Vector-valued noise stability

Yeongwoo Hwang, Joe Neeman, Ojas Parekh, Kevin Thompson, John Wright

Take two negatively correlated Gaussians:

$$
(X, Y) \sim \mathcal{N}\left(\begin{array}{cc}
I_{n} & \rho I_{n} \\
\rho I_{n} & I_{n}
\end{array}\right), \quad-1<\rho<0
$$

Find $f: \mathbb{R}^{n} \rightarrow[-1,1]$ minimizing $\mathbb{E} f(X) f(Y)$.

Take two negatively correlated Gaussians:

$$
(X, Y) \sim \mathcal{N}\left(\begin{array}{cc}
I_{n} & \rho I_{n} \\
\rho I_{n} & I_{n}
\end{array}\right), \quad-1<\rho<0
$$

Find $f: \mathbb{R}^{n} \rightarrow[-1,1]$ minimizing $\mathbb{E} f(X) f(Y)$.
Theorem (Borell '85)
$f(x)=\operatorname{sgn} x_{1}$ is optimal (and uniquely so, up to obvious symmetries).

Take two negatively correlated Gaussians:

$$
(X, Y) \sim \mathcal{N}\left(\begin{array}{cc}
I_{n} & \rho I_{n} \\
\rho I_{n} I_{n}
\end{array}\right), \quad-1<\rho<0
$$

Find $f: \mathbb{R}^{n} \rightarrow[-1,1]$ minimizing $\mathbb{E} f(X) f(Y)$.
Theorem (Borell '85) $f(x)=\operatorname{sgn} x_{1}$ is optimal (and uniquely so, up to obvious symmetries).

$$
\mathbb{E} f(X) f(Y) \geq \frac{2}{\pi} \arcsin (\rho) .
$$

Take two negatively correlated Gaussians:

$$
(X, Y) \sim \mathcal{N}\left(\begin{array}{cc}
I_{n} & \rho I_{n} \\
\rho I_{n} & I_{n}
\end{array}\right), \quad-1<\rho<0
$$

Find $f: \mathbb{R}^{n} \rightarrow[-1,1]$ minimizing $\mathbb{E} f(X) f(Y)$.
Theorem (Borell '85) $f(x)=\operatorname{sgn} x_{1}$ is optimal (and uniquely so, up to obvious symmetries).

$$
\mathbb{E} f(X) f(Y) \geq \frac{2}{\pi} \arcsin (\rho) .
$$

Find $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}($ with $k \leq n)$ minimizing $\mathbb{E}\langle f(X), f(Y)\rangle$.

Take two negatively correlated Gaussians:

$$
(X, Y) \sim \mathcal{N}\left(\begin{array}{cc}
I_{n} & \rho I_{n} \\
\rho I_{n} & I_{n}
\end{array}\right), \quad-1<\rho<0
$$

Find $f: \mathbb{R}^{n} \rightarrow[-1,1]$ minimizing $\mathbb{E} f(X) f(Y)$.
Theorem (Borell '85) $f(x)=\operatorname{sgn} x_{1}$ is optimal (and uniquely so, up to obvious symmetries).

$$
\mathbb{E} f(X) f(Y) \geq \frac{2}{\pi} \arcsin (\rho) .
$$

Find $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}$ (with $k \leq n$) minimizing $\mathbb{E}\langle f(X), f(Y)\rangle$.
Theorem (Hwang, N., Parekh, Thompson, Wright)
$f(x)=\frac{\left(x_{1}, \ldots, x_{k}\right)}{\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}}}$ is optimal (and uniquely so, up to obvious symmetries).

CS interlude: Max-Cut

$$
\begin{aligned}
& G=(V, E) \text { a graph, } V=\{1, \ldots, n\} . \\
& \text { Maximize } \sum_{\{i, j\} \in E}\left(x_{i}-x_{j}\right)^{2} \text { over } x \in\{ \pm 1\}^{n} .
\end{aligned}
$$

$$
\begin{aligned}
& G=(V, E) \text { a graph, } V=\{1, \ldots, n\} . \\
& \text { Maximize } \sum_{\{i, j\} \in E}\left(x_{i}-x_{j}\right)^{2} \text { over } x \in\{ \pm 1\}^{n} .
\end{aligned}
$$

