On the L^p Aleksandrov problem for negative p

Stephanie Mui

NYU Courant

stephanie.s.mui@nyu.edu

Stephanie Mui On the L^p Aleksandrov problem for negative p

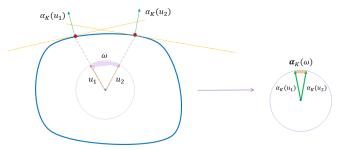
Integral Curvature

• The integral curvature of $K \in \mathcal{K}_o^n$:

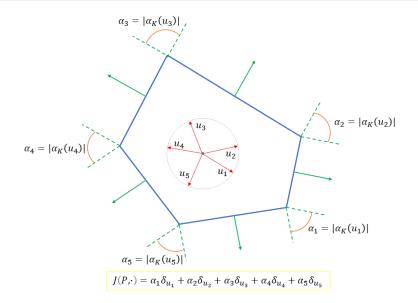
$$J(K,\omega) = \mathcal{H}^{n-1}(\alpha_K(\omega))$$

for every Borel $\omega \subset S^{n-1}$ (Aleksandrov 1942)

- Radial Gauss map $\alpha_{\kappa}(\omega)$ maps radial vectors to normal vectors
- Measure of the normal cone of the radial projection to ∂K



Integral Curvature for a Polygon



э

Problem (Aleksandrov 1942)

What are the necessary and sufficient conditions on a Borel measure μ on S^{n-1} so that

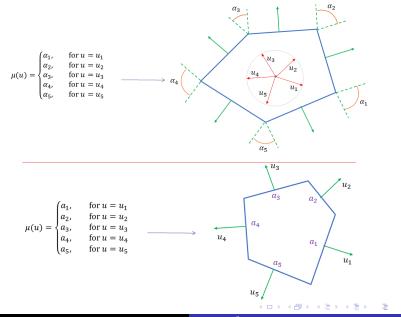
 $J(K,\cdot)=\mu$

for some $K \in \mathcal{K}_o^n$?

- Classical Aleksandrov problem is a type of Minkowski problem
 - Contrast with classical Minkowski problem:

 $S_{K}(\cdot) = \mu$

Classical Aleksandrov Problem vs Minkowski Problem



Aleksandrov Condition

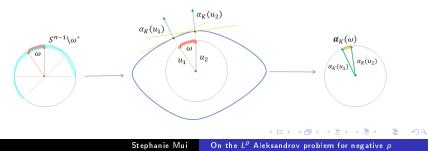
• A Borel measure μ on S^{n-1} satisfies the <u>Aleksandrov condition</u> if

$$\mu(\omega) < \mathcal{H}^{n-1}(S^{n-1} \setminus \omega^*)$$

for each convex $\omega \subset S^{n-1}$, where $\omega^* = \left\{ \mathbf{v} \in S^{n-1} : \mathbf{v} \cdot \mathbf{u} \leq \mathbf{0} \, \forall \mathbf{u} \in \omega \right\}.$

 The integral curvature measure J(K, ·) for K ∈ Kⁿ_o satisfies the Aleksandrov condition

$$oldsymbol{lpha}_{\mathcal{K}}(\omega)\subset \mathcal{S}^{n-1}ackslash\omega^*$$



Theorem (Aleksandrov 1942)

Suppose μ is a finite Borel measure on S^{n-1} . Then $\mu = J(K, \cdot)$ for some $K \in \mathcal{K}_o^n$ if and only if $|\mu| = o_n$ and

$$\mu(\omega) < \mathcal{H}^{n-1}(S^{n-1} \setminus \omega^*) \tag{0.1}$$

for each convex $\omega \subset S^{n-1}$, where $\omega^* = \{ v \in S^{n-1} : v \cdot u \leq 0 \ \forall u \in \omega \}$. Furthermore, K is unique up to scaling. • (Firey 1962) For every $p\geq 1,~\mathcal{K},L\in\mathcal{K}_{o}^{n},$ and $a,b\geq 0,$ define

$$h_{aK+p\ bL} = \left(a \cdot h_K^p + b \cdot h_L^p\right)^{rac{1}{p}}$$

• Generalized $\forall p \in \mathbb{R}$,

$$a \cdot K +_p b \cdot L = \left[\left(a \cdot h_K^p + b \cdot h_L^p \right)^{\frac{1}{p}} \right]$$

