n \in Span(\{A_i\}_{i < n})]$

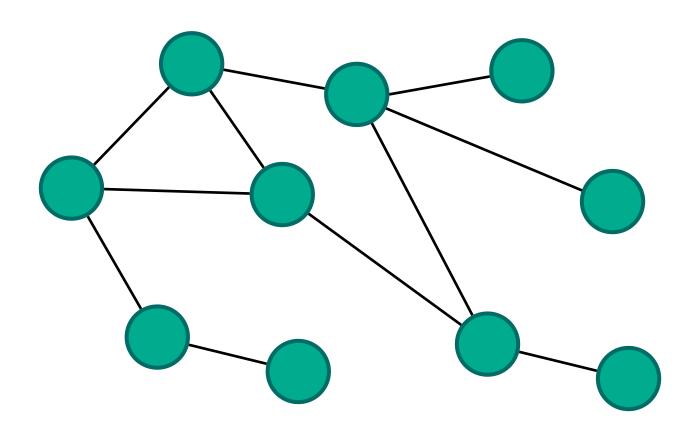


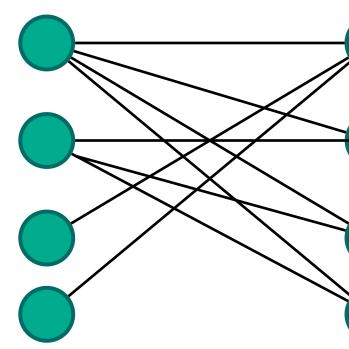
Goal: Bound $Pr[A_n \in Span(\{A_i\}_{i < n})]$

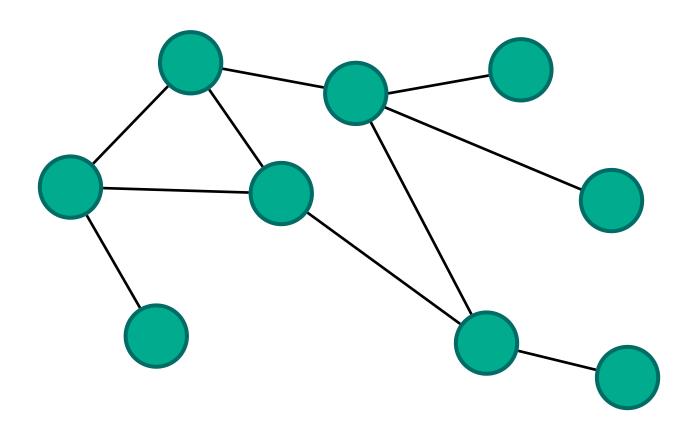


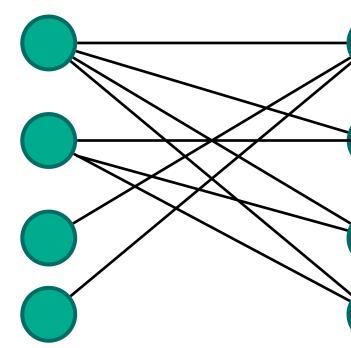
$A_n \notin \operatorname{Span}(\{A_j\}_{j \neq n}) \leftrightarrow \exists w : w^T A = e_n^T$

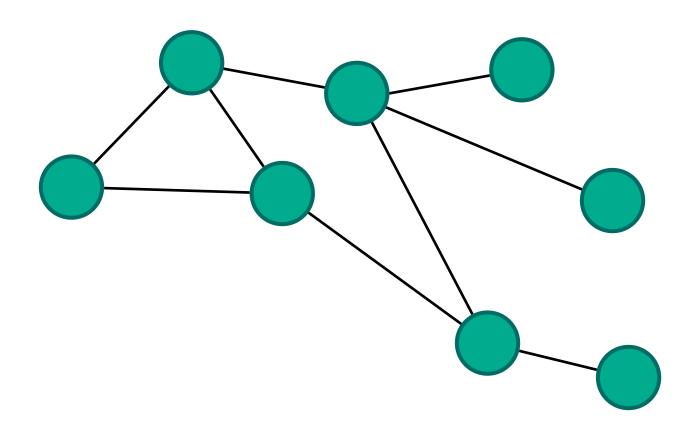
Sparse Littlewood-Offord: Then $\Pr[A_n^T v = 0] \le O\left(1/\sqrt{d}\right)$