Goemans-Williamson:
Maximize $\sum_{\{i, j\} \in E}\left|y_{i}-y_{j}\right|^{2}$ over $y \in\left(S^{n}\right)^{n}$.
Round: take $\theta \in S^{n}$, set $x_{i}=\operatorname{sgn}\left\langle\theta, y_{i}\right\rangle$.

$$
\begin{aligned}
& G=(V, E) \text { a graph, } V=\{1, \ldots, n\} . \\
& \text { Maximize } \sum_{\{i, j\} \in E}\left(x_{i}-x_{j}\right)^{2} \text { over } x \in\{ \pm 1\}^{n} .
\end{aligned}
$$

Goemans-Williamson:
Maximize $\sum_{\{i, j\} \in E}\left|y_{i}-y_{j}\right|^{2}$ over $y \in\left(S^{n}\right)^{n}$.
Round: take $\theta \in S^{n}$, set $x_{i}=\operatorname{sgn}\left\langle\theta, y_{i}\right\rangle$.
GW has approximation ratio $\inf _{-1<\rho<0} \frac{1-\frac{2}{\pi} \arcsin (\rho)}{1-\rho} \approx 0.878$.

Theorem

GW-algorithm has approximation ratio of at least

$$
\inf _{-1<\rho<0} \frac{1-\frac{2}{\pi} \arcsin (\rho)}{1-\rho} \approx 0.878
$$

Theorem

GW-algorithm has approximation ratio of at least

$$
\inf _{-1<\rho<0} \frac{1-\frac{2}{\pi} \arcsin (\rho)}{1-\rho} \approx 0.878
$$

$$
\sup _{y \in\left(S^{n}\right)^{n}} \sum_{\{i, j\} \in E}\left|y_{i}-y_{j}\right|^{2} \geq \sup _{x \in\{ \pm 1\}^{n}} \sum_{\{i, j\} \in E}\left(x_{i}-x_{j}\right)^{2}
$$

Effect of rounding: $\rho:=\left\langle y_{i}, y_{j}\right\rangle \Rightarrow\left|y_{i}-y_{j}\right|^{2}=2(1-\rho)$.

$$
\mathbb{E}_{\theta}\left|\operatorname{sgn}\left\langle y_{i}, \theta\right\rangle-\operatorname{sgn}\left\langle y_{j}, \theta\right\rangle\right|^{2} \rightarrow 2\left(1-\frac{2}{\pi} \arcsin (\rho)\right) \text { as } n \rightarrow \infty .
$$

Theorem

GW-algorithm has approximation ratio of at least

$$
\inf _{-1<\rho<0} \frac{1-\frac{2}{\pi} \arcsin (\rho)}{1-\rho} \approx 0.878
$$

$$
\sup _{y \in\left(S^{n}\right)^{n}} \sum_{\{i, j\} \in E}\left|y_{i}-y_{j}\right|^{2} \geq \sup _{x \in\{ \pm 1\}^{n}} \sum_{\{i, j\} \in E}\left(x_{i}-x_{j}\right)^{2}
$$

Effect of rounding: $\rho:=\left\langle y_{i}, y_{j}\right\rangle \Rightarrow\left|y_{i}-y_{j}\right|^{2}=2(1-\rho)$.

$$
\mathbb{E}_{\theta}\left|\operatorname{sgn}\left\langle y_{i}, \theta\right\rangle-\operatorname{sgn}\left\langle y_{j}, \theta\right\rangle\right|^{2} \rightarrow 2\left(1-\frac{2}{\pi} \arcsin (\rho)\right) \text { as } n \rightarrow \infty .
$$

Theorem (Khot-Kindler-Mossel-O'Donnell, Mossel-O'Donnell-Oleszkiewicz) Doing better than 0.878 is Unique-Games-Hard.
$G=(V, E)$ a graph, $V=\{1, \ldots, n\}$.
h a specific 4×4 complex matrix "anti-ferromagnetic Heisenberg interaction" $2^{n} \times 2^{n}$ matrices:

$$
G=(V, E) \text { a graph, } V=\{1, \ldots, n\} .
$$

h a specific 4×4 complex matrix "anti-ferromagnetic Heisenberg interaction" $2^{n} \times 2^{n}$ matrices: for $v_{i}, w_{i} \in \mathbb{C}^{2}$

$$
\begin{aligned}
h_{i, j}\left(\otimes_{k=1}^{n} v_{k}, \otimes_{k=1}^{n} w_{k}\right) & =h\left(v_{i} \otimes v_{j}, w_{i} \otimes w_{j}\right) \prod_{k \neq i, j}\left\langle v_{k}, w_{k}\right\rangle \\
H_{G} & =\sum_{\{i, j\} \in E} h_{i, j} \quad \text { "anti-ferromagnetic Heisenberg model" }
\end{aligned}
$$

