# Functional volume product, regularizing effect of heat flow, and Brascamp-Lieb inequality 

Shohei Nakamura (Osaka University / University of Birmingham)

AGA seminar
November 9, 2023

This talk is based on the joint work with Hiroshi Tsuji (Osaka).

## Overview

- Brascamp-Lieb inequality has fruitful connections to convex geometry. E.g. Brascamp-Lieb $\rightarrow$ volume ratio/ reverse isoperimetric problem/ Buseman-Petty problem; discovered by K. Ball.


## Overview

- Brascamp-Lieb inequality has fruitful connections to convex geometry. E.g. Brascamp-Lieb $\rightarrow$ volume ratio/ reverse isoperimetric problem/ Buseman-Petty problem; discovered by K. Ball.
- We point out another link to convex geometry:

Brascamp-Lieb $\leftrightarrow$ a study of the volume product of a convex body $K$ :

$$
v(K):=|K|\left|K^{\circ}\right|, \quad K^{\circ}:=\left\{x \in \mathbb{R}^{n}: \sup _{y \in \mathbb{R}^{n}}\langle x, y\rangle \leq 1\right\}
$$

## Overview

- Brascamp-Lieb inequality has fruitful connections to convex geometry. E.g. Brascamp-Lieb $\rightarrow$ volume ratio/ reverse isoperimetric problem/ Buseman-Petty problem; discovered by K. Ball.
- We point out another link to convex geometry:

Brascamp-Lieb $\leftrightarrow$ a study of the volume product of a convex body $K$ :

$$
v(K):=|K|\left|K^{\circ}\right|, \quad K^{\circ}:=\left\{x \in \mathbb{R}^{n}: \sup _{y \in \mathbb{R}^{n}}\langle x, y\rangle \leq 1\right\}
$$

and exhibit of a wealth of this new link.

## Overview

- Brascamp-Lieb inequality has fruitful connections to convex geometry. E.g. Brascamp-Lieb $\rightarrow$ volume ratio/ reverse isoperimetric problem/ Buseman-Petty problem; discovered by K. Ball.
- We point out another link to convex geometry:

Brascamp-Lieb $\leftrightarrow$ a study of the volume product of a convex body $K$ :

$$
v(K):=|K|\left|K^{\circ}\right|, \quad K^{\circ}:=\left\{x \in \mathbb{R}^{n}: \sup _{y \in \mathbb{R}^{n}}\langle x, y\rangle \leq 1\right\}
$$

and exhibit of a wealth of this new link.

- All results are based on a simple observation: for $f_{K}(x):=e^{-\frac{1}{2}\|x\|_{K}^{2}}$,

$$
\lim _{s \downarrow 0} c_{s}\left(\int_{\mathbb{R}^{n}} f_{K} d x\right)^{-\frac{q_{s}}{\rho_{s}}}\left\|P_{s}\left[\left(\frac{f_{K}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]\right\|_{L q_{s}(\gamma)}^{q_{s}}=v(K)
$$

where $p_{s} \sim 2 s, q_{s} \sim-2 s$ and $c_{s}$ is explicit. A source of the idea of this identity: Bobkov-Gentil-Ledoux (Hamilton-Jacobi equation).

## Inequalities of the volume product

- (Blaschke-Santaló inequality)

$$
\sup _{K: K=-K} v(K)=v\left(\mathbb{B}_{2}^{n}\right) .
$$

## Inequalities of the volume product

- (Blaschke-Santaló inequality)

$$
\sup _{K: K=-K} v(K)=v\left(\mathbb{B}_{2}^{n}\right)
$$

- (Inverse Santaló inequality, Mahler's conjecture)

$$
\inf _{K: K=-K} v(K)=? v\left(\mathbb{B}_{1}^{n}\right)=\frac{4^{n}}{n!} .
$$

- The case $n=2$ was proved by Mahler. After partial progresses by Barthe-Fradelizi, Bourgain-Milman, Fradelizi-Meyer, Kurperberg, Nazarov-Petrov-Ryabogin-Zvavitch,.. the case $n=3$ was solved by Iriyeh-Shibata '20 and short proof was give by Fradelizi-Hubard-Meyer-Roldán-Pensado-Zvavitch '22.


## Functional volume product

- Upgrading geometric ineq about volume of convex body to functional ineq (e.g. Brunn-Minkowski $\rightarrow$ Prékopa-Leindler ineq ) initiated by K. Ball. $\rightsquigarrow$ This leads to "better" formulation of the problem.