- Actively researched when (Lutwak 1993) discovered the concept of the *L^p* surface area measure
 - For each $K, L \in \mathcal{K}_{o}^{n}$, defined by variational formula

$$\frac{d}{dt}V(K+_pt\cdot L)\bigg|_{t=0}=\frac{1}{p}\int_{S^{n-1}}h_L(u)^p\ dS_p(K,u)$$

Problem

For all $p \in \mathbb{R}$, what are the necessary and sufficient conditions on a given Borel measure μ on S^{n-1} so that there exists a $K \in \mathcal{K}_o^n$ with

$$\mu = S_p(K, \cdot) = h_K(\cdot)^{1-p} dS(K, \cdot)?$$

- p = 1 case is the classical Minkowski problem
- p = 0 case is the logarithmic Minkowski problem
- p = -n case (largely unsolved) is the centro-affine Minkowski problem

L^p Brunn-Minkowski Fields of Research

- <u>L^p Minkowski Problem</u>: Lutwak, Chou, Wang, Böröczky, LYZ, Stancu, Zhu, Chen, Hug, Li, Jian, Lu, Haberl, Huang, Liu, Kolesnikov, Milman, Oliker, Trinh, Bianchi, Colesanti, Xing, Xiong, Zou, Gardner, Ye, Weil, Hu, Ma, Shen, Xi, Leng, ...
- <u>L^p Affine Surface Area and Valuations</u>: Lutwak, Ludwig, Paouris, Werner, Ye, Meyer, Schütt, Haberl, Parapatits, Reitzner, Colesanti, Hug, Wannerer, ...
- <u>L^p Affine Isoperimetric Inequalities:</u> LYZ, Haberl, Schuster, Milman, Yehudayoff, Wang, Liu, Werner, Colesanti, Campi, Gronchi, ...
- <u>L^p Affine Sobolev Inequalities:</u> Cianchi, LYZ, Haberl, Schuster, Kneifacz, Haddad, Jiménez, Montenegro, Napoli, Nguyen, Wang, Xiao, Zhai, ...

.

L^p Integral Curvature

• $p \in \mathbb{R}$ and $a, b \geq 0$, define L^p harmonic combination

$$a \cdot K \hat{+}_p b \cdot L = (a \cdot K^* +_p b \cdot L^*)^*$$

• (Huang-LYZ 2018, JDG) defined the L^p integral curvature by variational formula for each $K, L \in \mathcal{K}_o^n$:

$$\frac{d}{dt}\mathcal{E}(K\hat{+}_{p}t\cdot L)\bigg|_{t=0} = \begin{cases} \frac{1}{p}\int_{S^{n-1}}\rho_{L}(u)^{-p} \ dJ_{p}(K,u) & \text{, for } p \neq 0\\ -\int_{S^{n-1}}\log(\rho_{L}(u)) \ dJ(K,u) & \text{, for } p = 0 \end{cases}$$

where the entropy is

$$\mathcal{E}(K) = -\int_{S^{n-1}} \log h_K(v) \, dv$$

• Relationship to classical integral curvature

$$dJ_p(K,\cdot) = \rho_K^p \ dJ(K,\cdot)$$

L^p Integral Curvature vs. L^p Surface Area (Duality)

- $J_p(K, \cdot)$ defined by a variation on entropy $\mathcal E$ of the L^p harmonic combination
 - S_p(K, ·) defined by a variation on volume V of the L^p Minkowski sum
- J_p(K, ·) is a function on the radial sphere
 S_p(K, ·) is a function on the normal sphere
- $dJ_p(K, \cdot) = \rho_K^p dJ(K, \cdot)$ • $dS_p(K, \cdot) = h_K(\cdot)^{1-p} dS(K, \cdot)$
- $J(K, \cdot)$ measures exterior angles
 - $S(K, \cdot)$ measures surface area

Problem

Fix $p \in \mathbb{R}$. What are the necessary and sufficient conditions on a given Borel measure μ on S^{n-1} so that there exists a convex body $K \in \mathcal{K}_o^n$ with

 $J_p(K,\cdot) = \mu ?$

• If μ has density f, equivalent to PDE

$$\det\left(\nabla_{ij}^{2}h+h\delta_{ij}\right)=\frac{\left(\left|\nabla h\right|^{2}+h^{2}\right)^{\frac{n}{2}}}{h^{1-p}}f$$

- (Huang-LYZ 2018) completely solved existence for p>0
- (Huang-LYZ 2018) solved existence under some strong conditions when p < 0
 - Measure is even and vanishes on all great subspheres
 - Excludes many shapes, including polytopes
- (Zhao 2019, Proc. AMS) addressed this polytope gap
 - -1
 - Measure is even and discrete

Recent Progress for p < 0 Case (M. 2021)

• Completely solve the symmetric case for -1

Theorem

 μ is even and $-1 . Then <math>\exists K \in \mathcal{K}_e^n$ s.t. $J_p(K, \cdot) = \mu$ iff μ is not completely concentrated on lower dimensional subspace.

