Vector-valued noise stability

Yeongwoo Hwang, Joe Neeman, Ojas Parekh, Kevin Thompson, John Wright

Take two negatively correlated Gaussians: Find $f : \mathbb{R}^n \to [-1, 1]$ minimizing $\mathbb{E}f(X)f(Y)$.

Take two negatively correlated Gaussians: $(X, Y) \sim \mathcal{N} \left(\begin{array}{cc} I_n & \rho I_n \\ \rho I_n & I_n \end{array} \right), \qquad -1 < \rho < 0.$ Find $f : \mathbb{R}^n \to [-1, 1]$ minimizing $\mathbb{E}f(X)f(Y)$. Theorem (Borell '85) $f(x) = \operatorname{sgn} x_1$ is optimal (and uniquely so, up to obvious symmetries).

Take two negatively correlated Gaussians: $(X, Y) \sim \mathcal{N} \left(\begin{array}{cc} I_n & \rho I_n \\ \rho I_n & I_n \end{array} \right), \qquad -1 < \rho < 0.$ Find $f : \mathbb{R}^n \to [-1, 1]$ minimizing $\mathbb{E}f(X)f(Y)$. Theorem (Borell '85) $f(x) = \operatorname{sgn} x_1$ is optimal (and uniquely so, up to obvious symmetries).

 $\mathbb{E}f(X)f(Y) \geq \frac{2}{\pi} \operatorname{arcsin}(\rho).$

Take two negatively correlated Gaussians: Find $f : \mathbb{R}^n \to [-1, 1]$ minimizing $\mathbb{E}f(X)f(Y)$. Theorem (Borell '85) $f(x) = \operatorname{sgn} x_1$ is optimal (and uniquely so, up to obvious symmetries).

Find $f : \mathbb{R}^n \to B_2^k$ (with $k \leq n$) minimizing $\mathbb{E}\langle f(X), f(Y) \rangle$.


```
\mathbb{E}f(X)f(Y) \geq \frac{2}{\pi} \operatorname{arcsin}(\rho).
```

Take two negatively correlated Gaussians: Find $f : \mathbb{R}^n \to [-1, 1]$ minimizing $\mathbb{E}f(X)f(Y)$. Theorem (Borell '85) $f(x) = \operatorname{sgn} x_1$ is optimal (and uniquely so, up to obvious symmetries).

Find $f : \mathbb{R}^n \to B_2^k$ (with $k \leq n$) minimizing $\mathbb{E}\langle f(X), f(Y) \rangle$. Theorem (Hwang, N., Parekh, Thompson, Wright) $f(x) = \frac{(x_1, \dots, x_k)}{\sqrt{x_1^2 + \dots + x_k^2}}$ is optimal (and uniquely so, up to obvious symmetries).


```
\mathbb{E}f(X)f(Y) \geq \frac{2}{\pi} \operatorname{arcsin}(\rho).
```

G = (V, E) a graph, $V = \{1, ..., n\}$. Maximize $\sum_{\{i,j\}\in E} (x_i - x_j)^2$ over $x \in \{\pm 1\}^n$.

G = (V, E) a graph, $V = \{1, ..., n\}$. Maximize $\sum_{\{i,j\}\in E} (x_i - x_j)^2$ over $x \in \{\pm 1\}^n$.

Goemans-Williamson: Maximize $\sum_{\{i,j\}\in E} |y_i - y_j|^2$ over $y \in (S^n)^n$. Round: take $\theta \in S^n$, set $x_i = \operatorname{sgn}\langle \theta, y_i \rangle$.

G = (V, E) a graph, $V = \{1, ..., n\}$. Maximize $\sum (x_i - x_j)^2$ over $x \in \{\pm 1\}^n$. *{i,j}*∈*E*

Goemans-Williamson: Maximize $\sum |y_i - y_j|^2$ over $y \in (S^n)^n$. $\{i,j\} \in E$ Round: take $\theta \in S^n$, set $x_i = \operatorname{sgn}\langle \theta, y_i \rangle$.