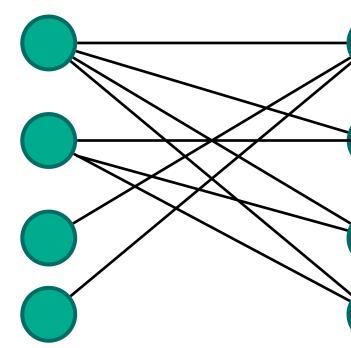


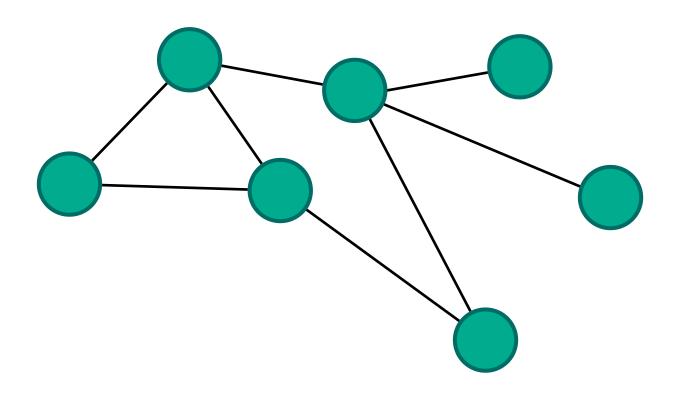


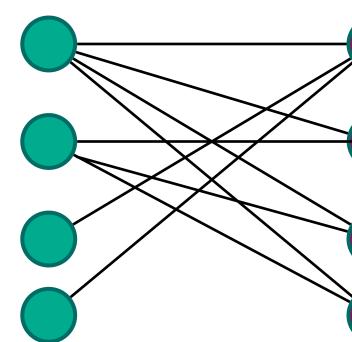


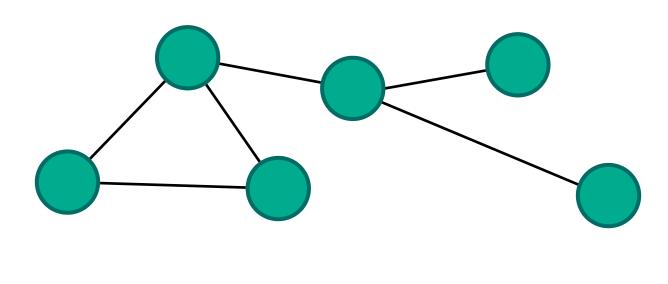


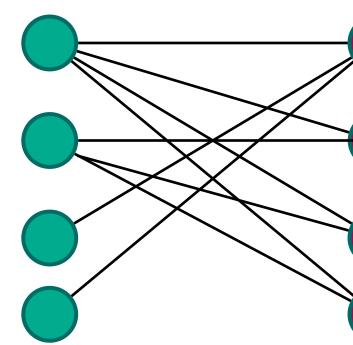


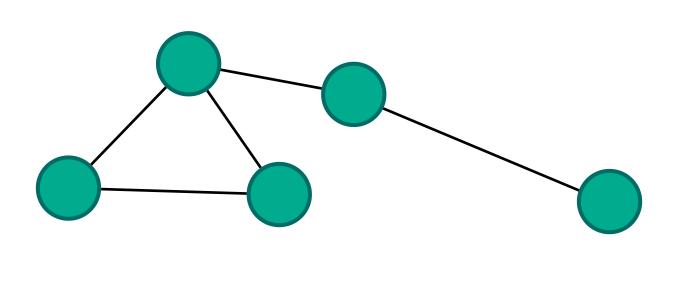


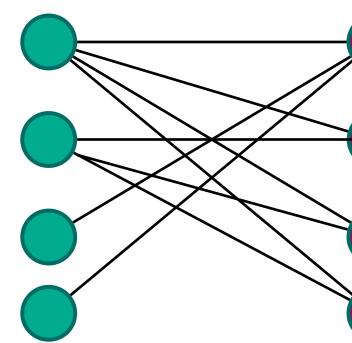


