Rank of Erdos-Renyi Graphs

Margalit Glasgow

Joint work with Patrick DeMichele, Alex Moreira

Discrete Random Matrices

Discrete Random Matrices

Discrete Random Matrices

What Graphs are Invertible?

What Graphs are Invertible?

Above connectivity threshold $(\ln (n)+\omega(1) \leq p n \leq n / 2), G \sim \mathbb{G}(n, p)$ and $H \sim \mathbb{G}(n, n, p)$ are invertible with high probability.
[Rudelson, Basak '18]

What Graphs are Invertible?

Above connectivity threshold $(\ln (n)+\omega(1) \leq p n \leq n / 2), G \sim \mathbb{G}(n, p)$ and $H \sim \mathbb{G}(n, n, p)$ are invertible with high probability.
[Rudelson, Basak '18]

What Graphs are Invertible?

Above connectivity threshold $(\ln (n)+\omega(1) \leq p n \leq n / 2), G \sim \mathbb{G}(n, p)$ and $H \sim \mathbb{G}(n, n, p)$ are invertible with high probability.
[Rudelson, Basak '18]

Below this threshold $p n \leq(\ln (n)-\omega(1)), G \sim \mathbb{G}(n, p)$ and $H \sim \mathbb{G}(n, n, p)$ are not invertible with high probability.
[Rudelson, Basak '18]

What Graphs are Invertible?

Above connectivity threshold $(\ln (n)+\omega(1) \leq p n \leq n / 2), G \sim \mathbb{G}(n, p)$ and $H \sim \mathbb{G}(n, n, p)$ are invertible with high probability.
[Rudelson, Basak '18]

Below this threshold $p n \leq(\ln (n)-\omega(1)), G \sim \mathbb{G}(n, p)$ and $H \sim \mathbb{G}(n, n, p)$ are not invertible with high probability.
[Rudelson, Basak '18]
For $d \geq 3$, random d-regular graphs are invertible with high probability.
[Huang '18]

Sparse ER Graphs Have Linear Dependencies

Sparse ER Graphs Have Linear Dependencies

Isolated Vertex

Sparse ER Graphs Have Linear Dependencies

Key Phenomenon:
Linear Dependencies come from small structures [Costello Vu, Tikhimirov, Jain et al, etc.]

Key Phenomenon:
Linear Dependencies come from small structures [Costello Vu, Tikhimirov, Jain et al, etc.]

Key Phenomenon:
Linear Dependencies come from small structures [Costello Vu, Tikhimirov, Jain et al, etc.]

Can we understand the rank of \mathbf{G} by removing these structures?

Karp-Sipser Core

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

$$
\text { Fact: } \operatorname{corank}(G)=\operatorname{corank}\left(G^{\prime}\right)=\operatorname{corank}\left(G_{K S}\right)+\left|I_{K S}\right|
$$

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree 1 and their unique neighbor, and then removing all isolated vertices

$$
\begin{aligned}
G v & =0 \Leftrightarrow G^{\prime} v^{\prime}=0 \\
v & =\left(-w^{\top} v^{\prime}, 0, v^{\prime}\right)
\end{aligned}
$$

Prior Results

Let $0<\mathrm{q}<1$ be the smallest solution to $q=\exp (-c \exp (-c q))$.
Then in almost surely, $\left|I_{K S}(G)\right| / n \rightarrow q+e^{-c q}+c q e^{-c q}-1$

Prior Results

Bourdenave Lelarge Salez '11: For $G \sim \mathbb{G}(n, p)$ with $p=\Theta(1 / n)$, almost surely,

$$
\lim _{n \rightarrow \infty} \operatorname{corank}\left(\operatorname{Adj}\left(G_{K S}\right)\right) / n=0
$$

Let $0<\mathrm{q}<1$ be the smallest solution to $q=\exp (-c \exp (-c q))$.
Then in almost surely, $\left|I_{K S}(G)\right| / n \rightarrow q+e^{-c q}+c q e^{-c q}-1$

Prior Results

Bourdenave Lelarge Salez '11: For $G \sim \mathbb{G}(n, p)$ with $p=\Theta(1 / n)$, almost surely,

$$
\lim _{n \rightarrow \infty} \operatorname{corank}\left(\operatorname{Adj}\left(G_{K S}\right)\right) / n=0
$$