GW has approximation ratio $\inf_{-1<\rho<0} \frac{1-\frac{2}{\pi} \operatorname{arcsin}(\rho)}{1-\rho} \approx 0.878.$

Theorem GW-algorithm has approximation ratio of at least

$\inf_{\substack{-1 < \rho < 0}} \frac{1 - \frac{2}{\pi} \operatorname{arcsin}(\rho)}{1 - \rho} \approx 0.878.$

Theorem GW-algorithm has approximation ratio of at least

$$\sup_{y \in (S^n)^n} \sum_{\{i,j\} \in E} |y_i - y_j|^2 \ge$$

Effect of rounding: $\rho := \langle y_i, y_j \rangle \Rightarrow |y_i - y_j$
 $\mathbb{E}_{\theta} |\operatorname{sgn} \langle y_i, \theta \rangle - \operatorname{sgn} \langle y_j, \theta \rangle |^2 \rightarrow$

 $\inf_{\substack{-1 < \rho < 0}} \frac{1 - \frac{2}{\pi} \arcsin(\rho)}{1 - \rho} \approx 0.878.$

 $\geq \sup_{x \in \{\pm 1\}^n} \sum_{\{i,j\} \in E} (x_i - x_j)^2$ $|^2 = 2(1 - \rho).$ $2(1-\frac{2}{\pi}\operatorname{arcsin}(\rho)) \text{ as } n \to \infty.$

Theorem GW-algorithm has approximation ratio of at least $\inf_{\substack{-1 < \rho < 0}} \frac{1 - \frac{2}{\pi} \operatorname{arcsin}(\rho)}{1 - \rho} \approx 0.878.$

$$\sup_{y \in (S^n)^n} \sum_{\{i,j\} \in E} |y_i - y_j|^2 \ge \sup_{x \in \{\pm 1\}^n} \sum_{\{i,j\} \in E} (x_i - x_j)^2$$

Effect of rounding: $\rho := \langle y_i, y_j \rangle \Rightarrow |y_i - y_j|^2 = 2(1 - \rho).$
$$\mathbb{E}_{\theta} |\operatorname{sgn} \langle y_i, \theta \rangle - \operatorname{sgn} \langle y_j, \theta \rangle |^2 \rightarrow 2(1 - \frac{2}{\pi} \operatorname{arcsin}(\rho)) \text{ as } n \to \infty.$$

Theorem (Khot-Kindler-Mossel-O'Donnell, Mossel-O'Donnell-Oleszkiewicz) Doing better than 0.878 is Unique-Games-Hard.

G = (V, E) a graph, $V = \{1, ..., n\}$. h a specific 4×4 complex matrix "anti-ferromagnetic Heisenberg interaction" $2^n \times 2^n$ matrices:

G = (V, E) a graph, $V = \{1, ..., n\}$. h a specific 4×4 complex matrix "anti-ferromagnetic Heisenberg interaction" $2^n \times 2^n$ matrices: for $v_i, w_i \in \mathbb{C}^2$

 $h_{i,j}(\bigotimes_{k=1}^{n} V_k, \bigotimes_{k=1}^{n} W_k) = h(V_i \otimes V_j, W_i \otimes V_j)$

$$H_G = \sum_{\{i,j\}\in E} h_{i,j} \quad \text{"a}$$

$$N_j$$
) $\prod_{k\neq i,j} \langle V_k, W_k \rangle$

anti-ferromagnetic Heisenberg model"

G = (V, E) a graph, $V = \{1, ..., n\}$. h a specific 4×4 complex matrix "anti-ferromagnetic Heisenberg interaction" $2^n \times 2^n$ matrices: for $v_i, w_i \in \mathbb{C}^2$