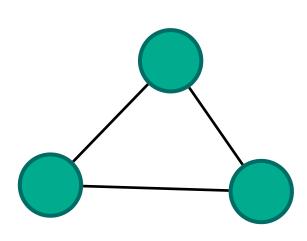


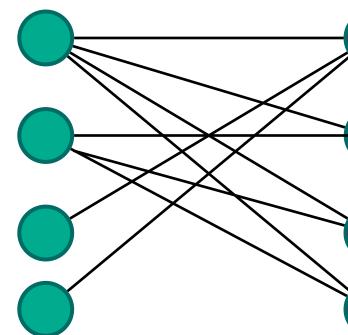


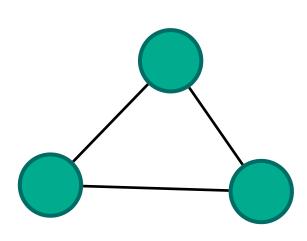


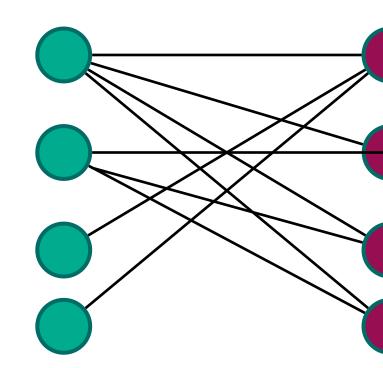






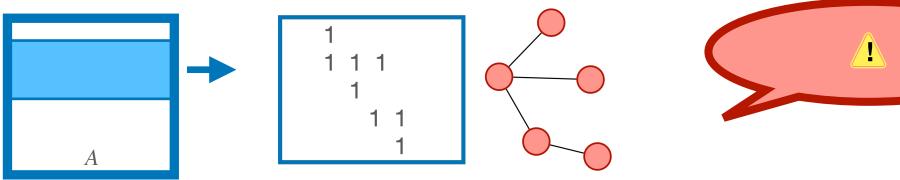


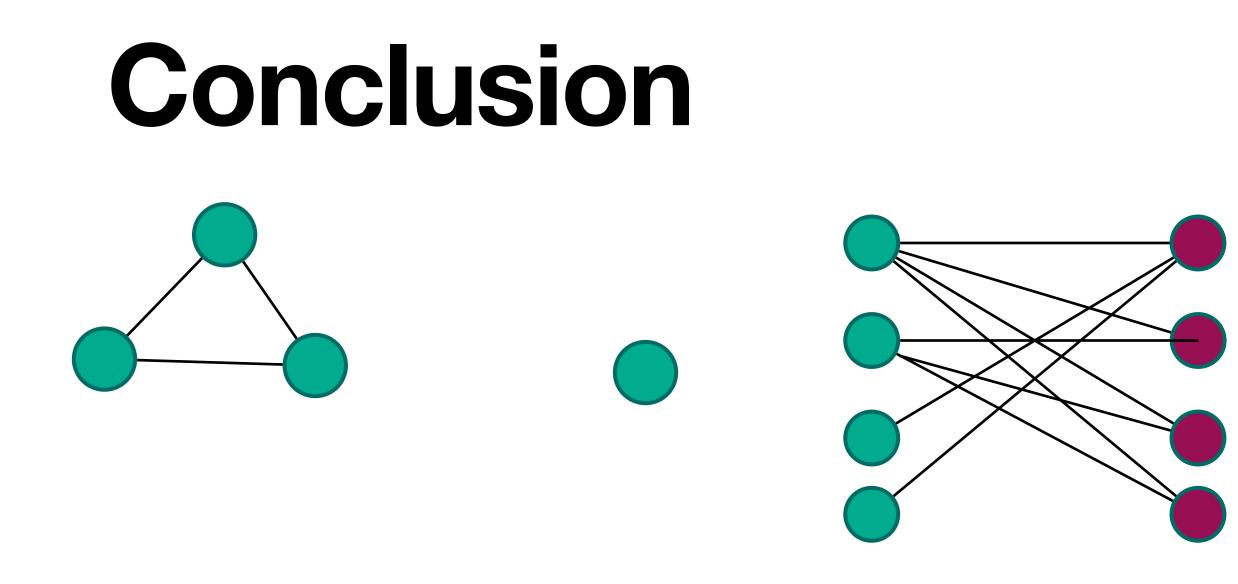




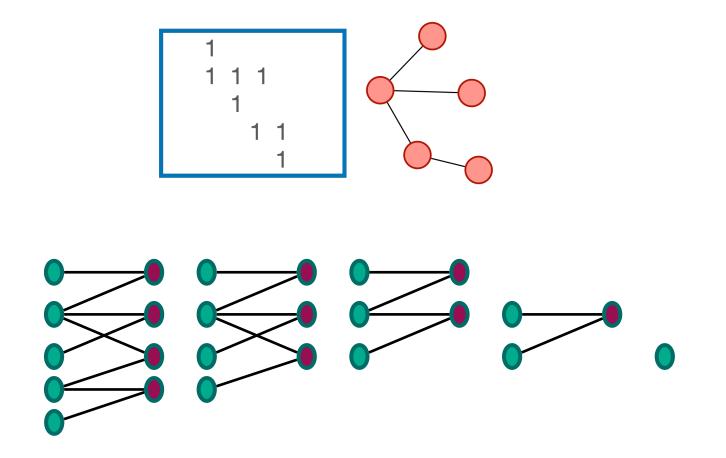
Main Results