Coja-Oghlan, Ergür, Gao, Hetterich, Rolvien '20: For $H \sim \mathbb{G}(n, n, p)$, with $p=\Theta(1 / n)$, in probability,

$$
\lim _{n \rightarrow \infty} \operatorname{corank}\left(\operatorname{Bi}-\operatorname{Adj}\left(H_{K S}\right)\right) / n=0
$$

Let $0<\mathrm{q}<1$ be the smallest solution to $q=\exp (-c \exp (-c q))$.
Then in almost surely, $\left|I_{K S}(G)\right| / n \rightarrow q+e^{-c q}+c q e^{-c q}-1$

Main Result: Symmetric Bernoulli Matrices

Main Result: Symmetric Bernoulli Matrices

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$. Let $G_{K S}$ be the Karp-Sipser core of G and let $I_{K S}$ be the set of isolated vertices removed to form the KS core.

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$. Let $G_{K S}$ be the Karp-Sipser core of G and let $I_{K S}$ be the set of isolated vertices removed to form the KS core.

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$. Let $G_{K S}$ be the Karp-Sipser core of G and let $I_{K S}$ be the set of isolated vertices removed to form the KS core.

With probability $1-o(1)$:

1. $\operatorname{Adj}\left(G_{K S}\right)$ is invertible.

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$. Let $G_{K S}$ be the Karp-Sipser core of G and let $I_{K S}$ be the set of isolated vertices removed to form the KS core.

With probability $1-o(1)$:

1. $\operatorname{Adj}\left(G_{K S}\right)$ is invertible.
2. Equivalently, corank $(\operatorname{Adj}(G))=\left|I_{K S}\right|$.

Main Result: Asymmetric Bernoulli Matrices

Main Result: Asymmetric Bernoulli Matrices

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let $H=((L, R), E) \sim \mathbb{G}(n, n, d / n)$ where $d=\omega(1)$. Let $H_{K S}$ be the KarpSipser core of H and let $I_{K S}$ be the set of isolated vertices removed to form the KS core.

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let $H=((L, R), E) \sim \mathbb{G}(n, n, d / n)$ where $d=\omega(1)$. Let $H_{K S}$ be the KarpSipser core of H and let $I_{K S}$ be the set of isolated vertices removed to form the KS core.

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let $H=((L, R), E) \sim \mathbb{G}(n, n, d / n)$ where $d=\omega(1)$. Let $H_{K S}$ be the KarpSipser core of H and let $I_{K S}$ be the set of isolated vertices removed to form the KS core.

With probability $1-o(1)$:

1. $\operatorname{Bi}-\operatorname{Adj}\left(H_{K S}\right)$ or $\operatorname{Bi}-\operatorname{Adj}\left(H_{K S}\right)^{\top}$ has full column rank.

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let $H=((L, R), E) \sim \mathbb{G}(n, n, d / n)$ where $d=\omega(1)$. Let $H_{K S}$ be the KarpSipser core of H and let $I_{K S}$ be the set of isolated vertices removed to form the KS core.

With probability $1-o(1)$:

1. $\operatorname{Bi}-\operatorname{Adj}\left(H_{K S}\right)$ or $\operatorname{Bi}-\operatorname{Adj}\left(H_{K S}\right)^{\top}$ has full column rank.
2. Equivalently, $\operatorname{corank}(\operatorname{Bi}-\operatorname{Adj}(H))=\max \left(\left|I_{K S} \cap R\right|,\left|I_{K S} \cap L\right|\right)$.

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let $H=((L, R), E) \sim \mathbb{G}(n, n, d / n)$ where $d=\omega(1)$. Let $H_{K S}$ be the KarpSipser core of H and let $I_{K S}$ be the set of isolated vertices removed to form the KS core.

With probability $1-o(1)$:

1. $\operatorname{Bi}-\mathrm{Adj}\left(H_{K S}\right)$ or $\mathrm{Bi}-\mathrm{Adj}\left(H_{K S}\right)^{\top}$ has full column rank.
2. Equivalently, $\operatorname{corank}(\operatorname{Bi}-\operatorname{Adj}(H))=\max \left(\left|I_{K S} \cap R\right|,\left|I_{K S} \cap L\right|\right)$.