 $h_{i,j}(\otimes_{k=1}^{n} V_k, \otimes_{k=1}^{n} W_k) = h(V_i \otimes V_j, W_i \otimes V_j)$

$$H_G = \sum_{\{i,j\}\in E} h_{i,j} \quad \text{``a}$$

Definition energy of H_G : $\lambda_{max}(H_G)$ product-state energy of H_G : max_{|W1|,...,|Wn|=1} $H_G(\bigotimes_{i=1}^n W_i)$

$$N_j$$
) $\prod_{k \neq i,j} \langle V_k, W_k \rangle$

anti-ferromagnetic Heisenberg model"

G = (V, E) a graph, $V = \{1, ..., n\}$. h a specific 4×4 complex matrix "anti-ferromagnetic Heisenberg interaction" $2^n \times 2^n$ matrices: for $v_i, w_i \in \mathbb{C}^2$

 $h_{i,j}(\otimes_{k=1}^{n} V_k, \otimes_{k=1}^{n} W_k) = h(V_i \otimes V_j, W_i \otimes V_j)$

$$H_G = \sum_{\{i,j\}\in E} h_{i,j} \quad \text{"a}$$

Definition energy of H_G : $\lambda_{max}(H_G)$ product-state energy of H_G : max_{|w1}|,...,|w_n|= Theorem (Hwang, N., Parekh, Thompson Approximating these by better than ≈ 0

$$N_j$$
) $\prod_{k \neq i,j} \langle V_k, W_k \rangle$

anti-ferromagnetic Heisenberg model"

Find $f : \mathbb{R}^n \to B_2^k$ (with $k \le n$) minimizing $\mathbb{E}\langle f(X), f(Y) \rangle$. **Theorem (Hwang, N., Parekh, Thompson, Wright)** $f(x) = \frac{(x_1, \dots, x_k)}{\sqrt{x_1^2 + \dots + x_k^2}}$ is optimal (and uniquely so, up to obvious symmetries).

Find $f : \mathbb{R}^n \to B_2^k$ (with $k \le n$) minimizing $\mathbb{E}\langle f(X), f(Y) \rangle$. **Theorem (Hwang, N., Parekh, Thompson, Wright)** $f(x) = \frac{(x_1, \dots, x_k)}{\sqrt{x_1^2 + \dots + x_k^2}}$ is optimal (and uniquely so, up to obvious symmetries).

Proof.

1. Dimension reduction: It suffices to solve it for $f: \mathbb{R}^k \to B_2^k$.

Find $f : \mathbb{R}^n \to B_2^k$ (with $k \le n$) minimizing $\mathbb{E}\langle f(X), f(Y) \rangle$. **Theorem (Hwang, N., Parekh, Thompson, Wright)** $f(x) = \frac{(x_1, \dots, x_k)}{\sqrt{x_1^2 + \dots + x_k^2}}$ is optimal (and uniquely so, up to obvious symmetries).

Proof.

- 1. Dimension reduction: It suffices to solve it for $f : \mathbb{R}^k \to B_2^k$.
- 2. Shell decomposition: It suffices to solve it for $f: S^{k-1} \to B_2^k$.

olve it for $f : \mathbb{R}^k \to B_2^k$. lve it for $f : S^{k-1} \to B_2^k$.

Find $f : \mathbb{R}^n \to B_2^k$ (with $k \leq n$) minimizing $\mathbb{E}\langle f(X), f(Y) \rangle$. Theorem (Hwang, N., Parekh, Thompson, Wright) $f(x) = \frac{(x_1, \dots, x_k)}{\sqrt{x_1^2 + \dots + x_k^2}}$ is optimal (and uniquely so, up to obvious symmetries).

Proof.

- 1. Dimension reduction: It suffices to solve it for $f: \mathbb{R}^k \to B_2^k$.
- 2. Shell decomposition: It suffices to solve it for $f: S^{k-1} \to B_2^k$.
- 3. Spectral analysis: Solve it for $f: S^{k-1} \to B_2^k$.