$G=(V, E)$ a graph, $V=\{1, \ldots, n\}$.
h a specific 4×4 complex matrix "anti-ferromagnetic Heisenberg interaction" $2^{n} \times 2^{n}$ matrices: for $v_{i}, w_{i} \in \mathbb{C}^{2}$

$$
\begin{aligned}
h_{i, j}\left(\otimes_{k=1}^{n} v_{k}, \otimes_{k=1}^{n} w_{k}\right) & =h\left(v_{i} \otimes v_{j}, w_{i} \otimes w_{j}\right) \prod_{k \neq i, j}\left\langle v_{k}, w_{k}\right\rangle \\
H_{G} & =\sum_{\{i, j\} \in E} h_{i, j} \quad \text { "anti-ferromagnetic Heisenberg model" }
\end{aligned}
$$

Definition energy of $H_{G}: \lambda_{\max }\left(H_{G}\right)$
product-state energy of H_{G} : $\max _{\left|w_{1}\right|, \ldots,\left|w_{n}\right|=1} H_{G}\left(\otimes_{i=1}^{n} w_{i}\right)$
$G=(V, E)$ a graph, $V=\{1, \ldots, n\}$.
h a specific 4×4 complex matrix "anti-ferromagnetic Heisenberg interaction"
$2^{n} \times 2^{n}$ matrices: for $v_{i}, w_{i} \in \mathbb{C}^{2}$

$$
\begin{aligned}
h_{i, j}\left(\otimes_{k=1}^{n} v_{k}, \otimes_{k=1}^{n} w_{k}\right) & =h\left(v_{i} \otimes v_{j}, w_{i} \otimes w_{j}\right) \prod_{k \neq i, j}\left\langle v_{k}, w_{k}\right\rangle \\
H_{G} & =\sum_{\{i, j\} \in E} h_{i, j} \quad \text { "anti-ferromagnetic Heisenberg model" }
\end{aligned}
$$

Definition energy of $H_{G}: \lambda_{\max }\left(H_{G}\right)$
product-state energy of $H_{G}: \max _{\left|w_{1}\right|, \ldots,\left|w_{n}\right|=1} H_{G}\left(\otimes_{i=1}^{n} w_{i}\right)$
Theorem (Hwang, N., Parekh, Thompson, Wright) Approximating these by better than ≈ 0.956 is Unique-Games hard.

Find $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}$ (with $k \leq n$) minimizing $\mathbb{E}\langle f(X), f(Y)\rangle$.
Theorem (Hwang, N., Parekh, Thompson, Wright)
$f(x)=\frac{\left(x_{1}, \ldots, x_{b}\right)}{\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}}}$ is optimal (and uniquely so, up to obvious symmetries).

Find $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}$ (with $k \leq n$) minimizing $\mathbb{E}\langle f(X), f(Y)\rangle$.
Theorem (Hwang, N., Parekh, Thompson, Wright)
$f(x)=\frac{\left(x_{1}, \ldots, x_{k}\right)}{\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}}}$ is optimal (and uniquely so, up to obvious symmetries).
Proof.

1. Dimension reduction: It suffices to solve it for $f: \mathbb{R}^{k} \rightarrow B_{2}^{k}$.

Find $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}$ (with $k \leq n$) minimizing $\mathbb{E}\langle f(X), f(Y)\rangle$.
Theorem (Hwang, N., Parekh, Thompson, Wright)
$f(x)=\frac{\left(x_{1}, \ldots, x_{b}\right)}{\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}}}$ is optimal (and uniquely so, up to obvious symmetries).
Proof.

1. Dimension reduction: It suffices to solve it for $f: \mathbb{R}^{k} \rightarrow B_{2}^{k}$.
2. Shell decomposition: It suffices to solve it for $f: S^{k-1} \rightarrow B_{2}^{k}$.

Find $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}$ (with $k \leq n$) minimizing $\mathbb{E}\langle f(X), f(Y)\rangle$.
Theorem (Hwang, N., Parekh, Thompson, Wright)
$f(x)=\frac{\left(x_{1}, \ldots, x_{k}\right)}{\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}}}$ is optimal (and uniquely so, up to obvious symmetries).
Proof.