If these numbers different, then $\mathrm{Bi}-\mathrm{Adj}\left(H_{K S}\right)$ rectangular

Main Tool: Characterization of Linear Dependencies

A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

Main Tool: Characterization of Linear Dependencies

A k-minimal dependency is a set of k linearly dependent rows where all strict subsets of the k rows are linearly independent.

Main Tool: Characterization of Linear Dependencies

A k-minimal dependency is a set of k linearly dependent rows where all strict subsets of the k rows are linearly independent.

```
Rank = k - 1
```

$2-1-1-1$	
1	1
1	1
1	1
	1
	1

Main Tool: Characterization of Linear Dependencies

A k-minimal dependency is a set of k linearly dependent rows where all strict subsets of the k rows are linearly independent.

```
Rank = k - 1
```


Main Tool: Characterization of Linear Dependencies

A k-minimal dependency is a set of k linearly dependent rows where all strict subsets of the k rows are linearly independent.

Rank $=$ k-1

Main Tool: Characterization of Linear Dependencies

A \mathbf{k}-minimal dependency is a set of k linearly dependent rows where all strict subsets of the k rows are linearly independent.

Fact: Any k-minimal dependency must have $\geq 2 k-2$ non-zero entries

Our Characterization

Our Characterization

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.

Our Characterization

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.
With probability $1-o(1)$, all k-minimal dependencies among rows of A have $2 k-2$ non-zero entries.

Our Characterization

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.
With probability $1-o(1)$, all k-minimal dependencies among rows of A have $2 k-2$ non-zero entries.

In particular, they have the following 'tree' structure:

Our Characterization

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.
With probability $1-o(1)$, all k-minimal dependencies among rows of A have $2 k-2$ non-zero entries.

In particular, they have the following 'tree' structure:

Our Characterization

Our Characterization

Theorem 3: Let $H \sim \mathbb{G}(n, n, d / n)$ where $d=\omega(1)$, and let $B=\operatorname{Bi}-\operatorname{Adj}(G)$.

Our Characterization

Theorem 3: Let $H \sim \mathbb{G}(n, n, d / n)$ where $d=\omega(1)$, and let $B=\operatorname{Bi}-\operatorname{Adj}(G)$.
With probability $1-o(1)$, at least one of the following occurs:

1) All k-minimal dependencies among rows of B have exactly $2 k-2$ non-zero entries.

Our Characterization

Theorem 3: Let $H \sim \mathbb{G}(n, n, d / n)$ where $d=\omega(1)$, and let $B=\operatorname{Bi}-\operatorname{Adj}(G)$.
With probability $1-o(1)$, at least one of the following occurs:

1) All k-minimal dependencies among rows of B have exactly $2 k-2$ non-zero entries.
2) All k-minimal dependencies among rows of B^{\top} have exactly $2 k-2$ non-zero entries.

Our Characterization

Theorem 3: Let $H \sim \mathbb{G}(n, n, d / n)$ where $d=\omega(1)$, and let $B=\operatorname{Bi}-\operatorname{Adj}(G)$.
With probability $1-o(1)$, at least one of the following occurs:

1) All k-minimal dependencies among rows of B have exactly $2 k-2$ non-zero entries.
2) All k-minimal dependencies among rows of B^{\top} have exactly $2 k-2$ non-zero entries.

Our Characterization

Theorem 3: Let $H \sim \mathbb{G}(n, n, d / n)$ where $d=\omega(1)$, and let $B=\operatorname{Bi}-\operatorname{Adj}(G)$.
With probability $1-o(1)$, at least one of the following occurs:

1) All k-minimal dependencies among rows of B have exactly $2 k-2$ non-zero entries.
2) All k-minimal dependencies among rows of B^{\top} have exactly $2 k-2$ non-zero entries.

In particular, all such dependencies have the following 'tree' structure:

Our Characterization

Theorem 3: Let $H \sim \mathbb{G}(n, n, d / n)$ where $d=\omega(1)$, and let $B=\operatorname{Bi}-\operatorname{Adj}(G)$.
With probability $1-o(1)$, at least one of the following occurs:

1) All k-minimal dependencies among rows of B have exactly $2 k-2$ non-zero entries.
2) All k-minimal dependencies among rows of B^{\top} have exactly $2 k-2$ non-zero entries.