Spectral argument

Let $g: [-1,1] \to \mathbb{R}$ be decreasing. $f: S^{k-1} \to \mathbb{R}^k$. $U_g f(u) := \int_{S^{k-1}} f(v) g(\langle u, v \rangle) d\sigma^{k-1}(v).$ $EfU_{q}f = E\langle f(X), f(Y) \rangle$

where (X, Y) have density $g(\langle x, y \rangle)$ w.r.t. $\sigma^{k-1} \times \sigma^{k-1}$.

Spectral argument

Let $g: [-1,1] \to \mathbb{R}$ be decreasing. $f: S^{k-1} \to \mathbb{R}^k$. $U_g f(u) := \int_{S^{k-1}} f(v) g(\langle u, v \rangle) d\sigma^{k-1}(v).$ $EfU_q f = E\langle f(X), f(Y) \rangle$ where (X, Y) have density $g(\langle x, y \rangle)$ w.r.t. $\sigma^{k-1} \times \sigma^{k-1}$. Theorem

The eigenfunctions of U_q with minimal eigenvalue are linear.

Spectral argument

Let $g: [-1,1] \to \mathbb{R}$ be decreasing. $f: S^{k-1} \to \mathbb{R}^k$. $U_g f(u) := \int_{S^{k-1}} f(v) g(\langle u, v \rangle) d\sigma^{k-1}(v).$ $EfU_q f = E\langle f(X), f(Y) \rangle$

where (X, Y) have density $g(\langle x, y \rangle)$ w.r.t. $\sigma^{k-1} \times \sigma^{k-1}$.

Theorem The eigenfunctions of U_q with minimal eigenvalue are linear.

Corollary Among f with $\mathbb{E}|f|^2 \leq 1$, $\mathbb{E}\langle f, U_g f \rangle$ is minimized by $f(x) = x = \frac{x}{|x|}$.

Let $g: [-1,1] \to \mathbb{R}$ be decreasing. $f: S^{k-1} \to \mathbb{R}^k$. $U_g f(u) := \int_{S^{k-1}} f(v) g(\langle u, v \rangle) \, d\sigma^{k-1}(v).$ $EfU_q f = E\langle f(X), f(Y) \rangle$

where (X, Y) have density $g(\langle x, y \rangle)$ w.r.t. $\sigma^{k-1} \times \sigma^{k-1}$.

Theorem The eigenfunctions of U_q with minimal eigenvalue are linear.

Corollary Among f with $\mathbb{E}|f|^2 \leq 1$, $\mathbb{E}\langle f, U_q f \rangle$ is minim

Proof. Shur's lemma implies that eigenfunctions are spherical harmonics, so need to compute $\frac{U_g f(v)}{f(v)}$ for spherical harmonics f. Gegenbauer polynomials + NIST Handbook.

nized by
$$f(x) = x = \frac{x}{|x|}$$
.

To handle $f : \mathbb{R}^k \to B_2^k$, it suffices to handle $f : S^{k-1} \to B_2^k$.

To handle $f: \mathbb{R}^k \to B_2^k$, it suffices to handle $f: S^{k-1} \to B_2^k$.

$$C(r, S) = \mathbb{E}\left[\langle f(X), f(X), f(X) \rangle = \mathbb{E}\left[f(X) \mid X \rangle\right]$$

 $f(Y) \rangle \Big| |X| = r, |Y| = s \Big]$ $|X| = r \Big]$

To handle $f: \mathbb{R}^k \to B_2^k$, it suffices to handle $f: S^{k-1} \to B_2^k$.

$$c(r,s) = \mathbb{E}\left[\langle f(X), f(X),$$

- $f(Y) \rangle \Big| |X| = r, |Y| = s \Big]$ $|X| = r \Big]$
- $\mathbb{E}\langle f(X), f(Y) \rangle = \mathbb{E}c(R, S) \geq \mathbb{E}\left[\langle e(R), e(S) \rangle + \lambda_1^{R,S} \right] \geq \mathbb{E}\lambda_1^{R,S}.$

To handle $f: \mathbb{R}^k \to B_2^k$, it suffices to handle $f: S^{k-1} \to B_2^k$.

$$C(r, s) = \mathbb{E}\left[\langle f(X), f(X)$$

Equality if $f(x) = \frac{x}{|x|}$.

