Expected face numbers of random beta polytopes

Zakhar Kabluchko
(Münster)

AGA Seminar
22.02.2022

Angle sums in a triangle

- In a triangle, the sum of angles is constant.
- In a tetrahedron (more generally, in a simplex), it is not constant.
- What are the maximal and minimal values? Answered by Höhn (1953) and Perles and Shephard (1967).
- What are the average values? (Will be discussed below).

Angles at vertices

Definition of angles at vertices

- Consider a simplex $S=\left[X_{0}, X_{1}, \ldots, X_{d}\right]$ in \mathbb{R}^{d}.
- Ball: $B\left(X_{0}, \varepsilon\right)=\left\{y \in \mathbb{R}^{d}:\left\|y-X_{0}\right\| \leq \varepsilon\right\}$.
- Internal angle at vertex X_{0} :

$$
\beta\left(X_{0}, S\right)=\lim _{\varepsilon \downarrow 0} \frac{\operatorname{Vol}_{d}\left(B\left(X_{0}, \varepsilon\right) \cap S\right)}{\operatorname{Vol}_{d}\left(B\left(X_{0}, \varepsilon\right)\right)}
$$

- Normalization: Angle of the full space is 1 , angle of the half-space is $1 / 2$.
- Angle sum at vertices:

$$
\sigma_{0}(S)=\sum_{i=0}^{d} \beta\left(X_{i}, S\right)
$$

Maximal angle sum at vertices

Theorem (Höhn, Perles-Shephard)

For every d-dimensional simplex we have

$$
0<\sigma_{0}(S) \leq \frac{1}{2} \quad(\text { strict for } d \geq 3) .
$$

Idea of proof

- Assume $X_{0}=0$ is the origin.
- Take a random direction U (uniformly distributed on \mathbb{S}^{d-1}).
- Project the simplex onto the hyperplane U^{\perp}.
- Probability that $X_{0}=0$ is inside the projection is $2 \beta\left(X_{0}, S\right)$.
- $2 \sigma_{0}(S)$ is the probability that the projection is a $(d-1)$ dimensional simplex.
- $\sigma_{0}(S) \leq 1 / 2$.

Angles at faces

Definition

- Let $S=\left[X_{0}, X_{1}, \ldots, X_{d}\right]$ be a simplex in \mathbb{R}^{d}.
- Take some k-dimensional face, for example $F=$ $\left[X_{0}, X_{1}, \ldots, X_{k}\right]$.
- Take some point in the relative interior of F, for example $m:=\frac{1}{k+1}\left(X_{0}+\ldots+X_{k}\right)$.
- Tangent cone at F :

$$
T(F, S)=\left\{y \in \mathbb{R}^{d}: m+\varepsilon y \in S, \text { if } \varepsilon>0 \text { is small }\right\}
$$

- Angle of S at F :

$$
\beta(F, S)=\lim _{\varepsilon \downarrow 0} \frac{\operatorname{Vol}_{d}(B(m, \varepsilon) \cap T(F, S))}{\operatorname{Vol}_{d} B(m, \varepsilon)}
$$

Angle sums at faces: relations

Definition

- Angle sum at k-dimensional faces:

$$
\sigma_{k}(S)=\sum_{F \in \mathcal{F}_{k}(S)} \beta(F, S)
$$

- $\sigma_{0}(S)$ is the sum of angles at vertices.
- $\sigma_{1}(S)$ is the sum of "dihedral" angles at edges.
- $\sigma_{d-1}(S)=(d+1) / 2$.

Theorem (Gram-Euler relation)

$$
\sigma_{0}(S)-\sigma_{1}(S)+\ldots \pm \sigma_{d-1}(S)=(-1)^{d-1}
$$

Remarks

There exist more general Poincaré relations for simplicial polytopes (related to Dehn-Sommerville relations).

Maximal and minimal values

Theorem (Höhn, Perles-Shephard)

- Maximal values: For $j=0, \ldots, d-2$ we have

$$
\max _{S \in \operatorname{simplices}} \sigma_{j}(S)=\frac{1}{2}\binom{d}{j} .
$$

- Minimal values: For $j=0, \ldots,[(d-3) / 2]$ we have

$$
\min _{S \in \text { simplices }} \sigma_{j}(S)=0
$$

- Minimal values: For $j=[(d-1) / 2], \ldots, d-2$ we have

$$
\min _{S \in \text { simplices }} \sigma_{j}(S)=\frac{1}{2}\binom{[(d+1) / 2]}{d-j}+\frac{1}{2}\binom{[(d+2) / 2]}{d-j} .
$$

Average values: angles at vertices

Theorem [K]

Let X_{0}, \ldots, X_{d} be i.i.d. and uniform on the sphere \mathbb{S}^{d-1}. Then,

$$
\mathbb{E} \sigma_{0}(S)= \begin{cases}\frac{1}{8}, & \text { for } d=3 ; \\ \frac{539}{288 \pi^{2}}-\frac{1}{6}, & \text { for } d=4 ; \\ \frac{5411}{7340032}, & \text { for } d=5 ; \\ \frac{1}{6}+\frac{113537407}{48384000 \pi^{4}}-\frac{2144238917}{1111620480 \pi^{2}}, & \text { for } d=6 ;\end{cases}
$$

Rational for odd d. Polynomial of π^{-2} with rational coefficients for even d.

