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Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The classical Poincaré inequality
Poincaré, 1890: for any bounded domain Ω ⊂ Rn there exists a constant
C > 0 such that for every nice f with

∫
Ω
f = 0,∫

Ω

f2 ≤ C

∫
Ω

|∇f |2. (1)

By spectral theory, the smallest constant C = CP (Ω) for which (1) holds
is 1

λ1(−∆) , where λ1(−∆) is the smallest nonzero eigenvalue of the
(Neumann) Laplacian on L2(Ω).
Payne-Weinberger, 1960: if Ω is convex, then CP (Ω) ≤ diam(Ω)2

π2 .

In general, a probability measure µ on a manifold is said to satisfy a
Poincaré inequality with constant C if X is a random vector distributed
uniformly on Ω and f is any sufficiently nice function,∫

f2 dµ−
(∫

f dµ

)2

≤ C

∫
|∇f |2 dµ.
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Dynamic Γ-calculus and the main result

A general framework for proving functional inequalities

The main ingredients in the Poincaré inequality are a (finite) measure
space, in this case (Ω, dx), and a notion of “energy density” of a function
on Ω, in this case f 7→ |∇f |2.

The energy density is related, via integration by parts, to the
second-order differential operator ∆.

∆ generates a semigroup (Pt)t≥0 of contraction operators on L1(Ω),
which acts to dissipate the energy. The Pt satisfy the equation

∂tPt = ∆Pt,

which means that formally Pt = et∆.

Generalizing this framework gives Γ-calculus.
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Γ-calculus (Bakry-Émery, 1983; Bakry-Gentil-Ledoux, 2014)

In the Bakry-Émery framework, the basic ingredients are a measure space
(Ω, µ) and a semigroup of contraction operators (Pt)t≥0 on L1(µ), which
are assumed to preserve µ (i.e., (Pt)∗µ = µ for all t) and satisfy some
other natural conditions.

The infinitesimal generator of the semigroup is defined as
L = limt→0+

Pt−I
t . Morally speaking (and rigorously, in many

situations), we have the formula Pt = etL.

We usually assume that the semigroup Pt is reversible (i.e., self-adjoint
on L2(µ)), in which case so is L. When µ is finite (and normalized to a
probability measure), another convenient assumption is that Pt is
ergodic: Pt(f)(x) →

∫
f dµ for (almost) all x ∈ Ω as t → ∞.

Commonly, Pt is the semigroup associated to the law of an Itô diffusion,
in which case L is a second-order differential operator. This is a helpful
example to keep in mind, though the formalism is more general.
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The “squares of fields” Γ and Γ2

Given the generator L, we define the carré du champ Γ(f, g) as

Γ(f, g) =
1

2
(L(fg)− f(Lg)− (Lf)g) .

If L is a second-order derivative, then Γ(f, g) will be a product of
first-order derivatives of f and g. We usually abbreviate Γ(f, f) by Γ(f).

The fact that Pt preserves µ implies that
∫
(Lf) dµ = 0 for reasonable f .

Restricting to the reversible case yields the integration by parts formula∫
Γ(f, g) dµ = −1

2

∫
((Lf)g + (Lg)f) dµ = −

∫
(Lf)g dµ.

The carré du champ itéré Γ2(f, g) is similarly defined as

Γ2(f, g) =
1

2
(L(Γ(f, g))− Γ(f, Lg)− Γ(Lf, g)) ; Γ2(f) = Γ2(f, f)

Again integrating by parts, we see that under reversibility,∫
Γ2(f, g) dµ =

∫
(Lf)(Lg) dµ.
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Γ-calculus: examples
(Ω, g) is a Riemannian manifold, µ = d volg, and L = Lg is the
Laplace-Beltrami operator; then Γ(f) = g(∇f,∇f) and

Γ2(f) = ∥∇2f∥2 +Ric(∇f,∇f).

Ω = Rn with a smooth positive density dµ = e−W dx. Then
Γ(f) = |∇f |2, and L = Lµ is chosen to satisfy integration by parts:

−
∫
(Lf) · g dµ =

∫
Γ(f, g) dµ ⇒ L = ∆+∇W · ∇.

In this case Γ2(f) = ∥∇2f∥2 + ⟨(∇2W )∇f,∇f⟩.

