Log-concavity in 1-d Coulomb gas ensembles

Jnaneshwar Baslingker

Indian Institute of Science, Bangalore

Joint work with Manjunath Krishnapur (IISc) and Mokshay Madiman (University of Delaware)

Introduction

Log-concave measures, functions and sequences

A measure μ on ℝⁿ is log-concave if for any measurable sets
 A, B ⊂ ℝⁿ and 0 < λ < 1,

$$\mu(\lambda A + (1 - \lambda)B) \ge \mu(A)^{\lambda}\mu(B)^{1-\lambda}$$

- A function $f : \mathbb{R}^n \to [0, \infty)$ is log-concave if $f = e^{-\phi(x)}$, where $\phi(x)$ is a convex function.
- Log-concave μ on ℝ^d has density w.r.t. Lebesgue measure iff it is not supported on affine hyperplane [C. Borell, 1975]
- In the discrete setting, a sequence $\{a_n\}_{n\in\mathbb{Z}}$ is log-concave if

$$a_k^2 \geq a_{k-1}a_{k+1}.$$

- In Z^d, for d ≥ 2, there are multiple definitions of convexity which are not equivalent.
- A random variable or its probability distribution is log-concave if it has log-concave density function (on ℝⁿ) or log-concave mass function (on ℤ).

An open problem in combinatorics

- S_n = symmetric group of all permutations of [n].
- ℓ_n(σ) = length of the longest increasing subsequence of the permutation σ ∈ S_n.
- For example, if σ = 42135, then ℓ₅(σ) = 3 as 2, 3, 5 is an increasing subsequence of length 3.
- Define

$$L_{n,k} = \{ \sigma \in S_n : \ell_n(\sigma) = k \}$$
 and $\ell_{n,k} = |L_{n,k}|$.

Chen's conjecture, [2008]

For any fixed *n*, the sequence $\ell_{n,1}, \ell_{n,2}, ..., \ell_{n,n}$ is log-concave.

Eg: For
$$n = 5$$
, we have $1, 41, 61, 16, 1$.

Connection to probability

- The asymptotics of *l_n(σ)* for a uniformly chosen random permutation is very well understood.
- The works of Logan, Shepp [1977] and Vershik, Kerov [1977] show that $\frac{\mathbb{E}[\ell_n(\sigma)]}{\sqrt{\sigma}} \rightarrow 2 \text{ as } n \rightarrow \infty.$
- Baik, Deift, Johansson [1998] proved that $\frac{\ell_n(\sigma)-2\sqrt{n}}{n^{1/6}}$ converges in distribution to a non-degenerate distribution TW_2 .

$$F_2(x) = \exp\left(-\int_x^\infty (t-x)u^2(t)dt
ight),$$

where *u* satisfies Painlevé-II equation $u''(x) = xu(x) + 2u^3(x)$ with $u(x) \sim Ai(x)$ as $x \to \infty$. *TW*₂ is the distribution with c.d.f $F_2(x)$.

Is TW₂ log-concave?

- Chen's conjecture is log-concavity of p.m.f of $\ell_n(\sigma)$.
- Chen's conjecture is related to log-concavity of TW_2 .

$$\frac{\ell_n(\sigma)-2\sqrt{n}}{n^{1/6}}\to TW_2$$

• Bóna, Lackner, Sagan [2017] show that TW_2 is log-concave on positive reals (proof attributed to P.Deift).

Questions: Is TW_2 log-concave? Is Chen's conjecture true?

- Yes, TW₂ distribution is log-concave.
- We prove Poissonized version of Chen's conjecture. The main conjecture is still open.

- 1. Continuous setting
 - Log-concavity of ordered elements in 1-d Coulomb gas ensembles
 - Log-concavity of TW_{β} , Airy₂ process.
- 2. Discrete setting
 - Log-concavity of 1-d marginals in discrete ensembles.
 - Log-concavity of last passage times
- 3. Poissonized version of Chen's conjecture

Continuous setting

1-d Coulomb gas ensembles are probability measures on \mathbb{R}^n with the density function $f_{n,\beta}$. Let $x = (x_1, x_2, \dots, x_n)$

$$f_{n,\beta}(x) = rac{1}{Z_{n,\beta}} \prod_{j < k} |x_j - x_k|^{\beta} e^{-\sum_{k=1}^n V(x_k)}$$

where $\beta > 0$ is a parameter (temperature) and V is a function (potential) satisfying growth conditions.

For V quadratic and $\beta = 1, 2, 4$ the Coulomb gas ensemble is joint law of eigenvalues in Gaussian orthogonal, unitary, symplectic ensemble respectively.

Log-concavity of ordered elements

Let $x_{(n)}$ denote the maximum of x_1, \ldots, x_n . **Theorem 1.** Let $(X_1, X_2, \ldots, X_n) \sim f_{n,\beta}$, where

$$f_{n,\beta}(x_1,\ldots,x_n)=rac{1}{Z_{n,\beta}}\prod_{j< k}|x_j-x_k|^{eta} e^{-\sum\limits_{k=1}^n V(x_k)}.$$

If V is convex, then $X_{(k)}$ is log-concave, for all $k \in [n]$.

Proof: $W_n = \{x \in \mathbb{R}^n : x_1 < x_2 < \cdots < x_n\}.$

$$\overrightarrow{f}_{n,\beta}(x_1,\ldots,x_n) = \frac{\mathbb{1}_{x \in \mathcal{W}_n} n!}{Z_{n,\beta}} \prod_{j < k} |x_j - x_k|^{\beta} e^{-\sum_{k=1}^n V(x_k)}$$

 $\overrightarrow{f}_{n,\beta}$ is log-concave and $X_{(k)}$ is the *k*-th marginal of $\overrightarrow{f}_{n,\beta}$. By Prékopa-Leindler, $X_{(k)}$ is log-concave.

A family of distributions

Let $(X_1,\ldots X_n) \sim f_{n,eta}$ where,

$$f_{n,\beta}(x_1,\ldots,x_n) = \frac{1}{Z_{n,\beta}} \prod_{j < k} |x_j - x_k|^{\beta} \exp\left(-\frac{\beta}{4} \sum_i x_i^2\right)$$

Then $n^{1/6}(X_{(n)} - 2\sqrt{n}) \rightarrow TW_{\beta}$ (Ramírez, Rider, Virág 2006).

- As $X_{(n)}$ is log-concave, $n^{1/6}(X_{(n)} 2\sqrt{n})$ is log-concave.
- By preservation of log-concavity under affine transformations and weak limits, TW_β is log-concave.

- TW_{β} are ubiquitous in random matrix theory, large scale statistics in KPZ equation, current fluctuations in ASEP.
- Despite this very few properties of TW_{β} are known
- $\mathbb{P}(TW_{\beta} > t) \sim \exp(-\frac{2\beta}{3}t^{3/2})$ as $t \to \infty$.
- $\mathbb{P}(TW_{\beta} < -t) \sim \exp(-rac{\beta}{24}t^3)$ as $t \to \infty$ (RRV, 2006).
- For β₂ > β₁ we have β^s₁TW_{β1} ≥ β^s₂TW_{β2} if and only if s ∈ [1/3, 2/3] (Pedreira, 2022).

TW laws are log-concave

Corollary 1.

- For every $\beta > 0$, TW_{β} is a log-concave measure.
- Density functions of TW_{β} exist and are log-concave.

Airy₂ process

- Prähofer, Spohn (2002) introduced Airy₂ process A₂ in the study of scaling limit of a random growth model.
- $(B_1(t), \ldots, B_N(t))$ be non intersecting Brownian bridges.

$$2N^{1/6}\left(B_N\left(rac{1}{2}(1+N^{-1/3}t)
ight)-\sqrt{N}
ight)
ightarrow\mathcal{A}_2(t)-t^2$$

Theorem 2. For any $k \ge 1$ and $t_1 < t_2 \cdots < t_k$, the joint distribution $(\mathcal{A}_2(t_1), \mathcal{A}_2(t_2), \ldots, \mathcal{A}_2(t_k))$ is log-concave.

Proof:

- $W_1(t), \ldots, W_N(t)$ be independent Brownian bridges.
- Choose {(t_{m1},..., t_{mm})}_{m≥1} → (0,1) and t₁,...t_k are contained in the mesh for all large enough m.
- The joint distribution

 $(W_1(t_{m1}),\ldots,W_N(t_{m1}),\ldots,W_1(t_{mm}),\ldots,W_N(t_{mm}))$

is log-concave as it is a Gaussian vector.

• Condition on the event

 $E_m = \{W_1(t_{mi}) < W_2(t_{mi}) \cdots < W_N(t_{mi}), \forall i \in [m]\}.$

- Restricting the Gaussian density to the convex set $\{x \in \mathbb{R}^{mN} : x_{iN+1} < \cdots < x_{iN+N}, \forall i \in \{0, 1, ..., m-1\}\}.$
- By Prékopa-Leindler inequality, conditional on E_m, (W_N(t₁), W_N(t₂),..., W_N(t_k)) is log-concave.
- Limit of $(W_1(t), \ldots, W_N(t))$ conditioned on E_m converges to $(B_1(t), \ldots, B_N(t))$ as $m \to \infty$.

Discrete setting

DOPE

Coulomb gas ensemble on $\ensuremath{\mathbb{Z}}$

$$\mathbb{P}_{N,w}(h) = \frac{1}{Z_{N,w}} \prod_{1 \leq i < j \leq N} (h_j - h_i)^{\beta} \prod_{j=1}^N w(h_j), h \in \overrightarrow{\mathbb{Z}}^N$$

where $\overrightarrow{\mathbb{Z}}^N = \{h \in \mathbb{Z}^N : h_1 < h_2 \cdots < h_N\}$. Referred to as discrete orthogonal polynomial ensembles (DOPE) for $\beta = 2$.

• Analogous to continuous ensemble

$$f_{n,\beta}(x) = \frac{1}{Z_{n,\beta}} \prod_{j < k} |x_j - x_k|^{\beta} e^{-\sum_{k=1}^n V(x_k)}$$

• For $\beta = 2$ and $q \in (0,1)$ and $w(k) = \mathbb{1}_{\{k \ge 0\}} q^k$, Meixner ensemble.

- Vertex weights $\{\zeta_v\}_{v\in\mathbb{Z}^2}$ are i.i.d Geo(1-q) random variables.
- For each up/right path γ from (1, 1) to (*n*, *n*), compute $\ell(\gamma) = \sum_{\nu \in \gamma} \zeta_{\nu}$. Define last passage time $T_n = \max_{\gamma} \ell(\gamma)$.
- T_N + N − 1 ^d/₌ h_N of Meixner ensemble (β = 2 and w(k) = q^k). Due to Johannson (2000).

Theorem 3.

If w is a log-concave sequence on \mathbb{Z} , then for all $i \in [N]$,

$$\mathbb{P}_{\mathcal{N},w}(h_i=k-1)\mathbb{P}_{\mathcal{N},w}(h_i=k+1)\leq \mathbb{P}_{\mathcal{N},w}(h_i=k)^2.$$

Corollaries:

- Each one-dimensional marginal of Meixner ensemble is log-concave.
- Last passage times with Geometric weights are log-concave.

Theorem 4. (Halikias, Klartag, Slomka '21)

Suppose that for any $\lambda \in [0, 1]$, the functions $f, g, h, k : \mathbb{Z}^n \to [0, \infty)$ satisfy the below inequality $\forall x, y \in \mathbb{Z}^n$

$$f(x)g(y) \le h(\lfloor \lambda x + (1-\lambda)y \rfloor) k(\lceil (1-\lambda)x + \lambda y \rceil)$$
 then,

$$\left(\sum_{x\in\mathbb{Z}^n}f(x)\right)\left(\sum_{x\in\mathbb{Z}^n}g(x)\right)\leq\left(\sum_{x\in\mathbb{Z}^n}h(x)\right)\left(\sum_{x\in\mathbb{Z}^n}k(x)\right).$$

$$\mathbb{P}_{N,w}(h_N = k) = \sum_{h_1 < h_2 < \cdots < h_N = k} \prod_{1 \le i < j \le N} (h_j - h_i) \prod_{j=1}^N w(h_j)$$

Proof of Theorem 4

$$h(x) = k(x) := \prod_{1 \le i < j \le N} (x_j - x_i) \prod_{j=1}^N w(x_j) \, \mathbb{1}_{x \in S_k}$$
$$f(x) := \prod_{1 \le i < j \le N} (x_j - x_i) \prod_{j=1}^N w(x_j) \, \mathbb{1}_{x \in S_{k-1}}$$
$$g(x) := \prod_{1 \le i < j \le N} (x_j - x_i) \prod_{j=1}^N w(x_j) \, \mathbb{1}_{x \in S_{k+1}}$$

 S_k is the set $S_k := \{ x \in \mathbb{Z}^N : x_1 < x_2 < \cdots < x_N = k \}.$

$$f(x)g(y) \leq h\left(\left\lfloor \frac{1}{2}(x+y) \right\rfloor\right) k\left(\left\lceil \frac{1}{2}(x+y) \right\rceil\right) \quad \forall x, y \in \mathbb{Z}^n.$$

Poissonized version of Chen's conjecture

Plancherel measure

Fix N. For any partition $\lambda \vdash N = (\lambda_1 \ge \lambda_2 \ge \dots \lambda_\ell \ge 1)$, define $\mu_N(\lambda) := \frac{d_\lambda^2}{N!}$

Let $\lambda = (4, 2, 1)$ then $d_{\lambda} = 7!/(6.4.2.3)$.

By RSK correspondence there exists a bijection from permutations of n objects to pairs of standard Young tableaux of same shape.

Eg: (1, 3, 5, 4, 7, 6, 2) is mapped to (S, T).

19

By RSK correspondence

- uniformly random permutation corresponds to random partition under Plancherel measure.
- LIS is the length of the first row

Chen's conjecture is equivalent to,

$$\mu_N(\lambda_1 = k - 1)\mu_N(\lambda_1 = k + 1) \le \mu_N(\lambda_1 = k)^2$$

Natural bijection from $h = (0 \le h_1 < h_2 \cdots < h_n)$ to λ with $\ell(\lambda) \le n$. If n = 7 and h = (0, 1, 2, 3, 5, 7, 11) it is mapped to $\lambda = (5, 2, 1)$. Any measure $\mathbb{P}_{N,w}$ on $\overrightarrow{\mathbb{Z}}^N$ induces a measure on partitions with $\ell(\lambda) \le N$. If Λ is the set of all partitions of all non-negative integers, $\mathbb{P}_{n,w}$ with $w(k) = q^k$ induces a certain measure on Λ , say $\gamma_{n,q}$.

We have that $\gamma_{n,q}(\lambda_1)$ is log-concave.

Theorem 5. (Kurt Johansson, 2001) For $q = \alpha/n^2$, as $n \to \infty$

 $\gamma_{n,\alpha/n^2} \rightarrow \gamma_{\alpha} :=$ Poissonized Plancherel measure with parameter α .

Poissonized Plancherel measure with parameter α :

Let $N \sim Poi(\alpha)$ and then choose $\lambda \vdash N$ under μ_N .

Theorem 6. Poissonized version of Chen's conjecture is true.

$$\gamma_{lpha}(\lambda_1=k-1)\gamma_{lpha}(\lambda_1=k+1)\leq \gamma_{lpha}(\lambda_1=k)^2$$

References

- Bóna, M. and Lackner, M L and Sagan, B.
 Longest Increasing Subsequences and Log Concavity Ann. Comb., 21:535-549, 2017.
- Johansson, K.

Discrete orthogonal polynomial ensembles and the Plancherel measure

Annals of Mathematics, 153:259-296, 2001.

- Halikias, D. and Klartag, B. and Slomka, B. A.
 Discrete variants of Brunn-Minkowski type inequalities
 Annales de la Faculté des Sciences de Toulouse. Mathématiques, 30: 267-279, 2021.
- Chen, W.

Log-concavity and q-log-convexity conjectures on the longest increasing subsequences of permutations arXiv preprint arXiv:2201.04443, :2008.