• A sufficient measure concentration condition for the symmetric case and $p \leq -1$

Theorem

 $p\leq -1,\,\mu$ is even and satisfies

$$\frac{\mu(\xi)}{\mu(S^{n-1})} \le C(n)^p$$

for all great subspheres $\xi \subset S^{n-1}$, where $C(n) = \exp\left[\frac{1}{2}\left(\psi\left(\frac{n}{2}\right) - \psi\left(\frac{1}{2}\right)\right)\right]$. Then $\exists K \in \mathcal{K}_e^n \text{ s.t. } J_p(K, \cdot) = \mu$.

.

- Convert to maximization problem
- Compactness of maximizing sequence
 - Blaschke's Selection \implies convergence to a compact convex Q^0
- Non-collapse for Q^0
- $o \in \operatorname{int} Q^0$
 - Previous two points are equivalent for o-symmetric case
 - Most difficult part of proofs for both theorems

Optimization Problems

 Denote o_n to be the surface area of the unit sphere. For any nonzero, finite Borel measure µ on Sⁿ⁻¹ and p ≠ 0, we consider the following functionals

•
$$\widetilde{\Phi}_{\rho}(Q) = \exp\left(\frac{1}{o_n}\mathcal{E}(Q)\right) \cdot \left(\int_{S^{n-1}} \rho_Q^{-p}(u) d\mu(u)\right)^{-\frac{1}{p}}$$

• $\Phi_{\rho}(Q) = -\frac{1}{p}\log\left(\int_{S^{n-1}} \rho_Q^{-p}(v) d\mu(v)\right) + \frac{1}{o_n}\mathcal{E}(Q)$

Lemma

Suppose $p \neq 0$ and μ is an even Borel measure on S^{n-1} . If $K \in \mathcal{K}_e^n$ satisfies

$$o_n = \int_{S^{n-1}} \rho_K^{-p}(u) \, d\mu(u) \tag{0.2}$$

and
$$\widetilde{\Phi}_{p}(K) = \sup \left\{ \widetilde{\Phi}_{p}(Q) : Q \in \mathcal{K}_{e}^{n} \right\}$$
 or
 $\Phi_{p}(K) = \sup \left\{ \Phi_{p}(Q) : Q \in \mathcal{K}_{e}^{n} \right\}$, then $\mu = J_{p}(K, \cdot)$.

Maximize

$$\widetilde{\Phi}_{p}(Q) = \exp\left(\frac{-1}{o_{n}}\int_{S^{n-1}}\log h_{Q}(v) \ dv\right) \cdot \left(\int_{S^{n-1}}\rho_{Q}^{-p}(u) \ d\mu(u)\right)^{-\frac{1}{p}}$$

н

- Show existence of maximizer Q^0
- Show that Q^0 is nondegenerate (i.e. $o \in \operatorname{int} Q^0$)
- Consider a cylindrical thickening given by $K^t = Q^0 + tB^{n-k}$

- (Contradiction Approach) Assume optimizer Q^0 spans a k < n dimensional subspace
- Contradiction by showing $\widetilde{\Phi}_p(K^t) > \widetilde{\Phi}_p(Q^0)$ for small t > 0

•
$$\frac{\widetilde{\Phi}_{\rho}(K^{t})}{\widetilde{\Phi}_{\rho}(Q^{0})} \rightarrow 1$$

• $\frac{d}{dt} \frac{\widetilde{\Phi}_{\rho}(K^{t})}{\widetilde{\Phi}_{\rho}(Q^{0})} > 0$

Delicate Estimates

• Estimate for
$$\Delta_2(Q^0, t) := \frac{\left(\int_{S^{n-1}} \rho_{K^t}^{-p}(u) d\mu(u)\right)^{-\frac{1}{p}}}{\left(\int_{S^{n-1}} \rho_{Q^0}^{-p}(u) d\mu(u)\right)^{-\frac{1}{p}}}$$