Remark

Similar formulas exist for points uniformly distributed in the ball, for instance $\mathbb{E} \sigma_{0}(S)=\frac{401}{2560}$ for $d=3$.

Beta distributions

Definition

d-dimensional beta distribution has Lebesgue density

$$
\begin{equation*}
\frac{\Gamma\left(\frac{d}{2}+\beta+1\right)}{\pi^{\frac{d}{2}} \Gamma(\beta+1)}\left(1-\|x\|^{2}\right)^{\beta} \mathbb{1}_{\{\|x\|<1\}} \tag{1}
\end{equation*}
$$

Parameter: $\beta>-1$.

Examples

- For $\beta=0$: uniform distribution on the ball.
- For $\beta \downarrow-1$: uniform distribution on the sphere.
- For $\beta \rightarrow+\infty$: normal distribution.

Properties

- Orthogonal projection of beta distribution is again beta.
- Restriction to beta to affine subspace is again beta.

Beta simplices

Notation

Consider n points X_{1}, \ldots, X_{n} having beta distribution with parameter $\beta \geq-1$ in \mathbb{R}^{n-1}.

Expected sum of internal angles of the simplex $\left[X_{1}, \ldots, X_{n}\right]$ at its k-vertex faces:

$$
\mathbb{J}_{n, k}(\beta)=\mathbb{E} \sigma_{k-1}\left(\left[X_{1}, \ldots, X_{n}\right]\right)
$$

Question

Explicit formula for $\mathbb{J}_{n, k}(\beta)$?

Beta simplices

Theorem [K]

Let $n \geq 3$ and $k \in\{1, \ldots, n\}$. For all $\alpha \geq n-3$ we have

$$
\begin{aligned}
& \mathbb{J}_{n, k}\left(\frac{\alpha-n+1}{2}\right)=\binom{n}{k} \int_{-\pi / 2}^{+\pi / 2} C_{\frac{\alpha n}{2}}(\cos x)^{\alpha n+1} \\
&\left(\frac{1}{2}+\sqrt{-1} \int_{0}^{x} c_{\frac{\alpha-1}{2}}(\cos y)^{-\alpha-1} \mathrm{~d} y\right)^{n-k} \mathrm{~d} x
\end{aligned}
$$

where $c_{\beta}:=\Gamma\left(\beta+\frac{3}{2}\right) /(\sqrt{\pi} \Gamma(\beta+1))$.

Remark

For integer or half-integer β : either rational, or a polynomial in π^{-2} over \mathbb{Q}. The latter sometimes simplifies to a rational multiple of $\pi^{-2 m}$.

Beta prime distribution

Definition

d-dimensional beta prime distribution has Lebesgue density

$$
\frac{\Gamma(\beta)}{\sqrt{\pi} \Gamma\left(\beta-\frac{1}{2}\right)}\left(1+\|x\|^{2}\right)^{-\beta}, \quad x \in \mathbb{R}^{d} .
$$

Parameter: $\beta>d / 2$.

Remarks

- For $\beta=(d+1) / 2$: Cauchy distribution.
- Generalization of the Student distribution.

Result

Let $\tilde{\mathbb{J}}_{n, k}(\beta)$ be the expected sum of internal angles of the beta prime simplex. An explicit formula for $\tilde{\mathbb{J}}_{n, k}(\beta)$ exists.

Beta polytopes

Definition

- Beta polytope $P_{n, d}^{\beta}$ is a convex hull of n points with beta distribution in \mathbb{R}^{d}.
- Beta prime polytope $\tilde{P}_{n, d}^{\beta}$ is a convex hull of n points with beta prime distribution in \mathbb{R}^{d}.

Expected face numbers of beta polytopes

Theorem [K, Thäle, Zaporozhets]

The expected number of k-dimensional faces of a beta polytope $P_{n, d}^{\beta}$ can be expressed through two types of quantities:

- Expected internal angle sums: $\mathbb{J}_{n, k}(\beta)$ and
- Expected external angle sums: $\mathbb{I}_{n, k}(\beta)$:

$$
\mathbb{E} f_{k}\left(P_{n, d}^{\beta}\right)=2 \sum_{s=0}^{\infty} \mathbb{I}_{n, d-2 s}(2 \beta+d) \mathbb{J}_{d-2 s, k+1}\left(\beta+s+\frac{1}{2}\right)
$$

Remark

For integer or half-integer β : Either rational or polynomial in π^{-2} with rational coefficients.