- Whp, corank given by I_{KS}
- Characterization of minimal dependencies



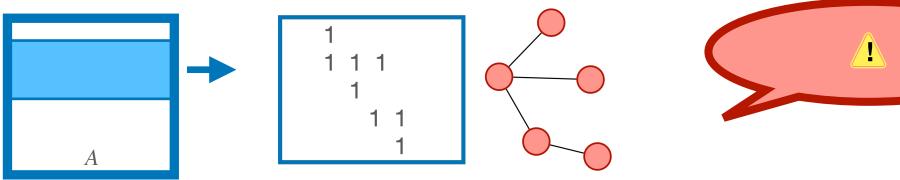


Tree Dependencies get Peeled!

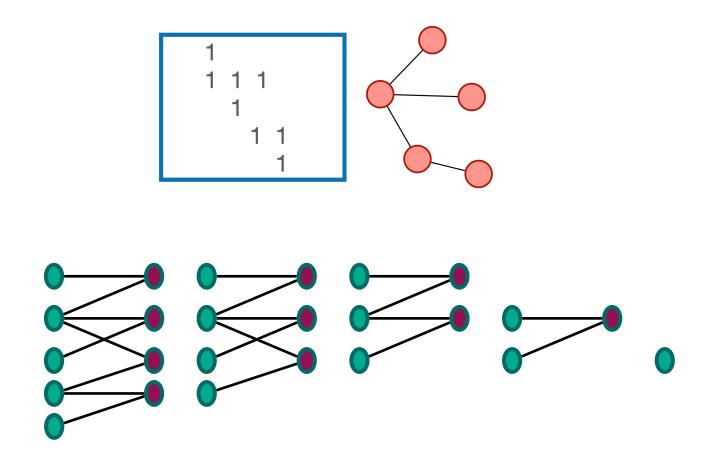


Main Results

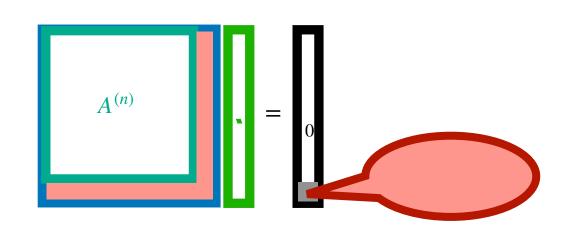
- Whp, corank given by I_{KS}
- Characterization of minimal dependencies