## Functional volume product

- Upgrading geometric ineq about volume of convex body to functional ineq (e.g. Brunn-Minkowski $\rightarrow$ Prékopa-Leindler ineq ) initiated by K. Ball. $\rightsquigarrow$ This leads to "better" formulation of the problem.
- (Norm of a convex body) For a symmetric convex body K,

$$
\begin{gathered}
\|x\|_{K}:=\inf \{r>0: x \in r K\}, \quad x \in \mathbb{R}^{n} \\
\left.\rightsquigarrow \quad \int_{\mathbb{R}^{n}} e^{-\frac{1}{2}\|x\|_{K}^{2}} d x=(2 \pi)^{\frac{n}{2}} \right\rvert\, \frac{|K|}{\left|\mathbb{B}_{2}^{n}\right|} .
\end{gathered}
$$

## Functional volume product

- Upgrading geometric ineq about volume of convex body to functional ineq (e.g. Brunn-Minkowski $\rightarrow$ Prékopa-Leindler ineq ) initiated by K. Ball. $\rightsquigarrow$ This leads to "better" formulation of the problem.
- (Norm of a convex body) For a symmetric convex body K,

$$
\begin{aligned}
&\|x\|_{K}:=\inf \{r>0: x \in r K\}, \quad x \in \mathbb{R}^{n} \\
& \rightsquigarrow \quad \int_{\mathbb{R}^{n}} e^{-\frac{1}{2}\|x\|_{K}^{2}} d x=(2 \pi)^{\frac{n}{2}} \frac{|K|}{\left|\mathbb{B}_{2}^{n}\right|} .
\end{aligned}
$$

- (Polar body $\leftrightarrow$ Legendre tranform)

$$
\phi^{*}(x):=\sup _{y \in \mathbb{R}^{n}}(\langle x, y\rangle-\phi(y))
$$

## Functional volume product

- Upgrading geometric ineq about volume of convex body to functional ineq (e.g. Brunn-Minkowski $\rightarrow$ Prékopa-Leindler ineq ) initiated by K. Ball. $\rightsquigarrow$ This leads to "better" formulation of the problem.
- (Norm of a convex body) For a symmetric convex body $K$,

$$
\begin{aligned}
\|x\|_{K} & :=\inf \{r>0: x \in r K\}, \quad x \in \mathbb{R}^{n} \\
& \rightsquigarrow \int_{\mathbb{R}^{n}} e^{-\frac{1}{2}\|x\|_{K}^{2}} d x=(2 \pi)^{\frac{n}{2}} \frac{|K|}{\left|\mathbb{B}_{2}^{n}\right|} .
\end{aligned}
$$

- (Polar body $\leftrightarrow$ Legendre tranform)

$$
\phi^{*}(x):=\sup _{y \in \mathbb{R}^{n}}(\langle x, y\rangle-\phi(y)) \rightsquigarrow\left(\frac{1}{2}\|\cdot\|_{K}^{2}\right)^{*}=\frac{1}{2}\|\cdot\|_{K^{\circ}}^{2} .
$$

## Functional volume product

- (Ball and Artstein-Avidan-Klartag-Milman) For $f=e^{-\phi}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$,

$$
v(f):=\int_{\mathbb{R}^{n}} f d x \int_{\mathbb{R}^{n}} f^{\circ} d x:=\int_{\mathbb{R}^{n}} e^{-\phi} d x \int_{\mathbb{R}^{n}} e^{-\phi^{*}} d x
$$

## Functional volume product

- (Ball and Artstein-Avidan-Klartag-Milman) For $f=e^{-\phi}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$,

$$
v(f):=\int_{\mathbb{R}^{n}} f d x \int_{\mathbb{R}^{n}} f^{\circ} d x:=\int_{\mathbb{R}^{n}} e^{-\phi} d x \int_{\mathbb{R}^{n}} e^{-\phi^{*}} d x .
$$

- (Passage from functional volume product to geometrical one)

$$
v\left(e^{-\frac{1}{2}\|\cdot\|_{K}^{2}}\right)=c_{n} v(K), \quad c_{n}:=\frac{(2 \pi)^{n}}{\left|\mathbb{B}_{2}^{n}\right|^{2}} .
$$

## Functional Blaschke-Santaló inequality

Theorem 1 (Ball, Artstein-Avidan-Klartag-Milman, Fradelizi-Meyer, Lehec)
For any even function $f$,

$$
v(f) \leq v(\gamma)=(2 \pi)^{n}
$$

and equality iff $f=\gamma_{A}(x):=(\operatorname{det} 2 \pi A)^{-\frac{1}{2}} e^{-\frac{1}{2}\left\langle x, A^{-1} x\right\rangle}$ for some $A>0$. Assumption on $f$ can be weakened to $\int x f d x=0$.