Ω = G is a (d-regular, say) graph with counting measure, L is the
graph Laplacian, and Γ(f) is the energy of f :

Γ(f)(v) =
1

d

∑
w∼v

(f(w)− f(v))2.

Γ2 is an absolute mess... (see Klartag-Kozma-Ralli-Tetali, 2016)
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The curvature condition CD(K,∞)

Definiton

We say that (Ω, µ,Γ) satisfies the curvature condition CD(K,∞) if

Γ2(f) ≥ KΓ(f)

pointwise for all f ∈ Dom(Γ2).

Can be generalized to the curvature-dimension condition CD(K,N) for
N < ∞, and in other directions as well.

The “ideal” methodology for applying Γ-calculus is to show that one’s
setting of interest satisfies some CD(K,N) condition, and then argue
that CD(K,N) implies one’s desired inequality solely from the algebra of
the Pt, L, Γ, and Γ2 operators.

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The curvature condition CD(K,∞)

Definiton

We say that (Ω, µ,Γ) satisfies the curvature condition CD(K,∞) if

Γ2(f) ≥ KΓ(f)

pointwise for all f ∈ Dom(Γ2).

Can be generalized to the curvature-dimension condition CD(K,N) for
N < ∞, and in other directions as well.

The “ideal” methodology for applying Γ-calculus is to show that one’s
setting of interest satisfies some CD(K,N) condition, and then argue
that CD(K,N) implies one’s desired inequality solely from the algebra of
the Pt, L, Γ, and Γ2 operators.

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The curvature condition CD(K,∞)

Definiton

We say that (Ω, µ,Γ) satisfies the curvature condition CD(K,∞) if

Γ2(f) ≥ KΓ(f)

pointwise for all f ∈ Dom(Γ2).

Can be generalized to the curvature-dimension condition CD(K,N) for
N < ∞, and in other directions as well.

The “ideal” methodology for applying Γ-calculus is to show that one’s
setting of interest satisfies some CD(K,N) condition, and then argue
that CD(K,N) implies one’s desired inequality solely from the algebra of
the Pt, L, Γ, and Γ2 operators.

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The curvature condition CD(K,∞) - examples

CD(K,∞)

Γ2(f) ≥ KΓ(f)

The sphere of radius r with the standard Riemannian metric has
Ric(rSn) = 1

r2 In, so

Γ2(f) = ∥∇2f∥2 +Ric(rSn)(∇f,∇f) ≥ 1

r2
|∇f |2 =

1

r2
Γ(f),

i.e., rSn satisfies CD( 1
r2 ,∞).

If Ω = (Rn, µ, Lµ) where dµ = e−W dx is log-concave,

Γ2(f) = ∥∇2f∥2 + ⟨(∇2W )∇f,∇f⟩ ≥ 0,

so Ω satisfies CD(0,∞).

If ∇2W ≥ KIn (e.g., the Gaussian), then Ω satisfies CD(K,∞).
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Applications of Γ-calculus

Innumerable applications to functional and probabilistic inequalities;
here’s just a sample:

CD(K,∞) ⇒ Poincaré, log-Sobolev, Sobolev, transport-entropy,
HWI, ...

Also integrated forms of these inequalities: hypercontractivity,
exponential decay of entropy, reverse Hölder inequality for
eigenvectors...

Equivalence (up to universal constants) of isoperimetry, spectral
gap, and exponential concentration under CD(0,∞) (Ledoux 2004,
E. Milman 2009).
Stochastic localization: bound the isoperimetric constant of an
isotropic log-concave measure by decomposing it into
CD(K,∞)-pieces (Eldan 2015, Lee-Vempala 2017, Chen 2021)
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An example functional inequality: CD(K,∞) ⇒ Poin( 1
K )

Theorem

Suppose (Ω, µ,Γ) satisfies the curvature condition CD(K,∞). Then Ω
satisfies a Poincaré inequality with constant 1

K .
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An example functional inequality: CD(K,∞) ⇒ Poin( 1
K )

Main lemma
For 0 < s < t,

d

ds
Pt−s(Ps(f)

2) = −Pt−s(Γ(Ps(f))) (2)

d

ds
Pt−s(Γ(Ps(f))) = −Pt−s(Γ2(Ps(f))) (3)
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An example functional inequality: CD(K,∞) ⇒ Poin( 1
K )