In particular, all such dependencies have the following 'tree' structure:
Edges

Proof of Rank from Characterization

Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

[^0]
Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.
Claim 2: If x is a kernel vector of $G_{K S}$, then there must be a kernel vector y of G whose
support contains the support of x.

Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.
Claim 2: If x is a kernel vector of $G_{K S}$, then there must be a kernel vector y of G whose
support contains the support of x.
Claim 3: If y is a kernel vector of G, then for any $v \in \operatorname{supp}(y)$, vertex v is involved in some k-minimal dependency.

Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.
Claim 2: If x is a kernel vector of $G_{K S}$, then there must be a kernel vector y of G whose
support contains the support of x.
Claim 3: If y is a kernel vector of G, then for any $v \in \operatorname{supp}(y)$, vertex v is involved in some k-minimal dependency.

Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.
Claim 2: If x is a kernel vector of $G_{K S}$, then there must be a kernel vector y of G whose support contains the support of x.

Claim 3: If y is a kernel vector of G, then for any $v \in \operatorname{supp}(y)$, vertex v is involved in some k-minimal dependency.

Claim 4: If vertex v is involved in some k -minimal dependency, then that vertex is peeled by the KS leaf-removal process or becomes isolated after this process.

Proof of Claim 4 from Characterization

Proof of Claim 4 from Characterization

Claim 4: If vertex v is involved in some k-minimal dependency, then that vertex is peeled by the KS leaf-removal process or becomes isolated after this process.

Proof of Claim 4 from Characterization

Claim 4: If vertex v is involved in some k -minimal dependency, then that vertex is peeled by the KS leaf-removal process or becomes isolated after this process.

Proof of Claim 4 from Characterization

Claim 4: If vertex v is involved in some k -minimal dependency, then that vertex is peeled by the KS leaf-removal process or becomes isolated after this process.

Proof of Claim 4 from Characterization

Claim 4: If vertex v is involved in some k -minimal dependency, then that vertex is peeled by the KS leaf-removal process or becomes isolated after this process.

Proof of Claim 4 from Characterization

Claim 4: If vertex v is involved in some k -minimal dependency, then that vertex is peeled by the KS leaf-removal process or becomes isolated after this process.

Proof of Claim 4 from Characterization

Claim 4: If vertex v is involved in some k -minimal dependency, then that vertex is peeled by the KS leaf-removal process or becomes isolated after this process.

Proof of Claim 4 from Characterization

Claim 4: If vertex v is involved in some k-minimal dependency, then that vertex is peeled by the KS leaf-removal process or becomes isolated after this process.

Proof of Claim 4 from Characterization

Claim 4: If vertex v is involved in some k -minimal dependency, then that vertex is peeled by the KS leaf-removal process or becomes isolated after this process.

Proof Outline of Theorem 3 (Characterization)

\square

Proof Outline of Theorem 3 (Characterization)

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.

Proof Outline of Theorem 3 (Characterization)

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.
With probability $1-o(1)$, all k-minimal dependencies among rows of A have $2 k-2$ non-zero entries.

Proof Outline of Theorem 3 (Characterization)

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.
With probability $1-o(1)$, all k-minimal dependencies among rows of A have $2 k-2$ non-zero entries.

Proof Outline:

Proof Outline of Theorem 3 (Characterization)

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.
With probability $1-o(1)$, all k-minimal dependencies among rows of A have $2 k-2$ non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with $\mathrm{k}<\mathrm{n} / \mathrm{d}$ rows and at least $2 \mathrm{k}-1$ non-zero entries.

Proof Outline of Theorem 3 (Characterization)

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.
With probability $1-o(1)$, all k-minimal dependencies among rows of A have $2 k-2$ non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with $k<n / d$ rows and at least $2 k-1$ non-zero entries.

- Union bound over all sets of k rows.

Proof Outline of Theorem 3 (Characterization)

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.

With probability $1-o(1)$, all k-minimal dependencies among rows of A have $2 k-2$ non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with $k<n / d$ rows and at least $2 k-1$ non-zero entries.

- Union bound over all sets of k rows.
- Show that some column in the set of rows has a single 1.

Proof Outline of Theorem 3 (Characterization)

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.

With probability $1-o(1)$, all k-minimal dependencies among rows of A have $2 k-2$ non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with $k<n / d$ rows and at least $2 k-1$ non-zero entries.

