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Borell’s inequality

Take two negatively correlated Gaussians:

(X, Y) ∼ N

(
In ρIn
ρIn In

)
, −1 < ρ < 0.

Find f : Rn → [−1, 1] minimizing Ef(X)f(Y).

Theorem (Borell ’85)
f(x) = sgn x1 is optimal (and uniquely so, up to obvious symmetries).

Ef(X)f(Y) ≥ 2
π
arcsin(ρ).

Find f : Rn → Bk
2 (with k ≤ n) minimizing E⟨f(X), f(Y)⟩.

Theorem (Hwang, N., Parekh, Thompson, Wright)
f(x) = (x1,...,xk)√

x21+···+x2k
is optimal (and uniquely so, up to obvious symmetries).
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CS interlude: Max-Cut

G = (V, E) a graph, V = {1, . . . ,n}.
Maximize

∑
{i,j}∈E

(xi − xj)2 over x ∈ {±1}n.

Goemans-Williamson:
Maximize

∑
{i,j}∈E

|yi − yj|2 over y ∈ (Sn)n.

Round: take θ ∈ Sn, set xi = sgn⟨θ, yi⟩.

GW has approximation ratio inf
−1<ρ<0

1− 2
π arcsin(ρ)

1− ρ
≈ 0.878.
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CS interlude: Max-Cut

Theorem
GW-algorithm has approximation ratio of at least

inf
−1<ρ<0

1− 2
π arcsin(ρ)

1− ρ
≈ 0.878.

sup
y∈(Sn)n

∑
{i,j}∈E

|yi − yj|2 ≥ sup
x∈{±1}n

∑
{i,j}∈E

(xi − xj)2

Effect of rounding: ρ := ⟨yi, yj⟩ ⇒ |yi − yj|2 = 2(1− ρ).

Eθ| sgn⟨yi, θ⟩ − sgn⟨yj, θ⟩|2 → 2(1− 2
π
arcsin(ρ)) as n → ∞.

Theorem (Khot-Kindler-Mossel-O’Donnell, Mossel-O’Donnell-Oleszkiewicz)
Doing better than 0.878 is Unique-Games-Hard.
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CS interlude: Quantum Max-Cut

G = (V, E) a graph, V = {1, . . . ,n}.
h a specific 4× 4 complex matrix “anti-ferromagnetic Heisenberg interaction”
2n × 2n matrices:

for vi,wi ∈ C2

hi,j
(
⊗n

k=1 vk,⊗n
k=1wk

)
= h(vi ⊗ vj,wi ⊗ wj)

∏
k̸=i,j

⟨vk,wk⟩

HG =
∑
{i,j}∈E

hi,j “anti-ferromagnetic Heisenberg model”

Definition
energy of HG: λmax(HG)

product-state energy of HG: max|w1|,...,|wn|=1HG
(
⊗n

i=1wi
)

Theorem (Hwang, N., Parekh, Thompson, Wright)
Approximating these by better than ≈ 0.956 is Unique-Games hard.
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Vector Borell inequality

Find f : Rn → Bk
2 (with k ≤ n) minimizing E⟨f(X), f(Y)⟩.

Theorem (Hwang, N., Parekh, Thompson, Wright)
f(x) = (x1,...,xk)√

x21+···+x2k
is optimal (and uniquely so, up to obvious symmetries).

Proof.
1. Dimension reduction: It suffices to solve it for f : Rk → Bk

2.
2. Shell decomposition: It suffices to solve it for f : Sk−1 → Bk

2.
3. Spectral analysis: Solve it for f : Sk−1 → Bk

2.
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Spectral argument

Let g : [−1, 1] → R be decreasing. f : Sk−1 → Rk.

Ugf(u) :=
∫
Sk−1

f(v)g(⟨u, v⟩)dσk−1(v).

EfUgf = E⟨f(X), f(Y)⟩
where (X, Y) have density g(⟨x, y⟩) w.r.t. σk−1 × σk−1.

Theorem
The eigenfunctions of Ug with minimal eigenvalue are linear.
Corollary
Among f with E|f|2 ≤ 1, E⟨f,Ugf⟩ is minimized by f(x) = x = x

|x|.
Proof.
Shur’s lemma implies that eigenfunctions are spherical harmonics, so need to
compute Ugf(v)

f(v) for spherical harmonics f. Gegenbauer polynomials + NIST
Handbook.
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Shell decomposition

To handle f : Rk → Bk
2, it suffices to handle f : Sk−1 → Bk

2.

c(r, s) = E
[
⟨f(X), f(Y)⟩

∣∣∣ |X| = r, |Y| = s
]

e(r) = E
[
f(X)

∣∣∣ |X| = r
]

E⟨f(X), f(Y)⟩ = Ec(R, S) ≥ E
[
⟨e(R), e(S)⟩ + λR,S

1

]
≥ EλR,S

1 .

Equality if f(x) = x
|x|.
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Dimension reduction

To handle f : Rn → Bk
2, it suffices to handle f : Rk → Bk

2.

Variational: either f : Rn → Bk
2 is “effectively k-dimensional” or it can be

improved by a perturbation.

fθ(x) := f(x + θ)

e(θ) := Efθ
J(θ) = E⟨fθ(X), fθ(Y)⟩

Lemma
If Dθe(0) = 0 then D2

θ,θJ(0) ≤ 0. Inequality is strict unless fαθ = f for all α ∈ R.
Corollary
If f is optimal and Dθe(0) = 0 then fαθ = f for all α ∈ R.
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Open problems

Conjecture
If 0 < ρ < 1 then E⟨f(X), f(Y)⟩ is maximized, among functions with Ef = 0, by
f(x) = (x1,...,xk)√

x21+···+x2k
.

Question
What about if Ef = µ ∈ Bk

2?
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Thank you!
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