- $f(Y) \rangle \left| \begin{array}{c} |X| = r, |Y| = s \end{array} \right|$ $|X| = r \right|$
- $\mathbb{E}\langle f(X), f(Y) \rangle = \mathbb{E}c(R, S) \geq \mathbb{E}\left| \langle e(R), e(S) \rangle + \lambda_1^{R, S} \right| \geq \mathbb{E}\lambda_1^{R, S}.$

To handle $f : \mathbb{R}^n \to B_2^k$, it suffices to handle $f : \mathbb{R}^k \to B_2^k$.

To handle $f: \mathbb{R}^n \to B_2^k$, it suffices to handle $f: \mathbb{R}^k \to B_2^k$. Variational: either $f: \mathbb{R}^n \to B_2^k$ is "effectively k-dimensional" or it can be improved by a perturbation.

To handle $f: \mathbb{R}^n \to B_2^k$, it suffices to handle $f: \mathbb{R}^k \to B_2^k$. Variational: either $f: \mathbb{R}^n \to B_2^k$ is "effectively k-dimensional" or it can be improved by a perturbation.

> $f_{\theta}(\mathbf{X}) := f(\mathbf{X} + \theta)$ $e(\theta) := \mathbb{E}f_{\theta}$

Lemma If $D_{\theta}e(0) = 0$ then $D^2_{\theta,\theta}J(0) \leq 0$. Inequality is strict unless $f_{\alpha\theta} = f$ for all $\alpha \in \mathbb{R}$. Corollary If f is optimal and $D_{\theta}e(0) = 0$ then $f_{\alpha\theta} = f$ for all $\alpha \in \mathbb{R}$.

 $J(\theta) = \mathbb{E}\langle f_{\theta}(X), f_{\theta}(Y) \rangle$

To handle $f: \mathbb{R}^n \to B_2^k$, it suffices to handle $f: \mathbb{R}^k \to B_2^k$. Variational: either $f: \mathbb{R}^n \to B_2^k$ is "effectively k-dimensional" or it can be improved by a perturbation.

> $f_{\theta}(\mathbf{X}) := f(\mathbf{X} + \theta)$ $e(\theta) := \mathbb{E}f_{\theta}$

Lemma If $D_{\theta}e(0) = 0$ then $D^2_{\theta,\theta}J(0) \leq 0$. Inequality is strict unless $f_{\alpha\theta} = f$ for all $\alpha \in \mathbb{R}$. Corollary If f is optimal and $D_{\theta}e(0) = 0$ then $f_{\alpha\theta} = f$ for all $\alpha \in \mathbb{R}$.

 $J(\theta) = \mathbb{E}\langle f_{\theta}(X), f_{\theta}(Y) \rangle$

Open problems

Conjecture If $0 < \rho < 1$ then $\mathbb{E}\langle f(X), f(Y) \rangle$ is maximized, among functions with $\mathbb{E}f = 0$, by $f(x) = \frac{(x_1, \dots, x_k)}{\sqrt{x_1^2 + \dots + x_k^2}}.$

Conjecture If $0 < \rho < 1$ then $\mathbb{E}\langle f(X), f(Y) \rangle$ is maximized, among functions with $\mathbb{E}f = 0$, by $f(x) = \frac{(x_1, \dots, x_k)}{\sqrt{x_1^2 + \dots + x_k^2}}.$

Question What about if $\mathbb{E}f = \mu \in B_2^k$?

Thank you!

10