- Union bound over all sets of k rows.
- Show that some column in the set of rows has a single 1.

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

Proof Outline of Theorem 3 (Characterization)

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.

With probability $1-o(1)$, all k-minimal dependencies among rows of A have $2 k-2$ non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with $k<n / d$ rows and at least $2 k-1$ non-zero entries.

- Union bound over all sets of k rows.
- Show that some column in the set of rows has a single 1.

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

- Main Technique: Littlewood-Offord anti-concentration bounds.

Proof Outline of Theorem 3 (Characterization)

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.

With probability $1-o(1)$, all k-minimal dependencies among rows of A have $2 k-2$ non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with $k<n / d$ rows and at least $2 k-1$ non-zero entries.

- Union bound over all sets of k rows.
- Show that some column in the set of rows has a single 1.

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

- Main Technique: Littlewood-Offord anti-concentration bounds.

Proof Outline of Theorem 3 (Characterization)

Theorem 3: Let $G \sim \mathbb{G}(n, d / n)$ where $d=\omega(1)$, and let $A=\operatorname{Adj}(G)$.

With probability $1-o(1)$, all k-minimal dependencies among rows of A have $2 k-2$ non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with $k<n / d$ rows and at least $2 k-1$ non-zero entries.

- Union bound over all sets of k rows.
- Show that some column in the set of rows has a single 1.

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

- Main Technique: Littlewood-Offord anti-concentration bounds.

Small Case: k < n/poly(d) rows

Small Case: k < n/poly(d) rows (Warmup)

Small Case: k < n/poly(d) rows (Warmup)

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry
$R=$ number of non-zero entries among the k rows

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry
$R=$ number of non-zero entries among the k rows
$B=$ number of non-zero entries that are not first in their column

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry
$R=$ number of non-zero entries among the k rows
$B=$ number of non-zero entries that are not first in their column

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry
$R=$ number of non-zero entries among the k rows
$B=$ number of non-zero entries that are not first in their column
Observation: $B<\lceil R / 2\rceil \Rightarrow$ Number of non-zero columns $=R-B>R / 2$

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry
$R=$ number of non-zero entries among the k rows
$B=$ number of non-zero entries that are not first in their column
Observation: $B<\lceil R / 2\rceil \Rightarrow$ Number of non-zero columns $=R-B>R / 2$
\Rightarrow At least 1 column with exactly 1 non-zero

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry
$R=$ number of non-zero entries among the k rows
$B=$ number of non-zero entries that are not first in their column
Observation: $B<\lceil R / 2\rceil \Rightarrow$ Number of non-zero columns $=R-B>R / 2$
\Rightarrow At least 1 column with exactly 1 non-zero
\Rightarrow No minimal dependency in these k rows

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry
$R=$ number of non-zero entries among the k rows
$B=$ number of non-zero entries that are not first in their column
Observation: $B<\lceil R / 2\rceil \Rightarrow$ Number of non-zero columns $=R-B>R / 2$
\Rightarrow At least 1 column with exactly 1 non-zero

$$
\operatorname{Pr}[B \geq\lceil R / 2\rceil] \lesssim e^{-d}\left(\frac{k}{n}\right)^{k}
$$

\Rightarrow No minimal dependency in these k rows

Small Case: k < n/poly(d) rows: Symmetric

Tool: Show that there is a column with exactly one non-zero entry
$R=$ number of non-zero entries among the k rows
$B=$ number of non-zero entries that are not first in their column
Observation: $B<\lceil R / 2\rceil \Rightarrow$ Number of non-zero columns $=R-B>R / 2$
\Rightarrow At least 1 column with exactly 1 non-zero

$$
\operatorname{Pr}[B \geq[R / 2\rceil] \lesssim e^{-d}\left(\frac{k}{n}\right)^{k}
$$

\Rightarrow No minimal dependency in these k rows

Small Case: k < n/poly(d) rows: Symmetric

Symmetric Part
Tool: Show that there is a column with exactly one non-zero entry
$R=$ number of non-zero entries among the k rows
$B=$ number of non-zero entries that are not first in their column
Observation: $B<\lceil R / 2\rceil \Rightarrow$ Number of non-zero columns $=R-B>R / 2$
\Rightarrow At least 1 column with exactly 1 non-zero

$$
\operatorname{Pr}[B \geq\lceil R / 2\rceil] \lesssim e^{-d}\left(\frac{k}{n}\right)^{k}
$$