1. Dimension reduction: It suffices to solve it for $f: \mathbb{R}^{k} \rightarrow B_{2}^{k}$.
2. Shell decomposition: It suffices to solve it for $f: S^{k-1} \rightarrow B_{2}^{k}$.
3. Spectral analysis: Solve it for $f: S^{k-1} \rightarrow B_{2}^{k}$.

Let $g:[-1,1] \rightarrow \mathbb{R}$ be decreasing. $f: S^{k-1} \rightarrow \mathbb{R}^{k}$.

$$
\begin{aligned}
U_{g} f(u) & :=\int_{S^{k-1}} f(v) g(\langle u, v\rangle) d \sigma^{k-1}(v) . \\
E f U_{g} f & =E\langle f(X), f(Y)\rangle
\end{aligned}
$$

where (X, Y) have density $g(\langle x, y\rangle)$ w.r.t. $\sigma^{k-1} \times \sigma^{k-1}$.

Let $g:[-1,1] \rightarrow \mathbb{R}$ be decreasing. $f: S^{k-1} \rightarrow \mathbb{R}^{k}$.

$$
\begin{aligned}
U_{g} f(u) & :=\int_{S^{k-1}} f(v) g(\langle u, v\rangle) d \sigma^{k-1}(v) . \\
E f U_{g} f & =E\langle f(X), f(Y)\rangle
\end{aligned}
$$

where (X, Y) have density $g(\langle x, y\rangle)$ w.r.t. $\sigma^{k-1} \times \sigma^{k-1}$.

Theorem

The eigenfunctions of U_{g} with minimal eigenvalue are linear.

Let $g:[-1,1] \rightarrow \mathbb{R}$ be decreasing. $f: S^{k-1} \rightarrow \mathbb{R}^{k}$.

$$
\begin{aligned}
U_{g} f(u) & :=\int_{S^{k-1}} f(v) g(\langle u, v\rangle) d \sigma^{k-1}(v) . \\
E f U_{g} f & =E\langle f(X), f(Y)\rangle
\end{aligned}
$$

where (X, Y) have density $g(\langle x, y\rangle)$ w.r.t. $\sigma^{k-1} \times \sigma^{k-1}$.

Theorem

The eigenfunctions of U_{g} with minimal eigenvalue are linear.

Corollary

Among f with $\mathbb{E}|f|^{2} \leq 1, \mathbb{E}\left\langle f, U_{g} f\right\rangle$ is minimized by $f(x)=x=\frac{x}{|x|}$.

Let $g:[-1,1] \rightarrow \mathbb{R}$ be decreasing. $f: S^{k-1} \rightarrow \mathbb{R}^{k}$.

$$
\begin{aligned}
U_{g} f(u) & :=\int_{S^{k-1}} f(v) g(\langle u, v\rangle) d \sigma^{k-1}(v) . \\
E f U_{g} f & =E\langle f(X), f(Y)\rangle
\end{aligned}
$$

where (X, Y) have density $g(\langle x, y\rangle)$ w.r.t. $\sigma^{k-1} \times \sigma^{k-1}$.

Theorem

The eigenfunctions of U_{g} with minimal eigenvalue are linear.

Corollary

Among f with $\mathbb{E}|f|^{2} \leq 1, \mathbb{E}\left\langle f, U_{g} f\right\rangle$ is minimized by $f(x)=x=\frac{x}{|x|}$.
Proof.
Shur's lemma implies that eigenfunctions are spherical harmonics, so need to compute $\frac{U_{f} f(v)}{f(v)}$ for spherical harmonics f. Gegenbauer polynomials + NIST Handbook.

To handle $f: \mathbb{R}^{k} \rightarrow B_{2}^{k}$, it suffices to handle $f: S^{k-1} \rightarrow B_{2}^{k}$.