## Functional Blaschke-Santaló inequality

Theorem 1 (Ball, Artstein-Avidan-Klartag-Milman, Fradelizi-Meyer, Lehec)
For any even function $f$,

$$
v(f) \leq v(\gamma)=(2 \pi)^{n}
$$

and equality iff $f=\gamma_{A}(x):=(\operatorname{det} 2 \pi A)^{-\frac{1}{2}} e^{-\frac{1}{2}\left\langle x, A^{-1} x\right\rangle}$ for some $A>0$. Assumption on $f$ can be weakened to $\int x f d x=0$.

- Reminds $\operatorname{Ent}(f) \leq \operatorname{Ent}(\gamma) \leftarrow \frac{d}{d t} \operatorname{Ent}\left(e^{t \Delta} f\right) \geq 0$.


## Functional Blaschke-Santaló inequality

Theorem 1 (Ball, Artstein-Avidan-Klartag-Milman, Fradelizi-Meyer, Lehec)
For any even function $f$,

$$
v(f) \leq v(\gamma)=(2 \pi)^{n}
$$

and equality iff $f=\gamma_{A}(x):=(\operatorname{det} 2 \pi A)^{-\frac{1}{2}} e^{-\frac{1}{2}\left\langle x, A^{-1} x\right\rangle}$ for some $A>0$. Assumption on $f$ can be weakened to $\int x f d x=0$.

- Reminds $\operatorname{Ent}(f) \leq \operatorname{Ent}(\gamma) \leftarrow \frac{d}{d t} \operatorname{Ent}\left(e^{t \Delta} f\right) \geq 0$. (reverse LSI: Artstein-Avidan-Klartag-Schütt-Werner, symmetric Talagrand: Fathi)


## Functional Blaschke-Santaló inequality

Theorem 1 (Ball, Artstein-Avidan-Klartag-Milman, Fradelizi-Meyer, Lehec)
For any even function $f$,

$$
v(f) \leq v(\gamma)=(2 \pi)^{n}
$$

and equality iff $f=\gamma_{A}(x):=(\operatorname{det} 2 \pi A)^{-\frac{1}{2}} e^{-\frac{1}{2}\left\langle x, A^{-1} x\right\rangle}$ for some $A>0$. Assumption on $f$ can be weakened to $\int x f d x=0$.

- Reminds $\operatorname{Ent}(f) \leq \operatorname{Ent}(\gamma) \leftarrow \frac{d}{d t} \operatorname{Ent}\left(e^{t \Delta} f\right) \geq 0$. (reverse LSI: Artstein-Avidan-Klartag-Schütt-Werner, symmetric Talagrand: Fathi)
- Any monotonicity statment of $v(f)$ ?


## Functional Blaschke-Santaló inequality

Theorem 1 (Ball, Artstein-Avidan-Klartag-Milman, Fradelizi-Meyer, Lehec)
For any even function $f$,

$$
v(f) \leq v(\gamma)=(2 \pi)^{n}
$$

and equality iff $f=\gamma_{A}(x):=(\operatorname{det} 2 \pi A)^{-\frac{1}{2}} e^{-\frac{1}{2}\left\langle x, A^{-1} x\right\rangle}$ for some $A>0$. Assumption on $f$ can be weakened to $\int x f d x=0$.

- Reminds $\operatorname{Ent}(f) \leq \operatorname{Ent}(\gamma) \leftarrow \frac{d}{d t} \operatorname{Ent}\left(e^{t \Delta} f\right) \geq 0$. (reverse LSI: Artstein-Avidan-Klartag-Schütt-Werner, symmetric Talagrand: Fathi)
- Any monotonicity statment of $v(f)$ ?
- E.g. It is monotone increasing via Steiner symmetrization (Artstein-Avidan-Klartag-Milman) which reduces to the case $n=1$.
$\rightsquigarrow$ Suggest heat flow monotonicity.


## Monotonicity of the functional volume product

For an initial data $f_{0} \in L^{1}(d x)$, let $f_{t}(t>0)$ be a Fokker-Planck flow:

$$
\partial_{t} f_{t}=\mathcal{L}^{*} f_{t}:=\Delta f_{t}+\left\langle x, \nabla f_{t}\right\rangle+n f_{t} .
$$

## Theorem 2 ( N -Tsuji)

For all even $f_{0}$,

$$
[0, \infty) \ni t \mapsto v\left(f_{t}\right)
$$

is monotone increasing.