Similarly for beta prime polytopes.

Poisson zero cell

Poisson hyperplane process

On the space of hyperplanes there is a unique (up to constant) measure invariant under isometries. Consider Poisson point process with this intensity (infinitely many hyperplanes thrown at random in \mathbb{R}^{d}).

Poisson zero cell and beta prime polytopes

- Consider points dual to these hyperplanes.
- Points form a PPP with intensity $\|x\|^{-d-1}$.
- Limit of $\tilde{P}_{n, d}^{(d+1) / 2}$ as $n \rightarrow \infty$.

Theorem [K]

For all $\ell \in\{1, \ldots, d\}$ such that $d-\ell$ is even, we have

$$
\begin{aligned}
& \mathbb{E} f_{\ell}\left(\mathcal{Z}_{d}\right) \\
& \quad=\frac{\pi^{d-\ell}}{(d-\ell)!}\left[x^{d-\ell}\right]\left(1+(d-1)^{2} x^{2}\right)\left(1+(d-3)^{2} x^{2}\right) \ldots \\
& \quad=\pi^{d-\ell}\binom{d}{\ell}\left[x^{d-\ell}\right]\left(\frac{x}{\sin x}\right)^{d+1}
\end{aligned}
$$

For odd $d-\ell$: a more complicated formula exists. Even and odd codimensions are related by Dehn-Sommerville relations.

Angles in half-spaces

- Let U_{1}, \ldots, U_{n} be uniform on the upper half-sphere in \mathbb{R}^{d+1}.
- Their positive hull is a random cone C_{n}.
- Cross-section of C_{n} is beta prime polytope $\tilde{P}_{n, d}^{(d+1) / 2}$.
- Explicit formulas for the expected angle, number of faces, etc. exist.

Typical Voronoi cell

- Consider a Poisson point process P_{1}, P_{2}, \ldots with intensity 1 in \mathbb{R}^{d}.
- Voronoi cell of P_{i} : the set of points whose distance to P_{i} is smaller than to P_{j} for all $j \neq i$.
- Typical Voronoi cell: a cell chosen uniformly at random from all cells in a large window.
- Explicit description: cell of 0 in a Poisson process to which we added 0.

Source: Wikipedia

Typical Voronoi cell

- Let \mathcal{V}_{d} be the typical Voronoi cell in \mathbb{R}^{d}.
- Meijering (1953):

$$
\mathbb{E} f_{0}\left(\mathcal{V}_{3}\right)=\frac{96 \pi^{2}}{35}, \mathbb{E} f_{1}\left(\mathcal{V}_{3}\right)=\frac{144 \pi^{2}}{35}, \mathbb{E} f_{2}\left(\mathcal{V}_{3}\right)=2+\frac{48 \pi^{2}}{35} .
$$

- Miles (1970): Formula for $\mathbb{E} f_{0}\left(\mathcal{V}_{d}\right)$.

Theorem [K]

For all $d \in \mathbb{N}$ and $k \in\{1, \ldots, d\}$ such that $d k$ is even, we have
$\mathbb{E} f_{d-k}\left(\mathcal{V}_{d}\right)=d^{d}\binom{d}{k}\left(\frac{\sqrt{\pi} \Gamma\left(\frac{d}{2}\right)}{\Gamma\left(\frac{d+1}{2}\right)}\right)^{k} \underset{x=0}{\operatorname{Res}} \frac{\left(\int_{0}^{x}(\sin y)^{d-1} \mathrm{~d} y\right)^{d-k}}{(\sin x)^{d^{2}+1}}$.
Either rational, or polynomial in π over \mathbb{Q}, or $q \pi^{m}$.

Spherical tessellations

Theorem [K, Thäle]

Explicit formulas exist for the expected f-vector of the

- spherical Poisson zero cell;
- typical cell of the spherical Voronoi tessellation.

Hyperbolic tessellations

Theorem [Godland, K., Thäle]

Explicit formulas exist for the expected f-vector of the

- hyperbolic Poisson zero cell;
- typical cell of the hyperbolic Voronoi tessellation.

Beta* polytopes

Definition

Beta*-polytope is the convex hull of the Poisson process with intensity $c\left(\|x\|^{2}-1\right)^{-\beta}$ on the complement of the unit ball.

Claim [Godland, K., Thäle]

Hyperbolic cells reduce (by duality) to beta* polytopes.

Final slide

Thank you for your attention!

