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Introduction



Log-concave measures, functions and sequences

• A measure µ on Rn is log-concave if for any measurable sets

A,B ⊂ Rn and 0 < λ < 1,

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ

• A function f : Rn → [0,∞) is log-concave if f = e−ϕ(x), where ϕ(x)

is a convex function.

• Log-concave µ on Rd has density w.r.t. Lebesgue measure iff it is

not supported on affine hyperplane [C. Borell, 1975]

• In the discrete setting, a sequence {an}n∈Z is log-concave if

a2
k ≥ ak−1ak+1.

• In Zd , for d ≥ 2, there are multiple definitions of convexity which

are not equivalent.

• A random variable or its probability distribution is log-concave if it

has log-concave density function (on Rn) or log-concave mass

function (on Z).
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An open problem in combinatorics

• Sn = symmetric group of all permutations of [n].

• ℓn(σ) = length of the longest increasing subsequence of the

permutation σ ∈ Sn.

• For example, if σ = 42135, then ℓ5(σ) = 3 as 2, 3, 5 is an increasing

subsequence of length 3.

• Define

Ln,k = {σ ∈ Sn : ℓn(σ) = k} and ℓn,k = |Ln,k |.

Chen’s conjecture, [2008]

For any fixed n, the sequence ℓn,1, ℓn,2, ..., ℓn,n is log-concave.

Eg: For n = 5, we have 1, 41, 61, 16, 1.
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Connection to probability

• The asymptotics of ℓn(σ) for a uniformly chosen random

permutation is very well understood.

• The works of Logan, Shepp [1977] and Vershik, Kerov [1977] show

that
E[ℓn(σ)]√

n
→ 2 as n → ∞.

• Baik, Deift, Johansson [1998] proved that ℓn(σ)−2
√
n

n1/6
converges in

distribution to a non-degenerate distribution TW2.

F2(x) = exp

(
−
∫ ∞

x

(t − x)u2(t)dt

)
,

where u satisfies Painlevé-II equation u′′(x) = xu(x) + 2u3(x) with

u(x) ∼ Ai(x) as x → ∞. TW2 is the distribution with c.d.f

F2(x).
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Is TW2 log-concave?

• Chen’s conjecture is log-concavity of p.m.f of ℓn(σ).

• Chen’s conjecture is related to log-concavity of TW2.

ℓn(σ)− 2
√
n

n1/6
→ TW2

• Bóna, Lackner, Sagan [2017] show that TW2 is log-concave on

positive reals (proof attributed to P.Deift).

Questions: Is TW2 log-concave? Is Chen’s conjecture true?

• Yes, TW2 distribution is log-concave.

• We prove Poissonized version of Chen’s conjecture. The main

conjecture is still open.

4



Overview

1. Continuous setting

• Log-concavity of ordered elements in 1-d Coulomb gas ensembles

• Log-concavity of TWβ ,Airy2 process.

2. Discrete setting

• Log-concavity of 1-d marginals in discrete ensembles.

• Log-concavity of last passage times

3. Poissonized version of Chen’s conjecture
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Continuous setting



Coulomb gas ensembles

1-d Coulomb gas ensembles are probability measures on Rn with the

density function fn,β . Let x = (x1, x2, . . . , xn)

fn,β(x) =
1

Zn,β

∏
j<k

|xj − xk |β e
−

n∑
k=1

V (xk )

where β > 0 is a parameter (temperature) and V is a function

(potential) satisfying growth conditions.

For V quadratic and β = 1, 2, 4 the Coulomb gas ensemble is joint law of

eigenvalues in Gaussian orthogonal, unitary, symplectic ensemble

respectively.
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Log-concavity of ordered elements

Let x(n) denote the maximum of x1, . . . , xn.

Theorem 1. Let (X1,X2, . . . ,Xn) ∼ fn,β , where

fn,β(x1, . . . , xn) =
1

Zn,β

∏
j<k

|xj − xk |β e
−

n∑
k=1

V (xk )
.

If V is convex, then X(k) is log-concave, for all k ∈ [n].

