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This talk is based on the joint work with Hiroshi Tsuji (Osaka).
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Overview

Brascamp–Lieb inequality has fruitful connections to convex geometry.
E.g. Brascamp–Lieb → volume ratio/ reverse isoperimetric problem/
Buseman–Petty problem; discovered by K. Ball.
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Brascamp–Lieb inequality has fruitful connections to convex geometry.
E.g. Brascamp–Lieb → volume ratio/ reverse isoperimetric problem/
Buseman–Petty problem; discovered by K. Ball.

We point out another link to convex geometry:
Brascamp–Lieb ↔ a study of the volume product of a convex body K :

v(K ) := |K ||K ◦|, K ◦ := {x ∈ Rn : sup
y∈Rn

〈x , y〉 ≤ 1}
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Brascamp–Lieb ↔ a study of the volume product of a convex body K :

v(K ) := |K ||K ◦|, K ◦ := {x ∈ Rn : sup
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〈x , y〉 ≤ 1}

and exhibit of a wealth of this new link.
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Overview

Brascamp–Lieb inequality has fruitful connections to convex geometry.
E.g. Brascamp–Lieb → volume ratio/ reverse isoperimetric problem/
Buseman–Petty problem; discovered by K. Ball.

We point out another link to convex geometry:
Brascamp–Lieb ↔ a study of the volume product of a convex body K :

v(K ) := |K ||K ◦|, K ◦ := {x ∈ Rn : sup
y∈Rn

〈x , y〉 ≤ 1}

and exhibit of a wealth of this new link.

All results are based on a simple observation: for fK (x) := e−
1
2
x2K ,

lim
s↓0

cs
 

Rn

fK dx
− qs

ps
Ps

 fK
γ

 1
ps
qs

Lqs (γ)
= v(K )

where ps ∼ 2s, qs ∼ −2s and cs is explicit. A source of the idea of
this identity: Bobkov–Gentil–Ledoux (Hamilton–Jacobi equation).
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Inequalities of the volume product

(Blaschke–Santaló inequality)

sup
K :K=−K

v(K ) = v(Bn
2).
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Inequalities of the volume product

(Blaschke–Santaló inequality)

sup
K :K=−K

v(K ) = v(Bn
2).

(Inverse Santaló inequality, Mahler’s conjecture)

inf
K :K=−K

v(K ) =? v(Bn
1) =

4n

n!
.

The case n = 2 was proved by Mahler. After partial progresses by
Barthe–Fradelizi, Bourgain–Milman, Fradelizi–Meyer, Kurperberg,
Nazarov–Petrov–Ryabogin–Zvavitch,.. the case n = 3 was solved by
Iriyeh–Shibata ’20 and short proof was give by
Fradelizi–Hubard–Meyer–Roldán-Pensado–Zvavitch ’22.
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Functional volume product

Upgrading geometric ineq about volume of convex body to functional
ineq (e.g. Brunn–Minkowski → Prékopa–Leindler ineq ) initiated by
K. Ball. ⇝ This leads to “better” formulation of the problem.
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Functional volume product

Upgrading geometric ineq about volume of convex body to functional
ineq (e.g. Brunn–Minkowski → Prékopa–Leindler ineq ) initiated by
K. Ball. ⇝ This leads to “better” formulation of the problem.

(Norm of a convex body) For a symmetric convex body K ,

xK := inf{r > 0 : x ∈ rK}, x ∈ Rn

⇝


Rn

e−
1
2
x2K dx = (2π)

n
2
|K |
|Bn

2|
.
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Functional volume product

Upgrading geometric ineq about volume of convex body to functional
ineq (e.g. Brunn–Minkowski → Prékopa–Leindler ineq ) initiated by
K. Ball. ⇝ This leads to “better” formulation of the problem.

(Norm of a convex body) For a symmetric convex body K ,

xK := inf{r > 0 : x ∈ rK}, x ∈ Rn

⇝


Rn

e−
1
2
x2K dx = (2π)

n
2
|K |
|Bn

2|
.

(Polar body ↔ Legendre tranform)

φ∗(x) := sup
y∈Rn


〈x , y〉 − φ(y)
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Functional volume product

Upgrading geometric ineq about volume of convex body to functional
ineq (e.g. Brunn–Minkowski → Prékopa–Leindler ineq ) initiated by
K. Ball. ⇝ This leads to “better” formulation of the problem.

(Norm of a convex body) For a symmetric convex body K ,

xK := inf{r > 0 : x ∈ rK}, x ∈ Rn

⇝


Rn

e−
1
2
x2K dx = (2π)

n
2
|K |
|Bn

2|
.

(Polar body ↔ Legendre tranform)

φ∗(x) := sup
y∈Rn


〈x , y〉 − φ(y)


⇝

1
2
 · 2K

∗
=

1

2
 · 2K◦ .
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Functional volume product

(Ball and Artstein-Avidan–Klartag–Milman) For f = e−φ : Rn → R+,

v(f ) :=



Rn

f dx



Rn

f ◦ dx :=



Rn

e−φ dx



Rn

e−φ∗
dx .
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Functional volume product

(Ball and Artstein-Avidan–Klartag–Milman) For f = e−φ : Rn → R+,

v(f ) :=



Rn

f dx



Rn

f ◦ dx :=



Rn

e−φ dx



Rn

e−φ∗
dx .

(Passage from functional volume product to geometrical one)

v(e−
1
2
·2K ) = cnv(K ), cn :=

(2π)n

|Bn
2|2

.
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Functional Blaschke–Santaló inequality

Theorem 1 (Ball, Artstein-Avidan–Klartag–Milman, Fradelizi–Meyer,
Lehec)

For any even function f ,

v(f ) ≤ v(γ) = (2π)n

and equality iff f = γA(x) := (det 2πA)−
1
2 e−

1
2
〈x ,A−1x〉 for some A > 0.

Assumption on f can be weakened to

xf dx = 0.
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Theorem 1 (Ball, Artstein-Avidan–Klartag–Milman, Fradelizi–Meyer,
Lehec)

For any even function f ,

v(f ) ≤ v(γ) = (2π)n

and equality iff f = γA(x) := (det 2πA)−
1
2 e−

1
2
〈x ,A−1x〉 for some A > 0.

Assumption on f can be weakened to

xf dx = 0.

Reminds Ent (f ) ≤ Ent(γ) ← d
dtEnt (e

t∆f ) ≥ 0.
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v(f ) ≤ v(γ) = (2π)n

and equality iff f = γA(x) := (det 2πA)−
1
2 e−

1
2
〈x ,A−1x〉 for some A > 0.

Assumption on f can be weakened to

xf dx = 0.

Reminds Ent (f ) ≤ Ent(γ) ← d
dtEnt (e

t∆f ) ≥ 0. (reverse LSI:
Artstein-Avidan–Klartag–Schütt–Werner, symmetric Talagrand:
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Functional Blaschke–Santaló inequality

Theorem 1 (Ball, Artstein-Avidan–Klartag–Milman, Fradelizi–Meyer,
Lehec)

For any even function f ,

v(f ) ≤ v(γ) = (2π)n

and equality iff f = γA(x) := (det 2πA)−
1
2 e−

1
2
〈x ,A−1x〉 for some A > 0.

Assumption on f can be weakened to

xf dx = 0.

Reminds Ent (f ) ≤ Ent(γ) ← d
dtEnt (e

t∆f ) ≥ 0. (reverse LSI:
Artstein-Avidan–Klartag–Schütt–Werner, symmetric Talagrand:
Fathi)

Any monotonicity statment of v(f )?

E.g. It is monotone increasing via Steiner symmetrization
(Artstein-Avidan–Klartag–Milman) which reduces to the case n = 1.

⇝ Suggest heat flow monotonicity.
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Monotonicity of the functional volume product

For an initial data f0 ∈ L1(dx), let ft (t > 0) be a Fokker–Planck flow:

∂t ft = L∗ft := ∆ft + 〈x ,∇ft〉+ nft .

Theorem 2 (N–Tsuji)

For all even f0,
[0,∞) ∋ t → v(ft)

is monotone increasing.
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Monotonicity of the functional volume product

For an initial data f0 ∈ L1(dx), let ft (t > 0) be a Fokker–Planck flow:

∂t ft = L∗ft := ∆ft + 〈x ,∇ft〉+ nft .

Theorem 2 (N–Tsuji)

For all even f0,
[0,∞) ∋ t → v(ft)

is monotone increasing.

One (technical?) difficulty: v(e−φ) =

e−φ dx


e− supy 〈x ,y〉−φ(y) dx

involves sup ⇝ doesn’t behave well for the integration by parts etc.
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Functional volume product ↔ inverse Brascamp–Lieb

New idea: regard the functional BS as a limiting case of Brascamp–Lieb
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Functional volume product ↔ inverse Brascamp–Lieb

New idea: regard the functional BS as a limiting case of Brascamp–Lieb
For each s > 0 (small), take ps > 0 and symmetric matrix Qs s.t.

1

ps
→ +∞, psQs → − 1

2π


0 1
1 0


as s ↓ 0.

E.g. ps := 1− e−2s ∼ 2s, Qs :=
1

2πps


0 −e−s

−e−s 0


.
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Functional volume product ↔ inverse Brascamp–Lieb

New idea: regard the functional BS as a limiting case of Brascamp–Lieb
For each s > 0 (small), take ps > 0 and symmetric matrix Qs s.t.

1

ps
→ +∞, psQs → − 1

2π


0 1
1 0


as s ↓ 0.

E.g. ps := 1− e−2s ∼ 2s, Qs :=
1

2πps


0 −e−s

−e−s 0


. So for fi = e−φi ,

 

R2

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx

ps
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New idea: regard the functional BS as a limiting case of Brascamp–Lieb
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1

ps
→ +∞, psQs → − 1
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0 1
1 0


as s ↓ 0.

E.g. ps := 1− e−2s ∼ 2s, Qs :=
1

2πps


0 −e−s

−e−s 0


. So for fi = e−φi ,

 

R2

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx
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e−π〈x ,psQsx〉f1(x1)f2(x2)


L
1/ps
x1,x2
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For each s > 0 (small), take ps > 0 and symmetric matrix Qs s.t.

1

ps
→ +∞, psQs → − 1
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0 1
1 0


as s ↓ 0.

E.g. ps := 1− e−2s ∼ 2s, Qs :=
1

2πps


0 −e−s

−e−s 0


. So for fi = e−φi ,

 

R2

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx

ps =
e−π〈x ,psQsx〉f1(x1)f2(x2)


L
1/ps
x1,x2

→ sup
x1,x2∈R

ex1x2f1(x1)f2(x2)
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1

ps
→ +∞, psQs → − 1

2π


0 1
1 0


as s ↓ 0.

E.g. ps := 1− e−2s ∼ 2s, Qs :=
1

2πps


0 −e−s

−e−s 0


. So for fi = e−φi ,

 

R2

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx

ps =
e−π〈x ,psQsx〉f1(x1)f2(x2)


L
1/ps
x1,x2

→ sup
x1,x2∈R

ex1x2f1(x1)f2(x2) = sup
x1

e−φ1(x1)+φ∗
2 (x1).
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Functional volume product ↔ inverse Brascamp–Lieb

New idea: regard the functional BS as a limiting case of Brascamp–Lieb
For each s > 0 (small), take ps > 0 and symmetric matrix Qs s.t.

1

ps
→ +∞, psQs → − 1

2π


0 1
1 0


as s ↓ 0.

E.g. ps := 1− e−2s ∼ 2s, Qs :=
1

2πps


0 −e−s

−e−s 0


. So for fi = e−φi ,

 

R2

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx

ps =
e−π〈x ,psQsx〉f1(x1)f2(x2)


L
1/ps
x1,x2

→ sup
x1,x2∈R

ex1x2f1(x1)f2(x2) = sup
x1

e−φ1(x1)+φ∗
2 (x1).

f1 = e−φ∗
, f2 = e−φ ⇝ lim

s↓0

 

R2

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx

ps = 1.
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Functional volume product ↔ inverse Brascamp–Lieb

If f1 = e−φ∗
and f2 = e−φ then

lim
s↓0

 

R2

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx

ps = 1.
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Functional volume product ↔ inverse Brascamp–Lieb

If f1 = e−φ∗
and f2 = e−φ then

lim
s↓0

 

R2

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx

ps = 1.

BLs ≥ 0: the largest const of the ineq of


R2

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx ≥ BLs



i=1,2

 

R
fi dxi

 1
ps , ∀fi ∈ L1.
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Functional volume product ↔ inverse Brascamp–Lieb

If f1 = e−φ∗
and f2 = e−φ then

lim
s↓0
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BLs ≥ 0: the largest const of the ineq of
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e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx ≥ BLs



i=1,2

 

R
fi dxi

 1
ps , ∀fi ∈ L1.

Then

v(e−φ) =


e−φ dx


e−φ∗

dx ≤ lim
s↓0

BL−ps
s
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1
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1
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i=1,2

 

R
fi dxi

 1
ps , ∀fi ∈ L1.

Then

v(e−φ) =


e−φ dx


e−φ∗

dx ≤ lim
s↓0

BL−ps
s ? =? (2π)n
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Functional volume product ↔ inverse Brascamp–Lieb

If f1 = e−φ∗
and f2 = e−φ then

lim
s↓0

 

R2

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx

ps = 1.

BLs ≥ 0: the largest const of the ineq of


R2

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx ≥ BLs



i=1,2

 

R
fi dxi

 1
ps , ∀fi ∈ L1.

Then

v(e−φ) =


e−φ dx


e−φ∗

dx ≤ lim
s↓0

BL−ps
s ? =? (2π)n

Apply Lieb’s type theorem (the best cosnt is exhausted by centered
Gaussians) and identify BLs ...? → A study of the inverse
Brascamp–Lieb inequality.
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Functional volume product ↔ inverse Brascamp–Lieb

If f1 = e−φ∗
and f2 = e−φ then

lim
s↓0
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1
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ps = 1.

BLs ≥ 0: the largest const of the ineq of
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e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx ≥ BLs



i=1,2

 

R
fi dxi

 1
ps , ∀fi ∈ L1.

Then

v(e−φ) =


e−φ dx


e−φ∗

dx ≤ lim
s↓0

BL−ps
s ? =? (2π)n

Apply Lieb’s type theorem (the best cosnt is exhausted by centered
Gaussians) and identify BLs ...? → A study of the inverse
Brascamp–Lieb inequality.
Prékopa–Leindler = limiting case of the sharp reverse Young
(Brascamp–Lieb).
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General theory on inverse Brascamp–Lieb: Barthe–Wolff

IF one could have Lieb’s type result for this specific BL data:

inf
fi∈L1


R2n e

−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx


i=1,2

 
Rn fi dxi

 1
ps

= inf
A1,A2>0

Λs(γA1 , γA2),

for each s > 0, then this would be enough to derive v(f ) ≤ v(γ).
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General theory on inverse Brascamp–Lieb: Barthe–Wolff

IF one could have Lieb’s type result for this specific BL data:

inf
fi∈L1


R2n e

−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx


i=1,2

 
Rn fi dxi

 1
ps

= inf
A1,A2>0

Λs(γA1 , γA2),

for each s > 0, then this would be enough to derive v(f ) ≤ v(γ).
Comprehensive study of the inverse BL ineq by Barthe–Wolff: let
Li : Rn → Rni , c1, . . . , cm ∈ R \ {0}, and Q: n × n symmetric. Then

inf
fi∈L1


Rn e

−π〈x ,Qx〉m
i=1 fi (Lix)

ci dx
m

i=1

 
Rni fi dxi

ci = inf
Ai>0

Λ(γA1 , . . . , γAm),
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1
ps dx


i=1,2

 
Rn fi dxi

 1
ps

= inf
A1,A2>0

Λs(γA1 , γA2),

for each s > 0, then this would be enough to derive v(f ) ≤ v(γ).
Comprehensive study of the inverse BL ineq by Barthe–Wolff: let
Li : Rn → Rni , c1, . . . , cm ∈ R \ {0}, and Q: n × n symmetric. Then

inf
fi∈L1


Rn e

−π〈x ,Qx〉m
i=1 fi (Lix)

ci dx
m

i=1

 
Rni fi dxi

ci = inf
Ai>0

Λ(γA1 , . . . , γAm),

if the data satisfies the non-degenerate condition:

Q|ker L+ > 0, n ≥ s+(Q)+

m+

i=1

ni where L+(x) := (L1x , . . . , Lm+x).
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IF one could have Lieb’s type result for this specific BL data:

inf
fi∈L1


R2n e

−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx


i=1,2

 
Rn fi dxi

 1
ps

= inf
A1,A2>0

Λs(γA1 , γA2),

for each s > 0, then this would be enough to derive v(f ) ≤ v(γ).
Comprehensive study of the inverse BL ineq by Barthe–Wolff: let
Li : Rn → Rni , c1, . . . , cm ∈ R \ {0}, and Q: n × n symmetric. Then

inf
fi∈L1


Rn e

−π〈x ,Qx〉m
i=1 fi (Lix)

ci dx
m

i=1

 
Rni fi dxi

ci = inf
Ai>0

Λ(γA1 , . . . , γAm),

if the data satisfies the non-degenerate condition:

Q|ker L+ > 0, n ≥ s+(Q)+

m+

i=1

ni where L+(x) := (L1x , . . . , Lm+x).

Our specific data fails to satisfy the non-degenerate condition ⇝
Need to go beyond the condition to enter convex geometry world!
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Functional volume product ↔ regularization of OU flow

ps := 1− e−2s , Qs :=
1

2πps


0 −e−s idRn

−e−s idRn 0


.

For the purpose of deriving v(f ), the specific form of ps and Qs in
the above is not important;
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Functional volume product ↔ regularization of OU flow

ps := 1− e−2s , Qs :=
1

2πps


0 −e−s idRn

−e−s idRn 0


.

For the purpose of deriving v(f ), the specific form of ps and Qs in
the above is not important; indeed the argument works as long as

ps → 0, psQs →
1

2π


0 −1
−1 0


as s → 0.
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Functional volume product ↔ regularization of OU flow

ps := 1− e−2s , Qs :=
1

2πps


0 −e−s idRn

−e−s idRn 0


.

For the purpose of deriving v(f ), the specific form of ps and Qs in
the above is not important; indeed the argument works as long as

ps → 0, psQs →
1

2π


0 −1
−1 0


as s → 0.

However, for our proof of the monotonicity of v(f ), this specific
choice is crucial.
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Functional volume product ↔ regularization of OU flow

ps := 1− e−2s , Qs :=
1

2πps


0 −e−s idRn

−e−s idRn 0


.

For the purpose of deriving v(f ), the specific form of ps and Qs in
the above is not important; indeed the argument works as long as

ps → 0, psQs →
1

2π


0 −1
−1 0


as s → 0.

However, for our proof of the monotonicity of v(f ), this specific
choice is crucial.

In fact, we are guided to this specific choice of ps and Qs by a nature
of the Orntein–Uhlenbeck flow: for each s > 0,

Psg(x) :=



Rn

g(e−sx +


1− e−2sy) dγ(y), x ∈ Rn,

which is a sol to ∂sus = ∆us − x ·∇us , u0 = g .
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Functional volume product ↔ regularization of OU flow

In fact, our BL is a dual form of the reverse hypercontractivity: for given f0

Cs



R2n

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx =

Ps

 f0
γ

 1
ps


Lqs (γ)

for

f1 = f0, f2(x) :=
Ps

 f0
γ

 1
ps
−qs

Lqs (γ)
Ps

 f0
γ

 1
ps
qs (x)γ(x),
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Functional volume product ↔ regularization of OU flow

In fact, our BL is a dual form of the reverse hypercontractivity: for given f0

Cs



R2n

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx =

Ps

 f0
γ

 1
ps


Lqs (γ)

for

f1 = f0, f2(x) :=
Ps

 f0
γ

 1
ps
−qs

Lqs (γ)
Ps

 f0
γ

 1
ps
qs (x)γ(x),

qs := p′s = 1− e2s < 0, Cs :=
(2π)

1
2
( 1
ps
+ 1

q′s
)−1

√
1− e−2s

n
.
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Functional volume product ↔ regularization of OU flow

In fact, our BL is a dual form of the reverse hypercontractivity: for given f0

Cs



R2n

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx =

Ps

 f0
γ

 1
ps


Lqs (γ)

for

f1 = f0, f2(x) :=
Ps

 f0
γ

 1
ps
−qs

Lqs (γ)
Ps

 f0
γ

 1
ps
qs (x)γ(x),

qs := p′s = 1− e2s < 0, Cs :=
(2π)

1
2
( 1
ps
+ 1

q′s
)−1

√
1− e−2s

n
.

Our inverse BL:

e−π〈x ,Qsx〉f1(x1)

1
ps f2(x2)

1
ps dx ≥ BLs


i=1,2

 
fi
 1

ps is
reduced to the Lp − Lq bound of Ps :

Ps

 f0
γ

 1
ps


Lqs (γ)
≥ BLs

Cs

 

Rn

f0
γ
dγ

 1
ps .
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Borell’s reverse hypercontractivity

A family of inequalities of the form PsgLq(γ) ≥ gLp(γ) for
q < 0 < p < 1 is known as Borell’s reverse hypercontractivity.
What is a manifestation of the ineq?
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Borell’s reverse hypercontractivity

A family of inequalities of the form PsgLq(γ) ≥ gLp(γ) for
q < 0 < p < 1 is known as Borell’s reverse hypercontractivity.
What is a manifestation of the ineq?

Psg solves a heat equation ∂su = (∆− x ·∇)u with us := Psg .
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Borell’s reverse hypercontractivity

A family of inequalities of the form PsgLq(γ) ≥ gLp(γ) for
q < 0 < p < 1 is known as Borell’s reverse hypercontractivity.
What is a manifestation of the ineq?

Psg solves a heat equation ∂su = (∆− x ·∇)u with us := Psg .

(Regularizing property of Ps : Qualitative)
Dirac delta δ0 /∈ L∞ and δ0 = 0 a lot ⇝ Psδ0 ∈ L∞ and Psδ0 > 0.
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Borell’s reverse hypercontractivity

A family of inequalities of the form PsgLq(γ) ≥ gLp(γ) for
q < 0 < p < 1 is known as Borell’s reverse hypercontractivity.
What is a manifestation of the ineq?

Psg solves a heat equation ∂su = (∆− x ·∇)u with us := Psg .

(Regularizing property of Ps : Qualitative)
Dirac delta δ0 /∈ L∞ and δ0 = 0 a lot ⇝ Psδ0 ∈ L∞ and Psδ0 > 0.

The rev heypercontractivity is a quantitative statement of the
regularizing property of Ps
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Borell’s reverse hypercontractivity

hLq(γ) ≫ 0 for very small q < 0 ⇒ h is very positive:
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Borell’s reverse hypercontractivity

hLq(γ) ≫ 0 for very small q < 0 ⇒ h is very positive: If h = χ[−1,1],
then hLq(γ) = ∞−1 = 0 for any q < 0. More quantitatively,

consider hq(x) = e
− 1

2|q| |x |
2

⇝ hqLq+ε(γ) > 0 but hqLq−ε(γ) = 0.
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Borell’s reverse hypercontractivity

hLq(γ) ≫ 0 for very small q < 0 ⇒ h is very positive: If h = χ[−1,1],
then hLq(γ) = ∞−1 = 0 for any q < 0. More quantitatively,

consider hq(x) = e
− 1

2|q| |x |
2

⇝ hqLq+ε(γ) > 0 but hqLq−ε(γ) = 0.

(Borell’s reverse hypercontractivity) Suppose s > 0 and
q < 0 < p < 1 satisfy

(Nelson′s time) q ≥ q(s, p), q(s, p) := 1 + e2s(p − 1).

Then for all g ≥ 0,

PsgLq(γ) ≥ gLp(γ).
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Borell’s reverse hypercontractivity

hLq(γ) ≫ 0 for very small q < 0 ⇒ h is very positive: If h = χ[−1,1],
then hLq(γ) = ∞−1 = 0 for any q < 0. More quantitatively,

consider hq(x) = e
− 1

2|q| |x |
2

⇝ hqLq+ε(γ) > 0 but hqLq−ε(γ) = 0.

(Borell’s reverse hypercontractivity) Suppose s > 0 and
q < 0 < p < 1 satisfy

(Nelson′s time) q ≥ q(s, p), q(s, p) := 1 + e2s(p − 1).

Then for all g ≥ 0,

PsgLq(γ) ≥ gLp(γ).

(Nelson′s time) is necessary:

q < q(s, p) ⇒ inf
a∈Rn

Ps [e
a·x ]Lq(γ)

ea·xLp(γ)
= 0.
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Borell’s reverse hypercontractivity

hLq(γ) ≫ 0 for very small q < 0 ⇒ h is very positive: If h = χ[−1,1],
then hLq(γ) = ∞−1 = 0 for any q < 0. More quantitatively,

consider hq(x) = e
− 1

2|q| |x |
2

⇝ hqLq+ε(γ) > 0 but hqLq−ε(γ) = 0.

(Borell’s reverse hypercontractivity) Suppose s > 0 and
q < 0 < p < 1 satisfy

(Nelson′s time) q ≥ q(s, p), q(s, p) := 1 + e2s(p − 1).

Then for all g ≥ 0,

PsgLq(γ) ≥ gLp(γ).

(Nelson′s time) is necessary:

q < q(s, p) ⇒ inf
a∈Rn

Ps [e
a·x ]Lq(γ)

ea·xLp(γ)
= 0.

⇝ Rev HC for smaller q < 0 quantifies stronger regularization of Ps .
Limitation of the regularization is up to q ≥ q(s, p).
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Improvement of Borell’s reverse hypercontractivity

Our expected rev HC:

Ps

 f0
γ

 1
ps


Lqs (γ)
≥ BLs

Cs

 

Rn

f0
γ
dγ

 1
ps , ps := 1−e−2s , qs = 1−e2s
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Improvement of Borell’s reverse hypercontractivity

Our expected rev HC:

Ps

 f0
γ

 1
ps


Lqs (γ)
≥ BLs

Cs

 

Rn

f0
γ
dγ

 1
ps , ps := 1−e−2s , qs = 1−e2s

However, qs ≪ q(s, ps): beyond Nelson’s time. ⇝ Need more
regularization from Ps which is impossible in general.
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Improvement of Borell’s reverse hypercontractivity

Our expected rev HC:

Ps

 f0
γ

 1
ps


Lqs (γ)
≥ BLs

Cs

 

Rn

f0
γ
dγ

 1
ps , ps := 1−e−2s , qs = 1−e2s

However, qs ≪ q(s, ps): beyond Nelson’s time. ⇝ Need more
regularization from Ps which is impossible in general.

So BLs = 0 if one takes account of all f0 ≥ 0.
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Improvement of Borell’s reverse hypercontractivity

Our expected rev HC:

Ps

 f0
γ

 1
ps


Lqs (γ)
≥ BLs

Cs

 

Rn

f0
γ
dγ

 1
ps , ps := 1−e−2s , qs = 1−e2s

However, qs ≪ q(s, ps): beyond Nelson’s time. ⇝ Need more
regularization from Ps which is impossible in general.

So BLs = 0 if one takes account of all f0 ≥ 0.

Recall that the Blaschke–Santaló ineq required some symmetry ⇝
possibly BLs > 0 by restricting attention to even f0...?
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Improvement of Borell’s reverse hypercontractivity

Our expected rev HC:

Ps

 f0
γ

 1
ps


Lqs (γ)
≥ BLs

Cs

 

Rn

f0
γ
dγ

 1
ps , ps := 1−e−2s , qs = 1−e2s

However, qs ≪ q(s, ps): beyond Nelson’s time. ⇝ Need more
regularization from Ps which is impossible in general.

So BLs = 0 if one takes account of all f0 ≥ 0.

Recall that the Blaschke–Santaló ineq required some symmetry ⇝
possibly BLs > 0 by restricting attention to even f0...?