Main lemma
For 0 < s < t,

d

ds
Pt−s(Ps(f)

2) = −Pt−s(Γ(Ps(f))) (2)

d

ds
Pt−s(Γ(Ps(f))) = −Pt−s(Γ2(Ps(f))) (3)

The proof of the lemma follows directly from d
dsPs = LPs = PsL and

the definitions of Γ,Γ2.
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An example functional inequality: CD(K,∞) ⇒ Poin( 1
K )

Main lemma
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ds
Pt−s(Ps(f)

2) = −Pt−s(Γ(Ps(f))) (2)

d

ds
Pt−s(Γ(Ps(f))) = −Pt−s(Γ2(Ps(f))) (3)

Integrating (2) over time, we get Pt(f
2)− Pt(f)

2 =
∫ t

0
Pt−s(Γ(Ps(f))).
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An example functional inequality: CD(K,∞) ⇒ Poin( 1
K )

Main lemma
For 0 < s < t,

d

ds
Pt−s(Ps(f)

2) = −Pt−s(Γ(Ps(f))) (2)

d

ds
Pt−s(Γ(Ps(f))) = −Pt−s(Γ2(Ps(f))) (3)

Integrating (2) over time, we get Pt(f
2)− Pt(f)

2 =
∫ t

0
Pt−s(Γ(Ps(f))).

Integrating over dµ, sending t to ∞, and using
∫
Ps(·) dµ =

∫
(·) dµ,

limt→∞ Pt(f) =
∫
f dµ gives

Corollary 1 ∫
f2 dµ−

(∫
f dµ

)2

=

∫ ∞

0

dt

∫
Ω

Γ(Pt(f)) dµ (4)
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An example functional inequality: CD(K,∞) ⇒ Poin( 1
K )

Main lemma
For 0 < s < t,

d

ds
Pt−s(Ps(f)

2) = −Pt−s(Γ(Ps(f))) (2)

d

ds
Pt−s(Γ(Ps(f))) = −Pt−s(Γ2(Ps(f))) (3)

Let Λ(s) = Pt−s(Γ(Ps(f))); then by (3) and the assumption of
CD(K,∞), Λ′(s) ≤ −KΛ(s),
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An example functional inequality: CD(K,∞) ⇒ Poin( 1
K )

Main lemma
For 0 < s < t,

d

ds
Pt−s(Ps(f)

2) = −Pt−s(Γ(Ps(f))) (2)

d

ds
Pt−s(Γ(Ps(f))) = −Pt−s(Γ2(Ps(f))) (3)

Let Λ(s) = Pt−s(Γ(Ps(f))); then by (3) and the assumption of
CD(K,∞), Λ′(s) ≤ −KΛ(s), i.e., Λ(t) ≤ e−KtΛ(0), yielding

Corollary 2

Γ(Pt(f)) ≤ e−KtPt(Γ(f))
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CD(K,∞) ⇒ Poin( 1
K ), continued

We have seen:

Corollary 1 ∫
f2 dµ−

(∫
f dµ

)2

=

∫ ∞

0

dt

∫
Ω

Γ(Pt(f)) dµ

Corollary 2

Γ(Pt(f)) ≤ e−KtPt(Γ(f))

(Corollary 2 is where we used the CD(K,∞) assumption. In fact, it’s
essentially equivalent to it.)

Combining these two and again using
∫
Pt(·) dµ =

∫
(·) dµ, we obtain∫

f2 dµ−
(∫

f dµ

)2

≤
∫ ∞

0

(
e−Kt

∫
Ω

Γ(f) dµ

)
=

1

K

∫
Ω

Γ(f) dµ

which is what we wanted.
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The adjoint to the heat semigroup
Let ρ be a probability density on Rn, and let (Pt)t≥0 be the usual heat
semigroup; we scale time so that the generator is ∆

2 . Define

ρt := Pt(ρ) = ρ ∗ γt,

where γt(x) = (2πt)−n/2e−|x|2/2t is the density of the standard Gaussian
of covariance

√
tIn. ρt satisfies the classical heat equation ∂tρt =

∆
2 ρt.

For any t > 0, Pt maps L2(ρt) into L2(ρ):∫
(Pt(f))

2 · ρ ≤
∫

Pt(f
2)ρ =

∫
f2 · Pt(ρ) =

∫
f2 ρt < ∞

Thus we can define Qt : L
2(ρ) → L2(ρt) as the adjoint to Pt: for any

f ∈ L2(ρ), g ∈ L2(ρt),∫
Qt(f)g · ρt =

∫
fPt(g) · ρ =

∫
Pt(fρ)g ⇒ Qt(f) =

Pt(ρf)

Pt(ρ)
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Prékopa-Leindler: if ρ is log-concave then so is ρt.

For any t > 0, Pt maps L2(ρt) into L2(ρ):∫
(Pt(f))

2 · ρ ≤
∫

Pt(f
2)ρ =

∫
f2 · Pt(ρ) =

∫
f2 ρt < ∞

Thus we can define Qt : L
2(ρ) → L2(ρt) as the adjoint to Pt: for any

f ∈ L2(ρ), g ∈ L2(ρt),∫
Qt(f)g · ρt =

∫
fPt(g) · ρ =

∫
Pt(fρ)g ⇒ Qt(f) =

Pt(ρf)

Pt(ρ)

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The adjoint to the heat semigroup
Let ρ be a probability density on Rn, and let (Pt)t≥0 be the usual heat
semigroup; we scale time so that the generator is ∆

2 . Define

ρt := Pt(ρ) = ρ ∗ γt,

where γt(x) = (2πt)−n/2e−|x|2/2t is the density of the standard Gaussian
of covariance

√
tIn. ρt satisfies the classical heat equation ∂tρt =

∆
2 ρt.

For any t > 0, Pt maps L2(ρt) into L2(ρ):∫
(Pt(f))

2 · ρ

≤
∫

Pt(f
2)ρ =

∫
f2 · Pt(ρ) =

∫
f2 ρt < ∞

Thus we can define Qt : L
2(ρ) → L2(ρt) as the adjoint to Pt: for any

f ∈ L2(ρ), g ∈ L2(ρt),∫
Qt(f)g · ρt =

∫
fPt(g) · ρ =

∫
Pt(fρ)g ⇒ Qt(f) =

Pt(ρf)

Pt(ρ)

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The adjoint to the heat semigroup
Let ρ be a probability density on Rn, and let (Pt)t≥0 be the usual heat
semigroup; we scale time so that the generator is ∆

2 . Define

ρt := Pt(ρ) = ρ ∗ γt,

where γt(x) = (2πt)−n/2e−|x|2/2t is the density of the standard Gaussian
of covariance

√
tIn. ρt satisfies the classical heat equation ∂tρt =

∆
2 ρt.

For any t > 0, Pt maps L2(ρt) into L2(ρ):∫
(Pt(f))

2 · ρ ≤
∫

Pt(f
2)ρ

=

∫
f2 · Pt(ρ) =

∫
f2 ρt < ∞

Thus we can define Qt : L
2(ρ) → L2(ρt) as the adjoint to Pt: for any

f ∈ L2(ρ), g ∈ L2(ρt),∫
Qt(f)g · ρt =

∫
fPt(g) · ρ =

∫
Pt(fρ)g ⇒ Qt(f) =

Pt(ρf)

Pt(ρ)

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The adjoint to the heat semigroup
Let ρ be a probability density on Rn, and let (Pt)t≥0 be the usual heat
semigroup; we scale time so that the generator is ∆

2 . Define

ρt := Pt(ρ) = ρ ∗ γt,

where γt(x) = (2πt)−n/2e−|x|2/2t is the density of the standard Gaussian
of covariance

√
tIn. ρt satisfies the classical heat equation ∂tρt =

∆
2 ρt.

For any t > 0, Pt maps L2(ρt) into L2(ρ):∫
(Pt(f))

2 · ρ ≤
∫

Pt(f
2)ρ =

∫
f2 · Pt(ρ)

=

∫
f2 ρt < ∞

Thus we can define Qt : L
2(ρ) → L2(ρt) as the adjoint to Pt: for any

f ∈ L2(ρ), g ∈ L2(ρt),∫
Qt(f)g · ρt =

∫
fPt(g) · ρ =

∫
Pt(fρ)g ⇒ Qt(f) =

Pt(ρf)

Pt(ρ)

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The adjoint to the heat semigroup
Let ρ be a probability density on Rn, and let (Pt)t≥0 be the usual heat
semigroup; we scale time so that the generator is ∆

2 . Define

ρt := Pt(ρ) = ρ ∗ γt,

where γt(x) = (2πt)−n/2e−|x|2/2t is the density of the standard Gaussian
of covariance

√
tIn. ρt satisfies the classical heat equation ∂tρt =

∆
2 ρt.

For any t > 0, Pt maps L2(ρt) into L2(ρ):∫
(Pt(f))

2 · ρ ≤
∫

Pt(f
2)ρ =

∫
f2 · Pt(ρ) =

∫
f2 ρt < ∞

Thus we can define Qt : L
2(ρ) → L2(ρt) as the adjoint to Pt: for any

f ∈ L2(ρ), g ∈ L2(ρt),∫
Qt(f)g · ρt =

∫
fPt(g) · ρ =

∫
Pt(fρ)g ⇒ Qt(f) =

Pt(ρf)

Pt(ρ)

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The adjoint to the heat semigroup
Let ρ be a probability density on Rn, and let (Pt)t≥0 be the usual heat
semigroup; we scale time so that the generator is ∆

2 . Define

ρt := Pt(ρ) = ρ ∗ γt,

where γt(x) = (2πt)−n/2e−|x|2/2t is the density of the standard Gaussian
of covariance

√
tIn. ρt satisfies the classical heat equation ∂tρt =

∆
2 ρt.

For any t > 0, Pt maps L2(ρt) into L2(ρ):∫
(Pt(f))

2 · ρ ≤
∫

Pt(f
2)ρ =

∫
f2 · Pt(ρ) =

∫
f2 ρt < ∞

Thus we can define Qt : L
2(ρ) → L2(ρt) as the adjoint to Pt: for any

f ∈ L2(ρ), g ∈ L2(ρt),∫
Qt(f)g · ρt

=

∫
fPt(g) · ρ =

∫
Pt(fρ)g ⇒ Qt(f) =

Pt(ρf)

Pt(ρ)

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The adjoint to the heat semigroup
Let ρ be a probability density on Rn, and let (Pt)t≥0 be the usual heat
semigroup; we scale time so that the generator is ∆

2 . Define

ρt := Pt(ρ) = ρ ∗ γt,

where γt(x) = (2πt)−n/2e−|x|2/2t is the density of the standard Gaussian
of covariance

√
tIn. ρt satisfies the classical heat equation ∂tρt =

∆
2 ρt.

For any t > 0, Pt maps L2(ρt) into L2(ρ):∫
(Pt(f))

2 · ρ ≤
∫

Pt(f
2)ρ =

∫
f2 · Pt(ρ) =

∫
f2 ρt < ∞

Thus we can define Qt : L
2(ρ) → L2(ρt) as the adjoint to Pt: for any

f ∈ L2(ρ), g ∈ L2(ρt),∫
Qt(f)g · ρt =

∫
fPt(g) · ρ

=

∫
Pt(fρ)g ⇒ Qt(f) =

Pt(ρf)

Pt(ρ)

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The adjoint to the heat semigroup
Let ρ be a probability density on Rn, and let (Pt)t≥0 be the usual heat
semigroup; we scale time so that the generator is ∆

2 . Define

ρt := Pt(ρ) = ρ ∗ γt,

where γt(x) = (2πt)−n/2e−|x|2/2t is the density of the standard Gaussian
of covariance

√
tIn. ρt satisfies the classical heat equation ∂tρt =

∆
2 ρt.

For any t > 0, Pt maps L2(ρt) into L2(ρ):∫
(Pt(f))

2 · ρ ≤
∫

Pt(f
2)ρ =

∫
f2 · Pt(ρ) =

∫
f2 ρt < ∞

Thus we can define Qt : L
2(ρ) → L2(ρt) as the adjoint to Pt: for any

f ∈ L2(ρ), g ∈ L2(ρt),∫
Qt(f)g · ρt =

∫
fPt(g) · ρ =

∫
Pt(fρ)g

⇒ Qt(f) =
Pt(ρf)

Pt(ρ)

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The adjoint to the heat semigroup
Let ρ be a probability density on Rn, and let (Pt)t≥0 be the usual heat
semigroup; we scale time so that the generator is ∆

2 . Define

ρt := Pt(ρ) = ρ ∗ γt,

where γt(x) = (2πt)−n/2e−|x|2/2t is the density of the standard Gaussian
of covariance

√
tIn. ρt satisfies the classical heat equation ∂tρt =

∆
2 ρt.

For any t > 0, Pt maps L2(ρt) into L2(ρ):∫
(Pt(f))

2 · ρ ≤
∫

Pt(f
2)ρ =

∫
f2 · Pt(ρ) =

∫
f2 ρt < ∞

Thus we can define Qt : L
2(ρ) → L2(ρt) as the adjoint to Pt: for any

f ∈ L2(ρ), g ∈ L2(ρt),∫
Qt(f)g · ρt =

∫
fPt(g) · ρ =

∫
Pt(fρ)g ⇒ Qt(f) =

Pt(ρf)

Pt(ρ)

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

The “infinitesimal generator” □t

Definiton

Qt : L
2(ρ) → L2(ρt) Qt(f) =

Pt(ρf)
Pt(ρ)

Using the heat equation ∂tPt =
∆
2 Pt, one computes explicitly that

∂tQt(f) =
1
2□tQt(f), where

□t = ∆+ 2(∇ log ρt) · ∇.

The “box operator” is similar to the Laplace operator Lt := Lρt
defined

above, which generates the semigroup with invariant measure ρt, but it’s
not quite the same: in fact, we have

□t = Lt + (∇ log ρt) · ∇.
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The “infinitesimal generator” □t, continued

Note that (Qt)t≥0 isn’t a semigroup; for t ̸= s, Qt and Qs don’t even
operate on the same Hilbert space.

To make everything work properly, for t > s we define

Qt,s(f) =
Pt−s(ρsf)

Pt−s(ρs)
,

so that Qt,s is the adjoint to Pt−s : L
2(ρs) → L2(ρt).

This gives the “inhomogeneous semigroup equation”

Qu,t ◦Qt,s = Qu,s

for s < t < u.

For f ∈ L2(ρs), we get ∂tQt,s(f) = □tQt,sf , as before, and also
∂sQt,s(f) = −Qt,s(□sf).
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Γ-calculus for Qt

Fix t ≥ 0. We can define Γ and Γ2 for □t just as for Lt; one computes
explicitly that Γ□t(f) = |∇f |2 = ΓLt(f), while

Γ□t
2 (f) = ∥∇2f∥2−2⟨(∇2 log ρt)∇f,∇f⟩ = ΓLt

2 (f)−⟨(∇2 log ρt)∇f,∇f⟩.
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Γ-calculus for Qt

Fix t ≥ 0. We can define Γ and Γ2 for □t just as for Lt; one computes
explicitly that Γ□t(f) = |∇f |2 = ΓLt(f), while

Γ□t
2 (f) = ∥∇2f∥2−2⟨(∇2 log ρt)∇f,∇f⟩ = ΓLt

2 (f)−⟨(∇2 log ρt)∇f,∇f⟩.

Recall the computation for the usual Markov semigroup Pt:

Main lemma
For 0 < s < t,

d

ds
Pt−s(Ps(f)

2) = −Pt−s(Γ(Ps(f))) (4)

d

ds
Pt−s(Γ(Ps(f))) = −Pt−s(Γ2(Ps(f))) (5)
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2 (f) = ∥∇2f∥2−2⟨(∇2 log ρt)∇f,∇f⟩ = ΓLt

2 (f)−⟨(∇2 log ρt)∇f,∇f⟩.

For Qt, the same computation gives essentially the same formulas:

Main lemma
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d
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Application: spectral monotonicity

Theorem (Klartag-P., 2021)

Let ρ be a log-concave density on Rn, ρt = ρ ∗ γt. Then CP (ρt) is an
increasing function of t.

We have CP (ρt)
−1 = infφ⊥1

∫
|∇φ|2 ρt∫
f2ρt

= infφ⊥1 Rt(φ), where

Rt(φ) =

∫
Γ(φ) ρt∫
φ2ρt

is the Rayleigh quotient of φ with respect to ρt.

Claim
The “Rayleigh quotient decreases along the heat flow”: that is, for any
φ ⊥ 1 ∈ L2(ρ), Rt(φt) is decreasing, where φt = Qt(φ).

By the definition of CP (ρt)
−1 as an infimum, this clearly implies that

CP (ρt)
−1 is nondecreasing, and so CP (ρt) is nonincreasing.
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Monotonicity of the Rayleigh quotient (1)

Main lemma
For 0 < s < t,

d

ds
Qt,s(φ

2
s) = −Qt,s(Γ(φs))

d

ds
Qt,s(Γ(φs)) = −Qt,s(Γ

□s
2 (φs))

If we integrate both sides against ρt and use
∫
Qt,s(f)ρt =

∫
f ρs, we

can throw out the Qt,s and obtain

Main lemma, integrated

For 0 < s < t,

d

ds

∫
φ2
s ρs = −

∫
Γ(φs) ρs

d

ds

∫
Γ(φs) ρs = −

∫
Γ□s
2 (φs)) ρs
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Monotonicity of the Rayleigh quotient (2)

Main lemma, integrated

For 0 < s < t,

d

ds
∥φs∥2L2(ρs)

= −
∫

Γ(φs) ρs,

d

ds

∫
Γ(φs) ρs = −

∫
Γ□s
2 (φs)) ρs.

Applying this immediately yields

d

ds
Rs(φs) =

(∫
Γ(φs) ρs

)2 − ∥φs∥L2(ρs)

∫
Γ□t
2 (φs)) ρs

∥φs∥4L2(ρs)

.

We need to show that the numerator is always negative.
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Monotonicity of the Rayleigh quotient (3)

To show: (∫
Γ(φs) ρs

)2

− ∥φs∥L2(ρs)

∫
Γ□s
2 (φs)) ρs ≤ 0. (6)

Recall our integration by parts formulas (Ls = Lρs , as before):∫
Γ(φs) ρs =

∫
φs · (−Lsφs) ρs,

∫
ΓLs
2 (φs) ρs =

∫
(−Lsφs)

2 ρs.

By Cauchy-Schwarz, we thus immediately obtain(∫
Γ(φs) ρs

)2

− ∥φs∥L2(ρs)

∫
ΓLs
2 (φs)) ρs ≤ 0.

This is almost, but not quite, the LHS of (6).But recall that

Γ□s
2 (φs)) = ΓLs

2 (φs))− ⟨(∇2 log ρs)φs, φs⟩,

and log-concavity of ρs implies that the second term is positive. Hence
the LHS of (6) is negative, and we are done.

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

Monotonicity of the Rayleigh quotient (3)

To show: (∫
Γ(φs) ρs

)2

− ∥φs∥L2(ρs)

∫
Γ□s
2 (φs)) ρs ≤ 0. (6)

Recall our integration by parts formulas (Ls = Lρs , as before):∫
Γ(φs) ρs =

∫
φs · (−Lsφs) ρs,

∫
ΓLs
2 (φs) ρs =

∫
(−Lsφs)

2 ρs.

By Cauchy-Schwarz, we thus immediately obtain(∫
Γ(φs) ρs

)2

− ∥φs∥L2(ρs)

∫
ΓLs
2 (φs)) ρs ≤ 0.

This is almost, but not quite, the LHS of (6).But recall that

Γ□s
2 (φs)) = ΓLs

2 (φs))− ⟨(∇2 log ρs)φs, φs⟩,

and log-concavity of ρs implies that the second term is positive. Hence
the LHS of (6) is negative, and we are done.

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

Monotonicity of the Rayleigh quotient (3)

To show: (∫
Γ(φs) ρs

)2

− ∥φs∥L2(ρs)

∫
Γ□s
2 (φs)) ρs ≤ 0. (6)

Recall our integration by parts formulas (Ls = Lρs , as before):∫
Γ(φs) ρs =

∫
φs · (−Lsφs) ρs,

∫
ΓLs
2 (φs) ρs =

∫
(−Lsφs)

2 ρs.

By Cauchy-Schwarz, we thus immediately obtain(∫
Γ(φs) ρs

)2

− ∥φs∥L2(ρs)

∫
ΓLs
2 (φs)) ρs ≤ 0.