Proof: Wn = {x ∈ Rn : x1 < x2 < · · · < xn}.

−→
f n,β(x1, . . . , xn) =

1x∈Wnn!

Zn,β

∏
j<k

|xj − xk |β e
−

n∑
k=1

V (xk )

−→
f n,β is log-concave and X(k) is the k-th marginal of

−→
f n,β .

By Prékopa-Leindler, X(k) is log-concave.
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A family of distributions

Let (X1, . . .Xn) ∼ fn,β where,

fn,β(x1, . . . , xn) =
1

Zn,β

∏
j<k

|xj − xk |β exp

(
−β

4

∑
i

x2i

)
.

Then n1/6(X(n) − 2
√

n) → TWβ (Raḿırez,Rider,Virág 2006).

• As X(n) is log-concave, n
1/6(X(n) − 2

√
n) is log-concave.

• By preservation of log-concavity under affine transformations and

weak limits, TWβ is log-concave.
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TWβ distributions

• TWβ are ubiquitous in random matrix theory, large scale statistics in

KPZ equation, current fluctuations in ASEP.

• Despite this very few properties of TWβ are known

• P(TWβ > t) ∼ exp(− 2β
3 t3/2) as t → ∞.

• P(TWβ < −t) ∼ exp(− β
24 t

3) as t → ∞ (RRV, 2006).

• For β2 > β1 we have βs
1TWβ1 ≥ βs

2TWβ2 if and only if

s ∈ [1/3, 2/3] (Pedreira, 2022).
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TW laws are log-concave

Corollary 1.

• For every β > 0, TWβ is a log-concave measure.

• Density functions of TWβ exist and are log-concave.
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Airy2 process

• Prähofer, Spohn (2002) introduced Airy2 process A2 in the study of

scaling limit of a random growth model.

• (B1(t), . . . ,BN(t)) be non intersecting Brownian bridges.

2N1/6

(
BN

(
1

2
(1 + N−1/3t)

)
−
√
N

)
→ A2(t)− t2
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Log-concavity of Airy2 process

Theorem 2. For any k ≥ 1 and t1 < t2 · · · < tk , the joint distribution

(A2(t1),A2(t2), . . . ,A2(tk)) is log-concave.

Proof:

• W1(t), . . . ,WN(t) be independent Brownian bridges.

• Choose {(tm1, . . . , tmm)}m≥1 → (0, 1) and t1, . . . tk are contained in

the mesh for all large enough m.

• The joint distribution

(W1(tm1), . . . ,WN(tm1), . . . ,W1(tmm), . . . ,WN(tmm))

is log-concave as it is a Gaussian vector.
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Conditioning trick and Prékopa-Leindler

• Condition on the event

Em = {W1(tmi ) < W2(tmi ) · · · < WN(tmi ),∀i ∈ [m]}.

• Restricting the Gaussian density to the convex set

{x ∈ RmN : xiN+1 < · · · < xiN+N ,∀i ∈ {0, 1, ...,m − 1}}.

• By Prékopa-Leindler inequality, conditional on Em,

(WN(t1),WN(t2), . . . ,WN(tk)) is log-concave.

• Limit of (W1(t), . . . ,WN(t)) conditioned on Em converges to

(B1(t), . . . ,BN(t)) as m → ∞.
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Discrete setting



DOPE

Coulomb gas ensemble on Z

PN,w (h) =
1

ZN,w

∏
1≤i<j≤N

(hj − hi )
β

N∏
j=1

w(hj), h ∈
−→
Z N

where
−→
Z N = {h ∈ ZN : h1 < h2 · · · < hN}. Referred to as discrete

orthogonal polynomial ensembles (DOPE) for β = 2.

• Analogous to continuous ensemble

fn,β(x) =
1

Zn,β

∏
j<k

|xj − xk |β e
−

n∑
k=1

V (xk )

• For β = 2 and q ∈ (0, 1) and w(k) = 1{k≥0}q
k , Meixner ensemble.
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Last passage times

• Vertex weights {ζv}v∈Z2 are i.i.d Geo(1− q) random variables.