Theorem 3 (N–Tsuji)

Let s > 0 and 1− e2s ≤ q < 0 < p ≤ 1− e−2s . Then for any even f0,

Ps

 f0
γ

 1
p


Lq(γ)
≥

 

Rn

f0
γ
dγ

 1
p .

Moreover, the range of q < 0 < p is best possible. Equality when f0 = γ.
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Monotonicity statement

The convex geometrical argument due to Lehec (Prékopa–Leindler +
Yao–Yao equipartition) is applicable to the problem of rev HC but the
yielding range of p, q is not sharp: q ≥ −p and p ≤ 1− e−2s .
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Monotonicity statement

The convex geometrical argument due to Lehec (Prékopa–Leindler +
Yao–Yao equipartition) is applicable to the problem of rev HC but the
yielding range of p, q is not sharp: q ≥ −p and p ≤ 1− e−2s . ⇝
Need a new idea to complete the possible range of p, q.
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Monotonicity statement

The convex geometrical argument due to Lehec (Prékopa–Leindler +
Yao–Yao equipartition) is applicable to the problem of rev HC but the
yielding range of p, q is not sharp: q ≥ −p and p ≤ 1− e−2s . ⇝
Need a new idea to complete the possible range of p, q.

Our improved rev HC is a consequence from stronger monotonicity
statement along Fokker–Planck flow.
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Monotonicity statement

The convex geometrical argument due to Lehec (Prékopa–Leindler +
Yao–Yao equipartition) is applicable to the problem of rev HC but the
yielding range of p, q is not sharp: q ≥ −p and p ≤ 1− e−2s . ⇝
Need a new idea to complete the possible range of p, q.

Our improved rev HC is a consequence from stronger monotonicity
statement along Fokker–Planck flow.

Theorem 4 (N–Tsuji)

Let s > 0 and ps := 1− e−2s , qs = p′s = 1− e2s . Then for any even f0,

[0,∞) ∋ t → Qs(t) :=
Ps

 ft
γ

 1
ps
qs

Lqs (γ)

is monotone increasing where ft is FP flow: ∂t ft = (∆+ x ·∇+ n)ft .
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Monotonicity of the functional volume product (again)

Recall our observation:

lim
s↓0

 

R2n

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx

ps = sup
x

f1(x)f
◦
2 (x).
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Monotonicity of the functional volume product (again)

Recall our observation:

lim
s↓0

 

R2n

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx

ps = sup
x

f1(x)f
◦
2 (x).

Following similar idea, one can show

lim
s↓0

cs
 

Rn

f0 dx
− qs

ps
Ps

 f0
γ

 1
ps
qs

Lqs (γ)
= v(f0) :=


f0 dx


f ◦0 dx

for some explicit Cs . This is how we prove the monotonicity of the
functional volume product.
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Monotonicity of the functional volume product (again)

Recall our observation:

lim
s↓0

 

R2n

e−π〈x ,Qsx〉f1(x1)
1
ps f2(x2)

1
ps dx

ps = sup
x

f1(x)f
◦
2 (x).

Following similar idea, one can show

lim
s↓0

cs
 

Rn

f0 dx
− qs

ps
Ps

 f0
γ

 1
ps
qs

Lqs (γ)
= v(f0) :=


f0 dx


f ◦0 dx

for some explicit Cs . This is how we prove the monotonicity of the
functional volume product.

The monotonicity scheme Qs(t) :=
Ps


ft
γ

 1
ps
qs

Lqs (γ)
is introduced

by Aoki–Bennett–Bez–Machihara–Matsuura–Shiraki where they
proved the monotonicity under Nelson’s time condition.
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Proof of the monotonicity

Goal: d
dt
Qs(t) ≥ 0 where (ps , qs) = (1− e−2s , 1− e2s) and

Qs(t) := log Q(s) = log
Ps

 ft
γ

 1
ps
qs

Lqs (γ)
, ∂t ft = (∆+ x ·∇+ n)ft .
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Proof of the monotonicity

Goal: d
dt
Qs(t) ≥ 0 where (ps , qs) = (1− e−2s , 1− e2s) and

Qs(t) := log Q(s) = log
Ps

 ft
γ

 1
ps
qs

Lqs (γ)
, ∂t ft = (∆+ x ·∇+ n)ft .

Although the rev HC at (p, q) = (ps , qs) is the strongest ineq, it
appears to be the “easiest” to prove (things becomes canonical).
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Proof of the monotonicity

Goal: d
dt
Qs(t) ≥ 0 where (ps , qs) = (1− e−2s , 1− e2s) and

Qs(t) := log Q(s) = log
Ps

 ft
γ

 1
ps
qs

Lqs (γ)
, ∂t ft = (∆+ x ·∇+ n)ft .

Although the rev HC at (p, q) = (ps , qs) is the strongest ineq, it
appears to be the “easiest” to prove (things becomes canonical).
A virtue of this specific choice: from ∂t ft = L∗ft ,

Cs
d

dt
Qs(t) = − 1

p2


x2F q

t dx−2

p
(
1

p
−1)


F q
t


x


e−

1
p
xz ft(z)

1
p (log ft(z) dz


dx
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Proof of the monotonicity

Goal: d
dt
Qs(t) ≥ 0 where (ps , qs) = (1− e−2s , 1− e2s) and

Qs(t) := log Q(s) = log
Ps

 ft
γ

 1
ps
qs

Lqs (γ)
, ∂t ft = (∆+ x ·∇+ n)ft .

Although the rev HC at (p, q) = (ps , qs) is the strongest ineq, it
appears to be the “easiest” to prove (things becomes canonical).
A virtue of this specific choice: from ∂t ft = L∗ft ,

Cs
d

dt
Qs(t) = − 1

p2


x2F q

t dx−2

p
(
1

p
−1)


F q
t


x


e−

1
p
xz ft(z)

1
p (log ft(z) dz


dx

=−


R
x2Ft(x)

qs dx

− (1− ps)

  
e

1
ps
xz ft(z)

1
ps (log ft)(z)

′′ dz

Ft(x)

qs−1 dx ,

Ft(x) :=
1

Zt



R
e

1
ps
xz ft(z)

1
ps dz , Zt :=




R
e

1
ps
xz ft(z)

1
ps dz


Lqs (dx)

.
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Proof of the monotonicity

Cs
d

dt
Qs(t) = −



R
x2Ft(x)

qs dx − (1− ps)


· · ·

New tools: (i) Brascamp–Lieb inequality generalizing Poincaré ineq
and (ii) Cremér–Rao ineq:
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Proof of the monotonicity

Cs
d

dt
Qs(t) = −



R
x2Ft(x)

qs dx − (1− ps)


· · ·

New tools: (i) Brascamp–Lieb inequality generalizing Poincaré ineq
and (ii) Cremér–Rao ineq: for a log-concave F s.t.


Fdx = 1,


φ2 Fdx −

 
φFdx

2 ≤


1

(− log F )′′
|φ′|2 Fdx ,
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and (ii) Cremér–Rao ineq: for a log-concave F s.t.


Fdx = 1,


φ2 Fdx −

 
φFdx

2 ≤


1

(− log F )′′
|φ′|2 Fdx ,

and Var(F ) ≥ I (F )−1 i.e.


x2 Fdx −
 

x Fdx
2 ≥

 
(− log F )′′ Fdx

−1
.
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New tools: (i) Brascamp–Lieb inequality generalizing Poincaré ineq
and (ii) Cremér–Rao ineq: for a log-concave F s.t.


Fdx = 1,


φ2 Fdx −

 
φFdx

2 ≤


1

(− log F )′′
|φ′|2 Fdx ,

and Var(F ) ≥ I (F )−1 i.e.


x2 Fdx −
 

x Fdx
2 ≥

 
(− log F )′′ Fdx

−1
.

Apply P-BL with F = F qs
t and φ(x) = x . Notice F qs

t = F qs
t (−·) so

x F qs
t dx = 0 ⇝


x2 F qs

t dx ≤


1

(− log F qs
t )′′

F qs
t dx .
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Proof of the monotonicity


x2 F qs

t dx ≤


1

(− log F qs
t )′′

F qs
t dx , Ft(x) :=

1

Zt



R
e

1
ps
xz ft(z)

1
ps dz
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t dx ≤


1

(− log F qs
t )′′

F qs
t dx , Ft(x) :=

1

Zt



R
e

1
ps
xz ft(z)

1
ps dz

From the def of F qs
t (x) := ( 1

Zt


R e

1
ps
xz ft(z)

1
ps dz)qs ,

(− log F qs
t )′′(x) = −qs

p2s


z2 Gx ,t(z)dz −

 
z Gx ,t(z)dz

2

,

Gx ,t(z) :=
1


e

1
ps
xy ft(y)

1
ps dy

e
1
ps
xz ft(z)

1
ps .

Shohei Nakamura (Osaka University / University of Birmingham) (AGA seminar)Functional volume product, regularizing effect of heat flow, and Brascamp—Lieb inequalityNovember 9, 2023 21 / 28



Proof of the monotonicity


x2 F qs

t dx ≤


1

(− log F qs
t )′′

F qs
t dx , Ft(x) :=

1

Zt



R
e

1
ps
xz ft(z)

1
ps dz

From the def of F qs
t (x) := ( 1

Zt


R e

1
ps
xz ft(z)

1
ps dz)qs ,

(− log F qs
t )′′(x) = −qs

p2s


z2 Gx ,t(z)dz −

 
z Gx ,t(z)dz

2

,

Gx ,t(z) :=
1


e

1
ps
xy ft(y)

1
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1
ps
xz ft(z)

1
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Apply Cremér–Rao,

(− log F qs
t )′′(x) = −qs

p2s
Var(Gx ,t) ≥ −qs

p2s

  1

ps
(− log ft)

′′(z)Gx ,t(z)dz
−1
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t )′′(x) = −qs

p2s
Var(Gx ,t) ≥ −qs

p2s

  1

ps
(− log ft)

′′(z)Gx ,t(z)dz
−1

⇝


x2 F qs
t dx ≤ −ps

qs

  
(− log ft)

′′(z)Gx ,t(z)dz
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t dx
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Proof of the monotonicity

⇝


x2 F qs
t dx ≤ −ps

qs

  
(− log ft)

′′(z)Gx ,t(z)dz

F qs
t dx

=
ps
qs

  
(log ft)

′′(z)e
1
ps
xz ft(z)

1
ps dz


Ft(x)

qs−1 dx .
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Proof of the monotonicity

⇝


x2 F qs
t dx ≤ −ps

qs

  
(− log ft)

′′(z)Gx ,t(z)dz

F qs
t dx

=
ps
qs

  
(log ft)

′′(z)e
1
ps
xz ft(z)

1
ps dz


Ft(x)

qs−1 dx .

Overall,

Cs
d

dt
Qs(t) = −



R
x2Ft(x)

qs dx

− (1− ps)

  
e

1
ps
xz ft(z)

1
ps (log ft)(z)

′′ dz

Ft(x)

q−1 dx

≥ (−ps
qs

− 1 + ps)

 
· · ·


dx = 0.
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Stability of the functional BS

Theorem 5 (Barthe–Böröczky–Fradelizi)

There exists ε0 = ε0(n) > 0 s.t. if φ0 is even convex and satisfies

v(γ)

v(e−φ0)
<

1

1− ε

for some ε ∈ (0, ε0) then

inf
B,µ



|x |≤R(ε)

1
2
|x |2 − φ0(Bx) + µ

 dx ≤ C (n)ε
1

129n2 .

Here R(ε) ≤ 1
8n (log

1
ε )

1
2 and satisfies limε→0 R(ε) = +∞.

Barthe–Böröczky–Fradelizi conjectured that the power of the deficit 1
129n2

can be replaced by some absolute constant independent of n. They
considered more general functional ineq.
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Stability of the functional BS: Wealth of monotonicity

We confirm their conj for uniformly log-concave functs: for λ,λ◦ > 0,

F(λ,λ◦) := {φ : λ ≤ ∇2φ, λ◦ ≤ ∇2φ∗}.

E.g. Eldan–Mikulincer: dimension free stability for Shannon–Stam.
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We confirm their conj for uniformly log-concave functs: for λ,λ◦ > 0,

F(λ,λ◦) := {φ : λ ≤ ∇2φ, λ◦ ≤ ∇2φ∗}.

E.g. Eldan–Mikulincer: dimension free stability for Shannon–Stam.

Theorem 6 (N–Tsuji)

There exists ε0 = ε0(n,λλ
◦) s.t.: If φ0 ∈ F(λ,λ◦) is even and satisfies

v(γ)

v(e−φ0)
< eε ∼ 1 + ε

for some ε ∈ (0, ε0), then

inf
B,µ



|x |≤R(ε)

1
2
|x |2 − φ0(Bx) + µ

 dx ≤ C (n,λλ◦)ε
1
7

where R(ε) = λλ◦

100 (log
1
ε )

1
2 and so limε→0 R(ε) = +∞.
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Stability of the functional BS: Main ingredient

Theorem 7 (Cordero-Erausquin)

Let V ∈ C 2(Rn) ∩ L1(Rn) be nonnegative,

e−V dx = 1 and strictly

log-concave. Then for any locally Lipschitz g ∈ L2(hdx),



Rn

|g |2 e−V dx −
 

Rn

g e−V dx
2

≤
 

∇g ,∇2V−1∇g

e−V dx − c(h)



Rn

g(x)−

u0,∇V (x)

2 e−V dx

where

u0 :=



Rn

yg(y) e−V dy , c(h) :=
cλ(V )

supx λmax(∇2V (x)) + cλ(V )
,

c is a numerical constant, λ(V ) denotes its Poincaré constant, and
λmax(A) denotes the maximum eigenvalue of a symmetric matrix A.
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Broad picture

Barthe–Wolff’s inverse Brascamp–Lieb inequality (General):

(∗) inf
fi :arbitrary


Rn e

−π〈x ,Qx〉m
i=1 fi (Lix)

ci dx
m

i=1

 
Rni fi dxi

ci = inf
Ai>0

Λ(γA1 , . . . , γAm),

if the data (c,L,Q) is non-degenerate in BW sense.
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Rni fi dxi

ci = inf
Ai>0

Λ(γA1 , . . . , γAm),

if the data (c,L,Q) is non-degenerate in BW sense.

Need to understand the degenerate case in view of the link to convex
geometry but (∗) often fails in the such case.
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if the data (c,L,Q) is non-degenerate in BW sense.

Need to understand the degenerate case in view of the link to convex
geometry but (∗) often fails in the such case.

Reasonable to expect

inf
fi :even


Rn e

−π〈x ,Qx〉m
i=1 fi (Lix)

ci dx
m

i=1

 
Rni fi dxi

ci = inf
Ai>0

Λ(γA1 , . . . , γAm)

even when the the data (c,L,Q) is degenerate.
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even when the the data (c,L,Q) is degenerate. In the above, we
confirmed this in a very specific data coming from hypercontractivity.
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Broad picture
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(∗) inf
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i=1

 
Rni fi dxi

ci = inf
Ai>0

Λ(γA1 , . . . , γAm),

if the data (c,L,Q) is non-degenerate in BW sense.

Need to understand the degenerate case in view of the link to convex
geometry but (∗) often fails in the such case.

Reasonable to expect

inf
fi :even


Rn e

−π〈x ,Qx〉m
i=1 fi (Lix)

ci dx
m

i=1

 
Rni fi dxi

ci = inf
Ai>0

Λ(γA1 , . . . , γAm)

even when the the data (c,L,Q) is degenerate. In the above, we
confirmed this in a very specific data coming from hypercontractivity.

(Importance) If one could prove this, one would also solve
Kolesnikov–Werner’s conjecture about Blaschke–Santaló inequality for
multiple convex bodies.
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Kolesnikov–Werner’s conjecture

Simplest non-trivial case: If f1, f2, f3: even and satisfy

3

i=1

fi (xi ) ≤ exp

− 1

3− 1



1≤i<j≤3

〈xi , xj〉

, x1, x2, x3 ∈ Rn,

then
3

i=1



Rn

fi dxi ≤
 

Rn

e−
1
2
|x |2 dx

3
= (2π)

3n
2 .
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Simplest non-trivial case: If f1, f2, f3: even and satisfy

3

i=1

fi (xi ) ≤ exp

− 1

3− 1



1≤i<j≤3

〈xi , xj〉

, x1, x2, x3 ∈ Rn,

then
3

i=1



Rn

fi dxi ≤
 

Rn

e−
1
2
|x |2 dx

3
= (2π)

3n
2 .

This would follow from the conjectural inv BL with a data

Li (x1, x2, x3) = xi , ci =
1

1− e−2s
, Qs = − e−s

2π(3− 1)(1− e−2s)




0 1 1
1 0 1
1 1 0





and then take s → 0.
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Thank you for your attention.
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