Tree Dependencies get Peeled! Key Proof Ideas for Characterization

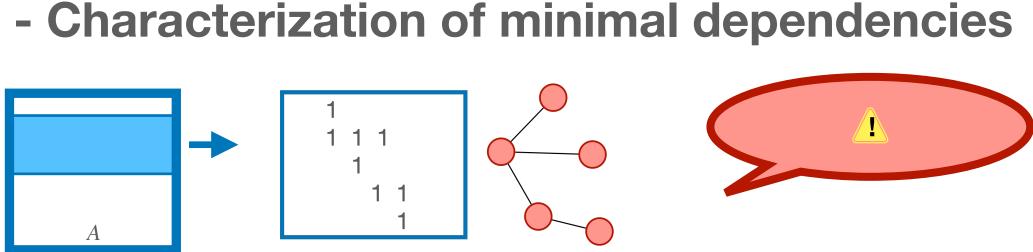


- Union bound over small dependencies
- Anticoncentration for large dependencies

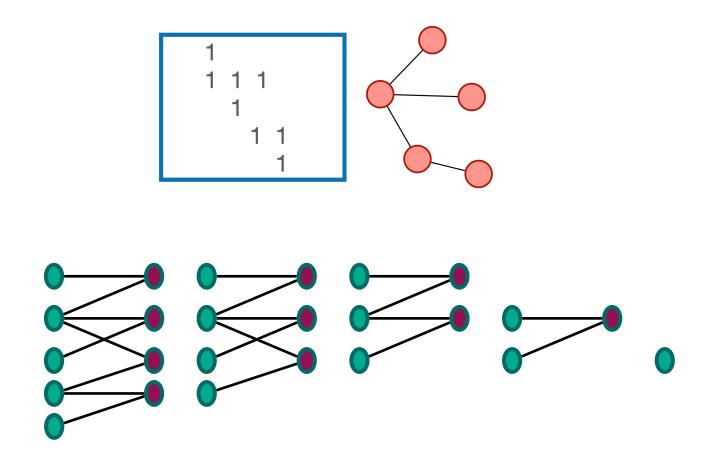


Main Results

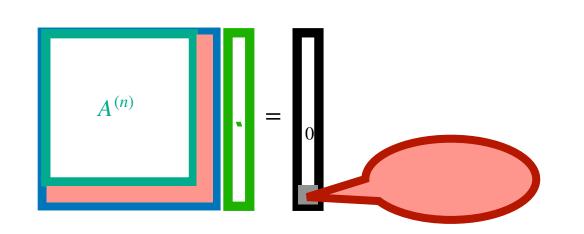
- Whp, corank given by I_{KS}



Tree Dependencies get Peeled! Key Proof Ideas for Characterization

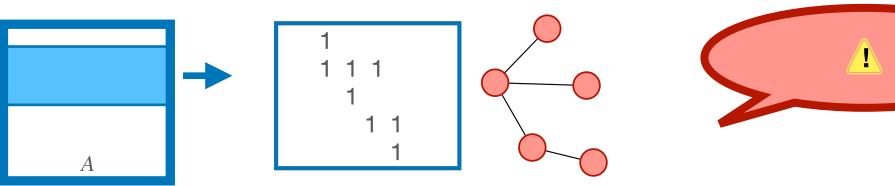


- Union bound over small dependencies
- Anticoncentration for large dependencies



Main Results

- Whp, corank given by I_{KS}
- Characterization of minimal dependencies



Limitations/Directions

Constant Average Degree?

Thanks!

Questions?