[^0]
Abstract

 -To handle $f: \mathbb{R}^{k} \rightarrow B_{2}^{k}$, it suffices to handle $f: S^{k-1} \rightarrow B_{2}^{k}$.

$$
\begin{aligned}
c(r, s) & =\mathbb{E}[\langle f(X), f(Y)\rangle| | X|=r,|Y|=s] \\
e(r) & =\mathbb{E}[f(X)| | X \mid=r]
\end{aligned}
$$

To handle $f: \mathbb{R}^{k} \rightarrow B_{2}^{k}$, it suffices to handle $f: S^{k-1} \rightarrow B_{2}^{k}$.

$$
\begin{gathered}
c(r, s)=\mathbb{E}[\langle f(X), f(Y)\rangle| | X|=r,|Y|=s] \\
e(r)=\mathbb{E}[f(X)| | X \mid=r] \\
\mathbb{E}\langle f(X), f(Y)\rangle=\mathbb{E} c(R, S) \geq \mathbb{E}\left[\langle e(R), e(S)\rangle+\lambda_{1}^{R, S}\right] \geq \mathbb{E} \lambda_{1}^{R, S} .
\end{gathered}
$$

To handle $f: \mathbb{R}^{k} \rightarrow B_{2}^{k}$, it suffices to handle $f: S^{k-1} \rightarrow B_{2}^{k}$.

$$
\begin{gathered}
c(r, s)=\mathbb{E}[\langle f(X), f(Y)\rangle| | X|=r,|Y|=s] \\
e(r)=\mathbb{E}[f(X)| | X \mid=r] \\
\mathbb{E}\langle f(X), f(Y)\rangle=\mathbb{E} c(R, S) \geq \mathbb{E}\left[\langle e(R), e(S)\rangle+\lambda_{1}^{R, S}\right] \geq \mathbb{E} \lambda_{1}^{R, S} .
\end{gathered}
$$

Equality if $f(x)=\frac{x}{|x|}$.

To handle $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}$, it suffices to handle $f: \mathbb{R}^{k} \rightarrow B_{2}^{k}$.

To handle $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}$, it suffices to handle $f: \mathbb{R}^{k} \rightarrow B_{2}^{k}$.
Variational: either $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}$ is "effectively k-dimensional" or it can be improved by a perturbation.

To handle $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}$, it suffices to handle $f: \mathbb{R}^{k} \rightarrow B_{2}^{k}$.
Variational: either $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}$ is "effectively k-dimensional" or it can be improved by a perturbation.

$$
\begin{aligned}
f_{\theta}(x) & :=f(x+\theta) \\
e(\theta) & :=\mathbb{E} f_{\theta} \\
J(\theta) & =\mathbb{E}\left\langle f_{\theta}(X), f_{\theta}(Y)\right\rangle
\end{aligned}
$$

Lemma

If $D_{\theta} e(0)=0$ then $D_{\theta, \theta}^{2}(0) \leq 0$. Inequality is strict unless $f_{\alpha \theta}=$ f for all $\alpha \in \mathbb{R}$.

Corollary

If f is optimal and $D_{\theta} e(0)=0$ then $f_{\alpha \theta}=$ f for all $\alpha \in \mathbb{R}$.

To handle $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}$, it suffices to handle $f: \mathbb{R}^{k} \rightarrow B_{2}^{k}$.
Variational: either $f: \mathbb{R}^{n} \rightarrow B_{2}^{k}$ is "effectively k-dimensional" or it can be improved by a perturbation.

$$
\begin{aligned}
f_{\theta}(x) & :=f(x+\theta) \\
e(\theta) & :=\mathbb{E} f_{\theta} \\
J(\theta) & =\mathbb{E}\left\langle f_{\theta}(X), f_{\theta}(Y)\right\rangle
\end{aligned}
$$

Lemma

If $D_{\theta} e(0)=0$ then $D_{\theta, \theta}^{2}(0) \leq 0$. Inequality is strict unless $f_{\alpha \theta}=$ f for all $\alpha \in \mathbb{R}$.

Corollary

If f is optimal and $D_{\theta} e(0)=0$ then $f_{\alpha \theta}=$ f for all $\alpha \in \mathbb{R}$.

Conjecture

If $0<\rho<1$ then $\mathbb{E}\langle f(X), f(Y)\rangle$ is maximized, among functions with $\mathbb{E} f=0$, by
$f(x)=\frac{\left(x_{1}, \ldots, x_{k}\right)}{\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}}}$.

Conjecture

If $0<\rho<1$ then $\mathbb{E}\langle f(X), f(Y)\rangle$ is maximized, among functions with $\mathbb{E} f=0$, by
$f(x)=\frac{\left(x_{1}, \ldots, x_{k}\right)}{\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}}}$.

Question

What about if $\mathbb{E} f=\mu \in B_{2}^{k}$?

Thank you!

[^0]:

