Log-concavity in 1-d Coulomb gas ensembles

Jnaneshwar Baslingker

Indian Institute of Science, Bangalore

Joint work with Manjunath Krishnapur (IISc) and Mokshay Madiman (University of Delaware)

Introduction

Log-concave measures, functions and sequences

- A measure μ on \mathbb{R}^{n} is log-concave if for any measurable sets $A, B \subset \mathbb{R}^{n}$ and $0<\lambda<1$,

$$
\mu(\lambda A+(1-\lambda) B) \geq \mu(A)^{\lambda} \mu(B)^{1-\lambda}
$$

- A function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ is log-concave if $f=e^{-\phi(x)}$, where $\phi(x)$ is a convex function.
- Log-concave μ on \mathbb{R}^{d} has density w.r.t. Lebesgue measure iff it is not supported on affine hyperplane [C. Borell, 1975]
- In the discrete setting, a sequence $\left\{a_{n}\right\}_{n \in \mathbb{Z}}$ is log-concave if

$$
a_{k}^{2} \geq a_{k-1} a_{k+1}
$$

- $\ln \mathbb{Z}^{d}$, for $d \geq 2$, there are multiple definitions of convexity which are not equivalent.
- A random variable or its probability distribution is log-concave if it has log-concave density function (on \mathbb{R}^{n}) or log-concave mass function (on \mathbb{Z}).

An open problem in combinatorics

- $S_{n}=$ symmetric group of all permutations of $[n]$.
- $\ell_{n}(\sigma)=$ length of the longest increasing subsequence of the permutation $\sigma \in S_{n}$.
- For example, if $\sigma=42135$, then $\ell_{5}(\sigma)=3$ as $2,3,5$ is an increasing subsequence of length 3.
- Define

$$
L_{n, k}=\left\{\sigma \in S_{n}: \ell_{n}(\sigma)=k\right\} \text { and } \ell_{n, k}=\left|L_{n, k}\right| .
$$

Chen's conjecture, [2008]
For any fixed n, the sequence $\ell_{n, 1}, \ell_{n, 2}, \ldots, \ell_{n, n}$ is log-concave.
Eg: For $n=5$, we have $1,41,61,16,1$.

Connection to probability

- The asymptotics of $\ell_{n}(\sigma)$ for a uniformly chosen random permutation is very well understood.
- The works of Logan, Shepp [1977] and Vershik, Kerov [1977] show that

$$
\frac{\mathbb{E}\left[\ell_{n}(\sigma)\right]}{\sqrt{n}} \rightarrow 2 \text { as } n \rightarrow \infty .
$$

- Baik, Deift, Johansson [1998] proved that $\frac{\ell_{n}(\sigma)-2 \sqrt{n}}{n^{1 / 6}}$ converges in distribution to a non-degenerate distribution $T W_{2}$.

$$
F_{2}(x)=\exp \left(-\int_{x}^{\infty}(t-x) u^{2}(t) d t\right)
$$

where u satisfies Painlevé-II equation $u^{\prime \prime}(x)=x u(x)+2 u^{3}(x)$ with $u(x) \sim \operatorname{Ai}(x)$ as $x \rightarrow \infty$. $T W_{2}$ is the distribution with c.d.f $F_{2}(x)$.

Is $T W_{2}$ log-concave?

- Chen's conjecture is log-concavity of p.m.f of $\ell_{n}(\sigma)$.
- Chen's conjecture is related to log-concavity of $T W_{2}$.

$$
\frac{\ell_{n}(\sigma)-2 \sqrt{n}}{n^{1 / 6}} \rightarrow T W_{2}
$$

- Bóna, Lackner, Sagan [2017] show that $T W_{2}$ is log-concave on positive reals (proof attributed to P.Deift).

Questions: Is $T W_{2}$ log-concave? Is Chen's conjecture true?

- Yes, $T W_{2}$ distribution is log-concave.
- We prove Poissonized version of Chen's conjecture. The main conjecture is still open.

Overview

1. Continuous setting

- Log-concavity of ordered elements in 1-d Coulomb gas ensembles
- Log-concavity of $T W_{\beta}$, Airy 2 process.

2. Discrete setting

- Log-concavity of 1-d marginals in discrete ensembles.
- Log-concavity of last passage times

3. Poissonized version of Chen's conjecture

Continuous setting

Coulomb gas ensembles

1-d Coulomb gas ensembles are probability measures on \mathbb{R}^{n} with the density function $f_{n, \beta}$. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$$
f_{n, \beta}(x)=\frac{1}{Z_{n, \beta}} \prod_{j<k}\left|x_{j}-x_{k}\right|^{\beta} e^{-\sum_{k=1}^{n} V\left(x_{k}\right)}
$$

where $\beta>0$ is a parameter (temperature) and V is a function (potential) satisfying growth conditions.

For V quadratic and $\beta=1,2,4$ the Coulomb gas ensemble is joint law of eigenvalues in Gaussian orthogonal, unitary, symplectic ensemble respectively.

Log-concavity of ordered elements

Let $x_{(n)}$ denote the maximum of x_{1}, \ldots, x_{n}.
Theorem 1. Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right) \sim f_{n, \beta}$, where

$$
f_{n, \beta}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z_{n, \beta}} \prod_{j<k}\left|x_{j}-x_{k}\right|^{\beta} e^{-\sum_{k=1}^{n} V\left(x_{k}\right)}
$$

If V is convex, then $X_{(k)}$ is log-concave, for all $k \in[n]$.
Proof: $\mathcal{W}_{n}=\left\{x \in \mathbb{R}^{n}: x_{1}<x_{2}<\cdots<x_{n}\right\}$.

$$
\vec{f}_{n, \beta}\left(x_{1}, \ldots, x_{n}\right)=\frac{\mathbb{1}_{x \in \mathcal{W}_{n}} n!}{Z_{n, \beta}} \prod_{j<k}\left|x_{j}-x_{k}\right|^{\beta} e^{-\sum_{k=1}^{n} v\left(x_{k}\right)}
$$

$\vec{f}_{n, \beta}$ is log-concave and $X_{(k)}$ is the k-th marginal of $\vec{f}_{n, \beta}$.
By Prékopa-Leindler, $X_{(k)}$ is log-concave.

A family of distributions

Let $\left(X_{1}, \ldots X_{n}\right) \sim f_{n, \beta}$ where,

$$
f_{n, \beta}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z_{n, \beta}} \prod_{j<k}\left|x_{j}-x_{k}\right|^{\beta} \exp \left(-\frac{\beta}{4} \sum_{i} x_{i}^{2}\right) .
$$

Then $\boldsymbol{n}^{1 / 6}\left(X_{(n)}-2 \sqrt{n}\right) \rightarrow \boldsymbol{T} W_{\beta}$ (Ramírez,Rider,Virág 2006).

- As $X_{(n)}$ is log-concave, $n^{1 / 6}\left(X_{(n)}-2 \sqrt{n}\right)$ is log-concave.
- By preservation of log-concavity under affine transformations and weak limits, $T W_{\beta}$ is log-concave.

$T W_{\beta}$ distributions

- $T W_{\beta}$ are ubiquitous in random matrix theory, large scale statistics in KPZ equation, current fluctuations in ASEP.
- Despite this very few properties of $T W_{\beta}$ are known
- $\mathbb{P}\left(T W_{\beta}>t\right) \sim \exp \left(-\frac{2 \beta}{3} t^{3 / 2}\right)$ as $t \rightarrow \infty$.
- $\mathbb{P}\left(T W_{\beta}<-t\right) \sim \exp \left(-\frac{\beta}{24} t^{3}\right)$ as $t \rightarrow \infty$ (RRV, 2006).
- For $\beta_{2}>\beta_{1}$ we have $\beta_{1}^{s} T W_{\beta_{1}} \geq \beta_{2}^{s} T W_{\beta_{2}}$ if and only if $s \in[1 / 3,2 / 3]$ (Pedreira, 2022).

TW laws are log-concave

Corollary 1.

- For every $\beta>0, T W_{\beta}$ is a log-concave measure.
- Density functions of $T W_{\beta}$ exist and are log-concave.

Airy $_{2}$ process

- Prähofer, Spohn (2002) introduced Airy ${ }_{2}$ process \mathcal{A}_{2} in the study of scaling limit of a random growth model.
- $\left(B_{1}(t), \ldots, B_{N}(t)\right)$ be non intersecting Brownian bridges.

$$
2 N^{1 / 6}\left(B_{N}\left(\frac{1}{2}\left(1+N^{-1 / 3} t\right)\right)-\sqrt{N}\right) \rightarrow \mathcal{A}_{2}(t)-t^{2}
$$

Log-concavity of Airy ${ }_{2}$ process

Theorem 2. For any $k \geq 1$ and $t_{1}<t_{2} \cdots<t_{k}$, the joint distribution $\left(\mathcal{A}_{2}\left(t_{1}\right), \mathcal{A}_{2}\left(t_{2}\right), \ldots, \mathcal{A}_{2}\left(t_{k}\right)\right)$ is log-concave.

Proof:

- $W_{1}(t), \ldots, W_{N}(t)$ be independent Brownian bridges.
- Choose $\left\{\left(t_{m 1}, \ldots, t_{m m}\right)\right\}_{m \geq 1} \rightarrow(0,1)$ and $t_{1}, \ldots t_{k}$ are contained in the mesh for all large enough m.
- The joint distribution

$$
\left(W_{1}\left(t_{m 1}\right), \ldots, W_{N}\left(t_{m 1}\right), \ldots, W_{1}\left(t_{m m}\right), \ldots, W_{N}\left(t_{m m}\right)\right)
$$

is log-concave as it is a Gaussian vector.

Conditioning trick and Prékopa-Leindler

- Condition on the event

$$
E_{m}=\left\{W_{1}\left(t_{m i}\right)<W_{2}\left(t_{m i}\right) \cdots<W_{N}\left(t_{m i}\right), \forall i \in[m]\right\} .
$$

- Restricting the Gaussian density to the convex set $\left\{x \in \mathbb{R}^{m N}: x_{i N+1}<\cdots<x_{i N+N}, \forall i \in\{0,1, \ldots, m-1\}\right\}$.
- By Prékopa-Leindler inequality, conditional on E_{m}, $\left(W_{N}\left(t_{1}\right), W_{N}\left(t_{2}\right), \ldots, W_{N}\left(t_{k}\right)\right)$ is log-concave.
- Limit of $\left(W_{1}(t), \ldots, W_{N}(t)\right)$ conditioned on E_{m} converges to $\left(B_{1}(t), \ldots, B_{N}(t)\right)$ as $m \rightarrow \infty$.

Discrete setting

DOPE

Coulomb gas ensemble on \mathbb{Z}

$$
\mathbb{P}_{N, w}(h)=\frac{1}{Z_{N, w}} \prod_{1 \leq i<j \leq N}\left(h_{j}-h_{i}\right)^{\beta} \prod_{j=1}^{N} w\left(h_{j}\right), h \in \overrightarrow{\mathbb{Z}}^{N}
$$

where $\overrightarrow{\mathbb{Z}}^{N}=\left\{h \in \mathbb{Z}^{N}: h_{1}<h_{2} \cdots<h_{N}\right\}$. Referred to as discrete orthogonal polynomial ensembles (DOPE) for $\beta=2$.

- Analogous to continuous ensemble

$$
f_{n, \beta}(x)=\frac{1}{Z_{n, \beta}} \prod_{j<k}\left|x_{j}-x_{k}\right|^{\beta} e^{-\sum_{k=1}^{n} V\left(x_{k}\right)}
$$

- For $\beta=2$ and $q \in(0,1)$ and $w(k)=\mathbb{1}_{\{k \geq 0\}} q^{k}$, Meixner ensemble.

Last passage times

- Vertex weights $\left\{\zeta_{\nu}\right\}_{v \in \mathbb{Z}^{2}}$ are i.i.d $\operatorname{Geo}(1-q)$ random variables.
- For each up/right path γ from $(1,1)$ to (n, n), compute $\ell(\gamma)=\sum_{v \in \gamma} \zeta_{v}$. Define last passage time $T_{n}=\max _{\gamma} \ell(\gamma)$.
- $T_{N}+N-1 \stackrel{d}{=} h_{N}$ of Meixner ensemble ($\beta=2$ and $w(k)=q^{k}$). Due to Johannson (2000).

Log-concavity of DOPE

Theorem 3.
If w is a log-concave sequence on \mathbb{Z}, then for all $i \in[N]$,

$$
\mathbb{P}_{N, w}\left(h_{i}=k-1\right) \mathbb{P}_{N, w}\left(h_{i}=k+1\right) \leq \mathbb{P}_{N, w}\left(h_{i}=k\right)^{2} .
$$

Corollaries:

- Each one-dimensional marginal of Meixner ensemble is log-concave.
- Last passage times with Geometric weights are log-concave.

Discrete version of Brunn-Minkowski

Theorem 4. (Halikias, Klartag, Slomka '21)
Suppose that for any $\lambda \in[0,1]$, the functions $f, g, h, k: \mathbb{Z}^{n} \rightarrow[0, \infty)$ satisfy the below inequality $\forall x, y \in \mathbb{Z}^{n}$

$$
\begin{aligned}
& f(x) g(y) \leq h(\lfloor\lambda x+(1-\lambda) y\rfloor) k(\lceil(1-\lambda) x+\lambda y\rceil) \quad \text { then, } \\
& \left(\sum_{x \in \mathbb{Z}^{n}} f(x)\right)\left(\sum_{x \in \mathbb{Z}^{n}} g(x)\right) \leq\left(\sum_{x \in \mathbb{Z}^{n}} h(x)\right)\left(\sum_{x \in \mathbb{Z}^{n}} k(x)\right) . \\
& \mathbb{P}_{N, w}\left(h_{N}=k\right)=\sum_{h_{1}<h_{2}<\cdots<h_{N}=k} \prod_{1 \leq i<j \leq N}\left(h_{j}-h_{i}\right) \prod_{j=1}^{N} w\left(h_{j}\right)
\end{aligned}
$$

Proof of Theorem 4

$$
\begin{array}{r}
h(x)=k(x):=\prod_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right) \prod_{j=1}^{N} w\left(x_{j}\right) \mathbb{1}_{x \in S_{k}} \\
f(x):=\prod_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right) \prod_{j=1}^{N} w\left(x_{j}\right) \mathbb{1}_{x \in S_{k-1}} \\
g(x):=\prod_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right) \prod_{j=1}^{N} w\left(x_{j}\right) \mathbb{1}_{x \in S_{k+1}}
\end{array}
$$

S_{k} is the set $S_{k}:=\left\{x \in \mathbb{Z}^{N}: x_{1}<x_{2}<\cdots<x_{N}=k\right\}$.

$$
f(x) g(y) \leq h\left(\left\lfloor\frac{1}{2}(x+y)\right\rfloor\right) k\left(\left\lceil\frac{1}{2}(x+y)\right\rceil\right) \quad \forall x, y \in \mathbb{Z}^{n}
$$

Poissonized version of Chen's

conjecture

Plancherel measure

Fix N. For any partition $\lambda \vdash N=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{\ell} \geq 1\right)$, define

$$
\mu_{N}(\lambda):=\frac{d_{\lambda}^{2}}{N!}
$$

Let $\lambda=(4,2,1)$ then $d_{\lambda}=7!/(6.4 .2 .3)$.

6	4	2	1
3	1		
1			

By RSK correspondence there exists a bijection from permutations of n objects to pairs of standard Young tableaux of same shape.

Eg: $(1,3,5,4,7,6,2)$ is mapped to (S, T).

Permutations to discrete ensembles

By RSK correspondence

- uniformly random permutation corresponds to random partition under Plancherel measure.
- LIS is the length of the first row

Chen's conjecture is equivalent to,

$$
\mu_{N}\left(\lambda_{1}=k-1\right) \mu_{N}\left(\lambda_{1}=k+1\right) \leq \mu_{N}\left(\lambda_{1}=k\right)^{2}
$$

Natural bijection from $h=\left(0 \leq h_{1}<h_{2} \cdots<h_{n}\right)$ to λ with $\ell(\lambda) \leq n$. If $n=7$ and $h=(0,1,2,3,5,7,11)$ it is mapped to $\lambda=(5,2,1)$.
Any measure $\mathbb{P}_{N, w}$ on $\overrightarrow{\mathbb{Z}}^{N}$ induces a measure on partitions with $\ell(\lambda) \leq N$.

Poissonized Plancherel measure

If Λ is the set of all partitions of all non-negative integers, $\mathbb{P}_{n, w}$ with $w(k)=q^{k}$ induces a certain measure on Λ, say $\gamma_{n, q}$.

We have that $\gamma_{n, q}\left(\lambda_{1}\right)$ is log-concave.
Theorem 5. (Kurt Johansson, 2001) For $q=\alpha / n^{2}$, as $n \rightarrow \infty$

$$
\gamma_{n, \alpha / n^{2}} \rightarrow \gamma_{\alpha}:=\text { Poissonized Plancherel measure with parameter } \alpha .
$$

Poissonized Plancherel measure with parameter α :
Let $N \sim \operatorname{Poi}(\alpha)$ and then choose $\lambda \vdash N$ under μ_{N}.

Theorem 6. Poissonized version of Chen's conjecture is true.

$$
\gamma_{\alpha}\left(\lambda_{1}=k-1\right) \gamma_{\alpha}\left(\lambda_{1}=k+1\right) \leq \gamma_{\alpha}\left(\lambda_{1}=k\right)^{2}
$$

References

- Bóna, M. and Lackner, M L and Sagan, B.

Longest Increasing Subsequences and Log Concavity Ann. Comb., 21:535-549, 2017.

- Johansson, K.

Discrete orthogonal polynomial ensembles and the Plancherel measure
Annals of Mathematics, 153:259-296, 2001.

- Halikias, D. and Klartag, B. and Slomka, B. A.

Discrete variants of Brunn-Minkowski type inequalities
Annales de la Faculté des Sciences de Toulouse. Mathématiques, 30: 267-279, 2021.

- Chen, W.

Log-concavity and q-log-convexity conjectures on the longest increasing subsequences of permutations
arXiv preprint arXiv:2201.04443, :2008.