\Rightarrow No minimal dependency in these k rows

Small Case: k < n/poly(d) rows: Symmetric

Symmetric Part
Tool: Show that there is a column with exactly one non-zero entry
$R=$ number of non-zero entries among the k rows
$B=$ number of non-zero entries that are not first in their column or in upper diagonal of symmetric part
Observation: $B<\lceil R / 2\rceil \Rightarrow$ Number of non-zero columns $=R-B>R / 2$
\Rightarrow At least 1 column with exactly 1 non-zero

$$
\operatorname{Pr}[B \geq[R / 2\rceil] \lesssim e^{-d}\left(\frac{k}{n}\right)^{k}
$$

\Rightarrow No minimal dependency in these k rows

Large Case: Anticoncentration Hammer

Large Case: Anticoncentration Hammer

```
Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]:
Let }\mp@subsup{X}{i}{}~\operatorname{Bernoulli}(p)\mathrm{ for }i\in[n]. Let v\in\mp@subsup{\mathbb{R}}{}{n}\mathrm{ have support of size at least m.
Then Pr[\mp@subsup{X}{}{T}v=0]\leqO(1/\sqrt{}{pm})
```


Large Case: Anticoncentration Hammer

```
Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]:
Let }\mp@subsup{X}{i}{}~\operatorname{Bernoulli}(p)\mathrm{ for }i\in[n]. Let v\in\mp@subsup{\mathbb{R}}{}{n}\mathrm{ have support of size at least m.
Then Pr[\mp@subsup{X}{}{T}v=0]\leqO(1/\sqrt{}{pm})
```

Quadratic Littlewood Offord Theorem [Costello, Vu '06]:
Let $X_{i} \sim \operatorname{Bernoulli}(p)$ for $i \in[n]$. Let $M \in \mathbb{R}^{n \times n}$ contain at least m columns with at least m non-zeros.
Then $\operatorname{Pr}\left[X^{T} M X=0\right] \leq O(1 / \sqrt[4]{p m})$

Large Case 1: $n / d<k<n / C$

Large Case 1: $n / d<k<n / C$

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]:

Let $X_{i} \sim \operatorname{Bernoulli}(p)$ for $i \in[n]$. Let $v \in \mathbb{R}^{n}$ have support of size at least m. Then $\operatorname{Pr}\left[X^{T} v=0\right] \leq O(1 / \sqrt{p m})$

Large Case 1: $n / d<k<n / C$

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]:

Let $X_{i} \sim \operatorname{Bernoulli}(p)$ for $i \in[n]$. Let $v \in \mathbb{R}^{n}$ have support of size at least m. Then $\operatorname{Pr}\left[X^{T} v=0\right] \leq O(1 / \sqrt{p m})$
\rightarrow Add columns one at a time and "knock off" remaining row dependencies.

Large Case 1: $n / d<k<n / C$

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]:

Let $X_{i} \sim \operatorname{Bernoulli}(p)$ for $i \in[n]$. Let $v \in \mathbb{R}^{n}$ have support of size at least m.
Then $\operatorname{Pr}\left[X^{T} v=0\right] \leq O(1 / \sqrt{p m})$
$\rightarrow>$ Add columns one at a time and "knock off" remaining row dependencies.

Large Case 1: $n / d<k<n / C$

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]:

Let $X_{i} \sim \operatorname{Bernoulli}(p)$ for $i \in[n]$. Let $v \in \mathbb{R}^{n}$ have support of size at least m.
Then $\operatorname{Pr}\left[X^{T} v=0\right] \leq O(1 / \sqrt{p m})$
\rightarrow Add columns one at a time and "knock off" remaining row dependencies.

Large Case 1: $n / d<k<n / C$

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]:

Let $X_{i} \sim \operatorname{Bernoulli}(p)$ for $i \in[n]$. Let $v \in \mathbb{R}^{n}$ have support of size at least m. Then $\operatorname{Pr}\left[X^{T} v=0\right] \leq O(1 / \sqrt{p m})$
\rightarrow Add columns one at a time and "knock off" remaining row dependencies.