• For each up/right path γ from (1, 1) to (n, n), compute

ℓ(γ) =
∑
v∈γ

ζv . Define last passage time Tn = max
γ

ℓ(γ).

• TN + N − 1
d
= hN of Meixner ensemble (β = 2 and w(k) = qk).

Due to Johannson (2000).
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Log-concavity of DOPE

Theorem 3.

If w is a log-concave sequence on Z, then for all i ∈ [N],

PN,w (hi = k − 1)PN,w (hi = k + 1) ≤ PN,w (hi = k)2.

Corollaries:

• Each one-dimensional marginal of Meixner ensemble is log-concave.

• Last passage times with Geometric weights are log-concave.
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Discrete version of Brunn-Minkowski

Theorem 4. (Halikias, Klartag, Slomka ’21)

Suppose that for any λ ∈ [0, 1], the functions f , g , h, k : Zn → [0,∞)

satisfy the below inequality ∀x , y ∈ Zn

f (x)g(y) ≤ h (⌊λx + (1− λ)y⌋) k (⌈(1− λ)x + λy⌉) then,

(∑
x∈Zn

f (x)

)(∑
x∈Zn

g(x)

)
≤

(∑
x∈Zn

h(x)

)(∑
x∈Zn

k(x)

)
.

PN,w (hN = k) =
∑

h1<h2<···<hN=k

∏
1≤i<j≤N

(hj − hi )
N∏
j=1

w(hj)
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Proof of Theorem 4

h(x) = k(x) :=
∏

1≤i<j≤N

(xj − xi )
N∏
j=1

w(xj) 1x∈Sk

f (x) :=
∏

1≤i<j≤N

(xj − xi )
N∏
j=1

w(xj) 1x∈Sk−1

g(x) :=
∏

1≤i<j≤N

(xj − xi )
N∏
j=1

w(xj) 1x∈Sk+1

Sk is the set Sk := {x ∈ ZN : x1 < x2 < · · · < xN = k}.

f (x)g(y) ≤ h

(⌊
1

2
(x + y)

⌋)
k

(⌈
1

2
(x + y)

⌉)
∀x , y ∈ Zn.
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Poissonized version of Chen’s

conjecture



Plancherel measure

Fix N. For any partition λ ⊢ N = (λ1 ≥ λ2 ≥ . . . λℓ ≥ 1), define

µN(λ) :=
d2
λ

N!

Let λ = (4, 2, 1) then dλ = 7!/(6.4.2.3).

By RSK correspondence there exists a bijection from permutations of n

objects to pairs of standard Young tableaux of same shape.

Eg: (1, 3, 5, 4, 7, 6, 2) is mapped to (S ,T ).
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Permutations to discrete ensembles

By RSK correspondence

• uniformly random permutation corresponds to random partition

under Plancherel measure.

• LIS is the length of the first row

Chen’s conjecture is equivalent to,

µN(λ1 = k − 1)µN(λ1 = k + 1) ≤ µN(λ1 = k)2

Natural bijection from h = (0 ≤ h1 < h2 · · · < hn) to λ with ℓ(λ) ≤ n. If

n = 7 and h = (0, 1, 2, 3, 5, 7, 11) it is mapped to λ = (5, 2, 1).

Any measure PN,w on
−→
Z N induces a measure on partitions with

ℓ(λ) ≤ N.
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Poissonized Plancherel measure

If Λ is the set of all partitions of all non-negative integers, Pn,w with

w(k) = qk induces a certain measure on Λ, say γn,q.

We have that γn,q(λ1) is log-concave.

Theorem 5. (Kurt Johansson, 2001) For q = α/n2, as n → ∞

γn,α/n2 → γα := Poissonized Plancherel measure with parameter α.

Poissonized Plancherel measure with parameter α:

Let N ∼ Poi(α) and then choose λ ⊢ N under µN .

Theorem 6. Poissonized version of Chen’s conjecture is true.

γα(λ1 = k − 1)γα(λ1 = k + 1) ≤ γα(λ1 = k)2
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