This is almost, but not quite, the LHS of (6).But recall that

Γ□s
2 (φs)) = ΓLs

2 (φs))− ⟨(∇2 log ρs)φs, φs⟩,

and log-concavity of ρs implies that the second term is positive. Hence
the LHS of (6) is negative, and we are done.

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

Monotonicity of the Rayleigh quotient (3)

To show: (∫
Γ(φs) ρs

)2

− ∥φs∥L2(ρs)

∫
Γ□s
2 (φs)) ρs ≤ 0. (6)

Recall our integration by parts formulas (Ls = Lρs , as before):∫
Γ(φs) ρs =

∫
φs · (−Lsφs) ρs,

∫
ΓLs
2 (φs) ρs =

∫
(−Lsφs)

2 ρs.

By Cauchy-Schwarz, we thus immediately obtain(∫
Γ(φs) ρs

)2

− ∥φs∥L2(ρs)

∫
ΓLs
2 (φs)) ρs ≤ 0.

This is almost, but not quite, the LHS of (6).

But recall that

Γ□s
2 (φs)) = ΓLs

2 (φs))− ⟨(∇2 log ρs)φs, φs⟩,

and log-concavity of ρs implies that the second term is positive. Hence
the LHS of (6) is negative, and we are done.

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

Monotonicity of the Rayleigh quotient (3)

To show: (∫
Γ(φs) ρs

)2

− ∥φs∥L2(ρs)

∫
Γ□s
2 (φs)) ρs ≤ 0. (6)

Recall our integration by parts formulas (Ls = Lρs , as before):∫
Γ(φs) ρs =

∫
φs · (−Lsφs) ρs,

∫
ΓLs
2 (φs) ρs =

∫
(−Lsφs)

2 ρs.

By Cauchy-Schwarz, we thus immediately obtain(∫
Γ(φs) ρs

)2

− ∥φs∥L2(ρs)

∫
ΓLs
2 (φs)) ρs ≤ 0.

This is almost, but not quite, the LHS of (6).But recall that

Γ□s
2 (φs)) = ΓLs

2 (φs))− ⟨(∇2 log ρs)φs, φs⟩,

and log-concavity of ρs implies that the second term is positive. Hence
the LHS of (6) is negative, and we are done.

Eli Putterman Weizmann Institute of Science Dynamic Γ-calculus and spectral monotonicity under heat flow



Γ-calculus and Poincaré inequalities
Dynamic Γ-calculus and the main result

Remarks (1)
Note that our argument does not assume that the Poincaré constant of ρ
is attained by some function f (which would then be a Neumann
eigenfunction), which is important because this assumption is not always
satisfied in practice: in fact, CP (ν) is not attained when ν is the
exponential distribution.

As it turns out, if ρ = e−W is log-concave and W is supercoercive –
W (x)
|x| → ∞ as x → ∞ – then Lρ has a discrete spectrum. In this case,

the monotonic decrease of the Rayleigh quotient along the heat flow,
along with the min-max characterization of eigenvalues, suggests that the
entire spectrum of Lρs

should strictly decrease with s.

We can in fact show this under an additional technical assumption on the
decay of the eigenfunctions, which is known to be satisfied if a slightly
stronger growth condition on W holds:
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Remarks (2)

After developing the dynamic Γ-calculus approach, we found a totally
different (and simpler) approach which actually yields stronger results.
Following ideas of Kim and Milman, we were able to construct a family
of maps Ts : Rn → Rn such that Ts pushes ρs forward onto ρ, and Ts is
a contraction, i.e., a 1-Lipschitz map.

The argument that if T is a contraction pushing µ onto ν then
CP (ν) ≤ CP (µ) is a single line: for any f ∈ L2(ν), f ⊥ 1,

Rµ(f ◦T ) =
∫
|∇(f ◦ T )|2 dµ∫
(f ◦ T )2 dµ

≤
∫
(|∇f | ◦ T )2∥DT∥2 dµ∫

f2 dν
≤

∫
|∇f |2 dν∫
f2 dν

;

now take infima.

By essentially the same argument, the existence of a family of
contractions yields monotonicity not only of the Poincaré constant and of
the entire spectrum (when it exists), but of the log-Sobolev constant (if
finite) and constants in other functional inequalities.
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