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Theorem

GW-algorithm has approximation ratio of at least
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- XSES g jyeE
Effect of rounding: p:= {y;,y;) = lvi — yj|* = 2(1 = p).

2
Tg| sgn(y;, 0) — sgn(y;, 0)]* — 2(7 arcsin(p)) as n — oo.
s

Theprem (Khot-Kindler—Mossel-OfDonnell, Mossel-O’Donnell-Oleszkiewicz)
Doing better than 0.878 is Unigue-Games-Hard.
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G=(V,E)agraph,V={1,...,n}.
h a specific 4 x 4 complex matrix “anti-ferromagnetic Heisenberg interaction”
2" % 2" matrices: for v;, w; € C?
hij( @keq Vi, @pqWi) = (Vi ® V), w; @ W) H (Vies W)
RFI,)
He = Z h;;  "anti-ferromagnetic Heisenberg model”
{ijyeE

Definition
energy Of HG. maX(HG)

Theorem (Hwang, N., Parekh, Thompson, Wr:ght) |
Approximating these by better than ~ 0.956 Is Unigue-Games hard.
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Find f: R" — B (with k < n) minimizing E(f(X), f(Y)).
Theorem (Hwang, N., Parekh, Thompson, Wright)

f(x) = LX) _js optimal (and uniquely so, up to obvious symmetries)

N
Proof.
1. Dimension reduction: It suffices to solve it for f: Rf — B%

2. Shell decomposition: It suffices to solve it for f: S*=1 — B%.
3. Spectral analysis: Solve it for f: S*=1 — B%.
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Spectral argu

let g : [-1,1]

ment

— R be decreasing. f: ST — R~

Ug(U) := (V)g({u,v)) do"~(v).

SI?—1

FfUf = E(X), f(Y))

where (X, Y) have density g((x,y)) w.rt. o1 x o®.

Theorem

The eigenfunctions of Uy with minimal eigenvalue are linear

Corollary

Among f with E

Proof.

Shur's lemma implies that eigenfunctions are spherical harmonics, so need to

f12 <1, E{f, Ugf) is minimized by f(x) = x =

X[

compute U]?{V()V

Handbook.

) for spherical harmonics f. Gegenbauer polynomials + NIST
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Shell decomposition

To handle f: R* — B% it suffices to handle f: S*~1 — B%.
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Conjecture | - | |
If 0 < p < 1then E{f(X),f(Y)) Is maximized, among functions with Ef = 0, by

JC(X) _ (X1 ..... X;?) |

Question
What about if Ef = i € BE?




Thank you!
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