Large Case 1: $n / d<k<n / C$

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]:

Let $X_{i} \sim \operatorname{Bernoulli}(p)$ for $i \in[n]$. Let $v \in \mathbb{R}^{n}$ have support of size at least m. Then $\operatorname{Pr}\left[X^{T} v=0\right] \leq O(1 / \sqrt{p m})$
$\rightarrow>$ Add columns one at a time and "knock off" remaining row dependencies.

Large Case 1: $n / d<k<n / C$

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]:

Let $X_{i} \sim \operatorname{Bernoulli}(p)$ for $i \in[n]$. Let $v \in \mathbb{R}^{n}$ have support of size at least m. Then $\operatorname{Pr}\left[X^{T} v=0\right] \leq O(1 / \sqrt{p m})$
$\rightarrow>$ Add columns one at a time and "knock off" remaining row dependencies.

Large Case 1: $n / d<k<n / C$

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]:

Let $X_{i} \sim \operatorname{Bernoulli}(p)$ for $i \in[n]$. Let $v \in \mathbb{R}^{n}$ have support of size at least m. Then $\operatorname{Pr}\left[X^{T} v=0\right] \leq O(1 / \sqrt{p m})$
$\rightarrow>$ Add columns one at a time and "knock off" remaining row dependencies.

Large Case: $k=\Theta(n)$

Large Case: $k=\Theta(n)$

Large Case: $k=\Theta(n)$

Fact:
$A x=0 \Rightarrow A_{i} \in \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq i}\right) \quad \forall i \in \operatorname{supp}(x)$

Large Case: $k=\Theta(n)$

Fact:
$A x=0 \Rightarrow A_{i} \in \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq i}\right) \quad \forall i \in \operatorname{supp}(x)$
$X_{i}:=1\left(A_{i} \in \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq i}\right)\right.$

Large Case: $k=\Theta(n)$

Fact:

$$
\begin{aligned}
& A x=0 \Rightarrow A_{i} \in \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq i}\right) \quad \forall i \in \operatorname{supp}(x) \\
& X_{i}:=1\left(A_{i} \in \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq i}\right)\right.
\end{aligned}
$$

Markov's Inequality:
$\operatorname{Pr}[\exists x: \operatorname{supp}(x) \geq t, A x=0] \leq \operatorname{Pr}\left[\sum X_{i} \geq t\right]$

Large Case: $k=\Theta(n)$

Fact:

$$
\begin{aligned}
& A x=0 \Rightarrow A_{i} \in \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq i}\right) \quad \forall i \in \operatorname{supp}(x) \\
& X_{i}:=1\left(A_{i} \in \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq i}\right)\right.
\end{aligned}
$$

Markov's Inequality:

$$
\begin{aligned}
\operatorname{Pr}[\exists x: \operatorname{supp}(x) \geq t, A x=0] & \leq \operatorname{Pr}\left[\sum X_{i} \geq t\right] \\
& \leq \frac{n}{t} \operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i \neq n}\right)\right]
\end{aligned}
$$

Large Case: $k=\Theta(n)$

Large Case: $k=\Theta(n)$

Markov's Inequality:
$\operatorname{Pr}[\exists x: \operatorname{supp}(x) \geq t, A x=0] \leq \frac{n}{t} \operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i \neq n}\right)\right]$
Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right]
$$

Large Case: $k=\Theta(n)$

Markov's Inequality:
$\operatorname{Pr}[\exists x: \operatorname{supp}(x) \geq t, A x=0] \leq \frac{n}{t} \operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i \neq n}\right)\right]$

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right]
$$

Technique: Construct witness vectors w_{j} :

$$
A_{i} \notin \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq i}\right) \leftrightarrow \exists w: w^{T} A=e_{i}^{T} .
$$

Large Case: $k=\Theta(n)$

Markov's Inequality:
$\operatorname{Pr}[\exists x: \operatorname{supp}(x) \geq t, A x=0] \leq \frac{n}{t} \operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i \neq n}\right)\right]$

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right]
$$

Technique: Construct witness vectors w_{j} :

$$
A_{i} \notin \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq i}\right) \leftrightarrow \exists w: w^{T} A=e_{i}^{T}
$$

