On the ℓ_{0} Isoperimetry of Measurable Sets

Manuel Fernandez V

Georgia Institute of Technology

AGA Seminar

November 3, 2023

Axis-disjointness

Definition (Axis-Disjointness)

Let $S_{1}, S_{2} \subseteq \mathbb{R}^{n}$. We say S_{1}, S_{2} are axis-disjoint if there does not exist a line parallel to some coordinate axis that intersects both S_{1} and S_{2}.

Prior results: ℓ_{0}-isoperimetry

ℓ_{0} Isoperimetric inequalities

Suppose $K \subseteq \mathbb{R}^{n}$ is convex and $S_{1}, S_{2} \subseteq K$ are axis-disjoint. and $S_{3}=K \backslash\left(S_{1} \cup S_{2}\right)$

- Laddha, Vempala [2]: If $B_{2} \subseteq K \subseteq R B_{2}$ and $\varepsilon>0$ then

$$
\operatorname{vol}\left(S_{3}\right) \geq \Omega\left(\frac{\varepsilon}{n^{3.5} R} \cdot\left(\min \left\{\operatorname{vol}\left(S_{1}\right), \operatorname{vol}\left(S_{2}\right)\right\}-\varepsilon \cdot \operatorname{vol}(K)\right)\right.
$$

- Narayanam, Rajaraman, Srivastava [3]: If $r B_{\infty} \subseteq K \subseteq R B_{\infty}$ then

$$
\operatorname{vol}\left(S_{3}\right) \geq \Omega\left(\frac{(r / R)}{n^{3.5}} \min \left\{\operatorname{vol}\left(S_{1}\right), \operatorname{vol}\left(S_{2}\right)\right\}\right)
$$

Depiction of ℓ_{0} isoperimetry

$R B_{\infty}$

ℓ_{0} Isoperimetric coefficient

Definition (ℓ_{0} Isoperimetric coefficient)

Let $K \subseteq \mathbb{R}^{n}$ be measurable. The ℓ_{0} isoperimetric coefficient of K, ψ_{K}, is defined as

$$
\psi K:=\inf _{\substack{S_{1}, S_{2} \subseteq K}}^{\operatorname{Sin}_{1}, S_{2} \text { are measurable }} \underset{S_{1}, S_{2} \text { are axis disjoint }}{\left.\min \left\{\operatorname{vol}\left(S_{1}\right), \text { vol(S) } S_{2}\right)\right\}}
$$

Theorem (Laddha, Vempala [2])

Let \mathcal{C} denote any axis-aligned cube. Then

$$
\psi_{\mathcal{C}} \geq \frac{\log 2}{n}
$$

Proof is via the Loomis-Whitney inequality.

Main result: improved ℓ_{0} isoperimetry

Theorem (F.)

Let \mathcal{C} denote any axis-aligned cube. Then there exists absolute constants $c_{1}, c_{2}>0$ such that

$$
\frac{c_{1}}{\sqrt{n}} \leq \psi_{\mathcal{C}} \leq \frac{c_{2}}{\sqrt{n}}
$$

Corollary (F. Improved ℓ_{0} isoperimetric inequalities)

- If $B_{2} \subseteq K \subseteq R B_{2}$ and $\varepsilon>0$ then

$$
\operatorname{vol}\left(S_{3}\right) \geq \Omega\left(\frac{\varepsilon}{n^{3} R} \cdot\left(\min \left\{\operatorname{vol}\left(S_{1}\right), \operatorname{vol}\left(S_{2}\right)\right\}-\varepsilon \cdot \operatorname{vol}(K)\right)\right.
$$

- If $r B_{\infty} \subseteq K \subseteq R B_{\infty}$ then

$$
\operatorname{vol}\left(S_{3}\right) \geq \Omega\left(\frac{(r / R)}{n^{3}} \min \left\{\operatorname{vol}\left(S_{1}\right), \operatorname{vol}\left(S_{2}\right)\right\}\right)
$$

Upper bound: cube case

Lemma
Let $K \subseteq \mathbb{R}^{n}$ be an axis-aligned cube. Then $\psi_{K}=O\left(n^{-1 / 2}\right)$

S.

$$
\begin{array}{ll}
I_{0}=[0,1 / 2) & f: H \longrightarrow P(Q) \\
I_{1}=[1 / 2,1] & f(x)=I_{x_{1}} \times I_{x_{2}} \times \cdots \times I_{x_{n}}
\end{array}
$$

$$
\begin{aligned}
& S_{1}=\left\{x \in H:\|x\|_{1}<k\right\} \\
& S_{2}=\left\{x \in H:\|x\|_{1}>k\right\} \\
& S_{3}=\left\{x \in H:\|x\|_{1}=k\right\}
\end{aligned}
$$

observation: $f\left(S_{1}\right), f\left(S_{2}\right)$ are axis-disjoint!

ℓ_{0} boundary

Definition (ℓ_{0} boundary)

Let $K \subseteq \mathbb{R}^{n}$ be measurable and $S \subseteq K$ be measurable. The ℓ_{0} boundary of $S, \partial^{0} S$ is defined as the set of all points in $K \backslash S$ that are not axis-disjoint from S.