• $\lim_{t \to 0^+} \tilde{\Delta}_2(Q^0, t) = 1$
• $\lim_{t \to 0^+} \frac{d}{dt} \tilde{\Delta}_2(Q^0, t) \sim t^{-p-1}$
• Estimate for $\Delta_1(Q^0, t) := \frac{\exp\left(\frac{-1}{o_n} \int_{S^{n-1}} \log h_{K^t}(v) dv\right)}{\exp\left(\frac{-1}{o_n} \int_{S^{n-1}} \log h_{Q^0}(v) dv\right)}$
• $\lim_{t \to 0^+} \tilde{\Delta}_1(Q^0, t) = 1$
• $\lim_{t \to 0^+} \frac{d}{dt} \tilde{\Delta}_1(Q^0, t) \gtrsim \log(t).$
• Proved first for the case $Q^0 = rB^k$ and generalized to arbitrary k-dimensional symmetric convex bodies
• $\frac{d}{dt} \frac{\tilde{\Phi}_p(K^t)}{\tilde{\Phi}_p(Q^0)} \sim t^{-p-1} + \log(t)$

2

Image: A marked black

Sketch of Proof $p \leq -1$

Maximize

$$\Phi_{p}(Q) = -\frac{1}{p} \log \left(\int_{S^{n-1}} \rho_{Q}^{-p}(u) \, d\mu(u) \right) - \frac{1}{o_{n}} \int_{S^{n-1}} \log h_{Q}(v) \, dv$$

- Suppose $\{Q_l\}$ is maximizing sequence
- Φ_p is scale invariant \implies rescale

$$\left(\int_{S^{n-1}}\log\left(h_{Q_{l}}(u)\right) \ du\right)=0$$

- $Q_I \subset MB^n$, for some $M > 0 \implies \{Q_I\} \rightarrow Q^0$
- Prove Q₀ is nondegenerate by contradiction
- Assume $\exists u_0 \in S^{n-1}$ such that $h_{Q_0}(\pm u_0) = 0$

Sketch of Proof $p \leq -1$

•
$$orall \delta > 0$$
, define $\omega_\delta(u_0) \coloneqq \left\{ v \in S^{n-1}: \ |v \cdot u_0| > \delta
ight\}$

$$\begin{split} \Phi_p(Q_l) &= -\frac{1}{p} \log \left(\int_{S^{n-1}} \rho_Q^{-p}(v) \, d\mu(v) \right) \\ &\leq -\frac{1}{p} \log \left(\left(\sup_{\omega_\delta} \rho_{Q_l}^{-p}(v) - M^{-p} \right) \mu(\omega_\delta) + M^{-p} \mu(S^{n-1}) \right) \end{split}$$

• Taking limits and applying the measure concentration, showed:

$$\lim_{l\to\infty} \Phi_p(Q_l) \leq -\frac{1}{p} \log(\mu(S^{n-1}))$$
$$= \Phi_p(B^n).$$

contradicts assumption that Q_0 is maximizer

Calculation of C(n)

$$C(n) = \exp\left(\frac{-1}{o_n} \int_{S^{n-1}} \log|v_0 \cdot u| \, du\right)$$

= $\exp\left(-\frac{2 \cdot o_{n-1}}{o_n} \int_0^{\frac{\pi}{2}} (\sin^{n-2}\phi) \log(\cos\phi) \, d\phi\right)$
= $\lim_{q \to 0} \exp\left[\frac{1}{q} \log\left(\frac{2 \cdot o_{n-1}}{o_n} \int_0^{\frac{\pi}{2}} (\sin^{n-2}\phi) (\cos^{-q}\phi) \, d\phi\right)\right]$
= $\exp\left[\lim_{q \to 0} \frac{1}{q} \log\left(\frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{n-1}{2}\right)} \cdot \frac{\Gamma\left(\frac{1-q}{2}\right)\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}\right)\right]$
= $\exp\left[\frac{1}{2}\left(\psi\left(\frac{n}{2}\right) - \psi\left(\frac{1}{2}\right)\right)\right]$

• Note that $C(n)^p
ightarrow 0$ as $n
ightarrow \infty$ at rate $O(n^{rac{\rho}{2}})$

< ∃ >

2

- Optimal measure concentration condition for existence in L^p Aleksandrov for $p \leq -1$
- Eliminating the origin-symmetry assumption
- Analogous unsolved questions for L^p Dual Minkowski problem
- L^p Dual Minkowski problem
 - p < 0 and q > 0
 - p < 0 and q < 0

Thanks for listening!

-

э

æ