Large Case: $k=\Theta(n)$

Markov's Inequality:
$\operatorname{Pr}[\exists x: \operatorname{supp}(x) \geq t, A x=0] \leq \frac{n}{t} \operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i \neq n}\right)\right]$

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right]
$$

Technique: Construct witness vectors w_{j} :

$$
A_{i} \notin \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq i}\right) \leftrightarrow \exists w: w^{T} A=e_{i}^{T}
$$

Case 1: $A^{(n)}$ has kernel vector with large support

Can find vector orthogonal to all columns besides A_{i}

Large Case: $k=\Theta(n)$

Markov's Inequality:
$\operatorname{Pr}[\exists x: \operatorname{supp}(x) \geq t, A x=0] \leq \frac{n}{t} \operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i \neq n}\right)\right]$

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right]
$$

Technique: Construct witness vectors w_{j} :

$$
A_{i} \notin \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq i}\right) \leftrightarrow \exists w: w^{T} A=e_{i}^{T}
$$

Case 1: $A^{(n)}$ has kernel vector with large support
Case 2: $\quad A^{(n)}$ has no kernel vector with large support

Can find vector orthogonal to all columns besides A_{i}

Case 1: $A^{(n)}$ has kernel vector v with large support

Case 1: $A^{(n)}$ has kernel vector v with large support

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right]
$$

Case 1: $A^{(n)}$ has kernel vector v with large support

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right]
$$

$$
A_{n} \notin \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq n}\right) \leftrightarrow \exists w: w^{T} A=e_{n}^{T}
$$

Case 1: $A^{(n)}$ has kernel vector v with large support

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right]
$$

$$
A_{n} \notin \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq n}\right) \leftrightarrow \exists w: w^{T} A=e_{n}^{T}
$$

Case 1: $A^{(n)}$ has kernel vector v with large support

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right]
$$

$$
A_{n} \notin \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq n}\right) \leftrightarrow \exists w: w^{T} A=e_{n}^{T}
$$

Case 1: $A^{(n)}$ has kernel vector v with large support

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right]
$$

$$
A_{n} \notin \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq n}\right) \leftrightarrow \exists w: w^{T} A=e_{n}^{T}
$$

Case 1: $A^{(n)}$ has kernel vector v with large support

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right]
$$

$$
A_{n} \notin \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq n}\right) \leftrightarrow \exists w: w^{T} A=e_{n}^{T}
$$

Case 1: $A^{(n)}$ has kernel vector v with large support

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right]
$$

$$
A_{n} \notin \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq n}\right) \leftrightarrow \exists w: w^{T} A=e_{n}^{T}
$$

Case 1: $A^{(n)}$ has kernel vector \mathbf{v} with large support

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right] \quad A_{n} \notin \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq n}\right) \leftrightarrow \exists w: w^{T} A=e_{n}^{T}
$$

Case 1: $A^{(n)}$ has kernel vector \mathbf{v} with large support

Goal: Bound

$$
\operatorname{Pr}\left[A_{n} \in \operatorname{Span}\left(\left\{A_{i}\right\}_{i<n}\right)\right] \quad A_{n} \notin \operatorname{Span}\left(\left\{A_{j}\right\}_{j \neq n}\right) \leftrightarrow \exists w: w^{T} A=e_{n}^{T}
$$

Sparse Littlewood-Offord:
Then $\operatorname{Pr}\left[A_{n}^{T} v=0\right] \leq O(1 / \sqrt{d})$

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Main Results

- Whp, corank given by $I_{K S}$
- Characterization of minimal dependencies

Conclusion

Main Results

- Whp, corank given by $I_{K S}$
- Characterization of minimal dependencies

Tree Dependencies get Peeled!

Conclusion

Main Results

- Whp, corank given by $I_{K S}$
- Characterization of minimal dependencies

Tree Dependencies get Peeled! Key Proof Ideas for Characterization

- Union bound over small dependencies
- Anticoncentration for large dependencies

Conclusion

Main Results

- Whp, corank given by $I_{K S}$
- Characterization of minimal dependencies

Limitations/Directions

- Union bound over small dependencies

Constant Average Degree?

Thanks!

Questions?

[^0]: Claim 2: If x is a kernel vector of $G_{K S}$, then there must be a kernel vector y of G whose support contains the support of x.