Remark

$$
\psi_{K}=\underset{\substack{S_{1}, S_{2} \subseteq K \\ s_{1}, s_{2} \text { are measurable } \\ s_{1}, S_{2} \text { are axis disjoint }}}{\inf ^{2}}
$$

Structured subsets of $[0,1]^{n}$

Definition

Let $A \subseteq[0,1]^{n}$.
(1) We say that A is anchored if for every $x \in A$ the rectangle $\left[0, x_{1}\right] \times \cdots \times\left[0, x_{n}\right]$ is contained in A.
(2) We say A has a grid structure if there exists a grid such that A can be written as a union of grid blocks.

Definition

Given $r \in\{0,1, \cdots, n\}$ and $p \in[0,1]$ we define the p-weighted hamming ball of radius $r, H(p, r)$, as

$$
H(p, r):=\left\{x \in[0,1]^{n}: \#\left\{i: x_{i} \leq p\right\} \geq n-r\right\} .
$$

Harper's Theorem for structured subsets [1]

Thy: Harper
$A:=\{A \leq Q$ such the
(1) A has a grid structure
(2) A is anchored

$$
H(p, r):=\{x \in Q: \#\{i: 0 \leq x ; \leq p\} \geq n-r!
$$

Fix $0<\lambda<1$. Then $\min _{A \in \mathcal{A}} \operatorname{vol}\left(\partial^{\circ} A\right)$ is achieved by $H(p, r)$ $A \in \mathbb{A}$
$\operatorname{Vol}(A)=\lambda$$\quad$ for some $0<p<1,0<r<n$

Continuous compression via shaking

$$
\begin{aligned}
& (A, B) \underset{T_{i}}{\rightarrow}(\hat{A}, \hat{B}) \\
& \hat{A}:=\bigcup_{x \in \operatorname{Proj}_{e_{i}^{\top}}}\{x\} \times\left[0, \operatorname{vol}_{1}\left(\left\{y \in A \mid \operatorname{Proj}_{e_{i}^{\top}} y=x\right\}\right)\right] \\
& \hat{B}:=\bigcup_{x \in \operatorname{Proj}_{e_{i}}{ }^{\text {TA }}}\{x\} \times\left(1-\operatorname{vol}_{1}\left(\left\{y \in B \mid \operatorname{Proj}_{e_{i}^{\top}} y=x\right\}\right), 1\right) \\
& (A, B) \\
& \xrightarrow{e_{2}} e_{1} \\
& (A, B) \\
& \stackrel{e_{2}}{\longrightarrow} e_{1} \\
& \text { (} A, B \text {) } \\
& \stackrel{e_{2}}{\longrightarrow} e_{1}
\end{aligned}
$$

Compression guarantees

Lemma

If $A, B \subseteq[0,1]^{n}$ then (\hat{A}, \hat{B}) satisfies the following:
(1) $\operatorname{vol}(A)=\operatorname{vol}(\hat{A}), \operatorname{vol}(B)=\operatorname{vol}(\hat{B})$.
(2) If A, B are axis-disjoint then \hat{A}, \hat{B} are axis-disjoint.
(3) The boundary of \hat{A} has measure 0 .

Illustration of (2)

General proof strategy

Overview: 1) Compress 2) Under approximate 3) Harper

Binomial inequality

Observation: The volume of $B(p, r)$ is equal to the probability that a binomial random variable, $\operatorname{Bin}(n, 1-p)$, is at most r.

Lemma

There exists a universal constant $c>0$ such that the following is true: Let $X \sim \operatorname{Bin}(n, 1-p)$ be a binomial random variable. Let $k \in\{0,1, \cdots, n\}$ Then the following inequality holds:

$$
\mathbb{P}[X=k] \geq \frac{c}{\sqrt{n p(1-p)}} \min \{\mathbb{P}[X<k], \mathbb{P}[X>k]\}
$$

$$
\begin{aligned}
& X \sim \operatorname{Binom}(n, 1-p), p \leq 1 / 2 \\
& N=n(1-p) \\
& \sigma=\sqrt{n p(1-p)}
\end{aligned}
$$

General upper bound

Theorem (F. General upper bound)

There exists a universal constant $c>0$ such that the following holds: Let $K \subseteq \mathbb{R}^{n}$ be a measurable set. Then

$$
\psi_{K} \leq c n^{-1 / 2}
$$

- To prove the upper bound we develop a general framework for constructing axis-disjoint subsets $S_{1}, S_{2} \subseteq K$ for which $\left.\frac{\operatorname{vol}\left(K \backslash\left(S_{1} \cup S_{2}\right)\right)}{\min \left\{\operatorname{vol}\left(S_{1}\right), v o l\right.}\left(S_{2}\right)\right\} \quad$ is small.
- Our proof is an application of the Probabilistic Method.

Random splitting plane

Construction

1) Pick $x \in \mathbb{R}^{n}$ such that

$$
\operatorname{vol}\left(K \cap\left\{x_{i} \leq p_{i}\right\}\right)=\operatorname{vol}\left(K_{n}\left\{x_{i}>p_{i}\right\}\right)
$$

2) Decompose K into orthents induced by P
3) Pick z uniformly from $\{0,1\}^{n}$
4) Define

$$
\begin{gathered}
S_{1}:=\bigcup_{\|s-z\|_{1}<\lfloor n / 2\rfloor} K_{s} \quad S_{2}:=\bigcup_{\|s-z\|_{1}>T_{n / 2}} K_{s} \\
S_{3}:=\bigcup_{\|s-z\|,\left\{\left\{\left[n / 2, r_{2 / 2]}\right.\right.\right.} K_{s}
\end{gathered}
$$

Goal: Show that with non-zero probability

$$
\operatorname{vol}\left(S_{3}\right)=O\left(n^{-1 / 2}\right), \operatorname{vol}\left(S_{1}\right), \operatorname{vol}\left(S_{2}\right)=\Omega(1)
$$

Symmetric case

Let $K \subseteq \mathbb{R}^{n}$ be symmetric:

- First moment argument: With any constant probability $\operatorname{vol}\left(S_{3}\right)=O\left(n^{-1 / 2}\right)$
- symmetric property: $\operatorname{vol}\left(S_{1}\right)=\operatorname{vol}\left(S_{2}\right)$

Lemma

Let $K \subseteq \mathbb{R}^{n}$ be symmetric. Then for every $z \in\{0,1\}^{n}$ we have

$$
\sum_{\|s-z\|_{1}<\lfloor n / 2\rfloor} \operatorname{vol}\left(K_{s}\right)=\sum_{\|s-z\|_{1}>\lceil n / 2\rceil} \operatorname{vol}\left(K_{s}\right) .
$$

Consequence: $\operatorname{vol}\left(S_{1}\right)=\operatorname{vol}\left(S_{2}\right)=\Omega(1)$.

Non-symmetric case

- Problem: If K is non-symmetric then $\operatorname{vol}\left(S_{1}\right), \operatorname{vol}\left(S_{2}\right)$ need not be equal.
- Workaround: second moment method
- Need to show: $\mathbb{E}\left[\operatorname{vol}\left(S_{1}\right)^{2}\right]<1 / 2-c$ for some absolute constant c.
- Idea 1: If s_{1}, s_{2} are far apart then $K_{s_{1}}, K_{s_{2}}$ are more likely to be on opposite sides.
- Idea 2: The volume of K is not too concentrated amongst a cluster of orthants.

Random Walk: Coordinate Hit-and-Run

- Introduced by Turchin (1971) [4]

- Simple to implement, good in practice.
- No strong theoretical guarantees until recently.

Problem: lowerbounding conductance

Theorem (Lovasz, Simonivits)

1) $\chi^{2}\left(Q, Q_{t}\right) \leqslant \chi^{2}\left(Q_{0}, Q\right)\left(1-\phi^{2} / 2\right)^{t}$

$$
\phi(S):=\frac{\int_{x \in S} P_{x}(\bar{s}) d Q}{\min (Q(s), Q(\bar{s})}
$$

2) $d_{T V}\left(Q, Q_{t}\right) \leq s M+M\left(1-Q_{s} / 2\right)^{t}$

$$
\begin{gathered}
\phi_{s}:=\inf _{\substack{S \subseteq K \\
s<v_{0}(s) \leq 1 / 2}} \phi(S) \\
M=\sup _{\substack{S \subseteq K}} \frac{Q(s)}{Q\left(S_{0}\right)} \\
S_{1}^{\prime}=\left\{x \in S: P_{x}(\bar{S})<\frac{1}{2 n}\right\} \\
S_{2}^{\prime}=\left\{x \in \bar{S}: P_{x}(S)<\frac{1}{2 n}\right\}
\end{gathered}
$$

Lemma (Laddha, Vempala) $S_{1}^{\prime}, S_{2}^{\prime}$ are axis disjoint

Open questions

- What is the best lowerbound on the isoperimetric coefficient for convex bodies K ? Is it also $\Omega\left(n^{-1 / 2}\right)$?
- Can the upper bound on ψ_{K} be improved by depending on the regularity of K ?

Conclusion

Thank you!

㞒 LH Harper．
On an isoperimetric problem for hamming graphs．
Discrete applied mathematics，95（1－3）：285－309， 1999.
Aditi Laddha and Santosh Vempala．
Convergence of gibbs sampling：Coordinate hit－and－run mixes fast． arXiv preprint arXiv：2009．11338， 2020.
围 Hariharan Narayanan，Amit Rajaraman，and Piyush Srivastava． Sampling from convex sets with a cold start using multiscale decompositions．
In Proceedings of the 55th Annual ACM Symposium on Theory of Computing，pages 117－130， 2023.
固 Valentin F Turchin．
On the computation of multidimensional integrals by the monte－carlo method．
Theory of Probability \＆Its Applications，16（4）：720－724， 1971.