## Monotonicity of the functional volume product

For an initial data $f_{0} \in L^{1}(d x)$, let $f_{t}(t>0)$ be a Fokker-Planck flow:

$$
\partial_{t} f_{t}=\mathcal{L}^{*} f_{t}:=\Delta f_{t}+\left\langle x, \nabla f_{t}\right\rangle+n f_{t} .
$$

## Theorem 2 ( N -Tsuji)

For all even $f_{0}$,

$$
[0, \infty) \ni t \mapsto v\left(f_{t}\right)
$$

is monotone increasing.
One (technical?) difficulty: $v\left(e^{-\phi}\right)=\int e^{-\phi} d x \int e^{-\sup _{y}\langle x, y\rangle-\phi(y)} d x$ involves sup $\rightsquigarrow$ doesn't behave well for the integration by parts etc.

## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb

## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb For each $s>0$ (small), take $p_{s}>0$ and symmetric matrix $\mathcal{Q}_{s}$ s.t.

$$
\frac{1}{p_{s}} \rightarrow+\infty, \quad p_{s} \mathcal{Q}_{s} \rightarrow-\frac{1}{2 \pi}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { as } \quad s \downarrow 0
$$

E.g. $p_{s}:=1-e^{-2 s} \sim 2 s, \quad \mathcal{Q}_{s}:=\frac{1}{2 \pi p_{s}}\left(\begin{array}{cc}0 & -e^{-s} \\ -e^{-s} & 0\end{array}\right)$.

## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb For each $s>0$ (small), take $p_{s}>0$ and symmetric matrix $\mathcal{Q}_{s}$ s.t.

$$
\begin{aligned}
& \qquad \frac{1}{p_{s}} \rightarrow+\infty, \quad p_{s} \mathcal{Q}_{s} \rightarrow-\frac{1}{2 \pi}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { as } \quad s \downarrow 0 \\
& \text { E.g. } p_{s}:=1-e^{-2 s} \sim 2 s, \quad \mathcal{Q}_{s}:=\frac{1}{2 \pi p_{s}}\left(\begin{array}{cc}
0 & -e^{-s} \\
-e^{-s} & 0
\end{array}\right) \text {. So for } f_{i}=e^{-\phi_{i}}, \\
& \left(\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} \times\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{p_{s}}} d x\right)^{p_{s}}
\end{aligned}
$$

## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb For each $s>0$ (small), take $p_{s}>0$ and symmetric matrix $\mathcal{Q}_{s}$ s.t.

$$
\begin{gathered}
\frac{1}{p_{s}} \rightarrow+\infty, \quad p_{s} \mathcal{Q}_{s} \rightarrow-\frac{1}{2 \pi}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { as } \quad s \downarrow 0 \\
\text { E.g. } p_{s}:=1-e^{-2 s} \sim 2 s, \quad \mathcal{Q}_{s}:=\frac{1}{2 \pi p_{s}}\left(\begin{array}{cc}
0 & -e^{-s} \\
-e^{-s} & 0
\end{array}\right) \text {. So for } f_{i}=e^{-\phi_{i}}, \\
\left(\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} \times\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x\right)^{p_{s}}=\left\|e^{-\pi\left\langle x, p_{s} \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)\right\|_{L_{x_{1}, x_{2}}^{1 / p_{s}}}
\end{gathered}
$$

## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb For each $s>0$ (small), take $p_{s}>0$ and symmetric matrix $\mathcal{Q}_{s}$ s.t.

$$
\begin{aligned}
& \qquad \frac{1}{p_{s}} \rightarrow+\infty, \quad p_{s} \mathcal{Q}_{s} \rightarrow-\frac{1}{2 \pi}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { as } s \downarrow 0 \\
& \text { E.g. } p_{s}:=1-e^{-2 s} \sim 2 s, \quad \mathcal{Q}_{s}:=\frac{1}{2 \pi p_{s}}\left(\begin{array}{cc}
0 & -e^{-s} \\
-e^{-s} & 0
\end{array}\right) \text {. So for } f_{i}=e^{-\phi_{i}}, \\
& \left(\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{p_{s}}} d x\right)^{p_{s}}=\left\|e^{-\pi\left\langle x, p_{s} \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)\right\|_{L_{x_{1}, x_{2}}^{1 / p_{s}}} \\
& \rightarrow \sup _{x_{1}, x_{2} \in \mathbb{R}} e^{x_{1} x_{2}} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)
\end{aligned}
$$

## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb For each $s>0$ (small), take $p_{s}>0$ and symmetric matrix $\mathcal{Q}_{s}$ s.t.

$$
\begin{gathered}
\frac{1}{p_{s}} \rightarrow+\infty, \quad p_{s} \mathcal{Q}_{s} \rightarrow-\frac{1}{2 \pi}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { as } s \downarrow 0 . \\
\text { E.g. } p_{s}:=1-e^{-2 s} \sim 2 s, \quad \mathcal{Q}_{s}:=\frac{1}{2 \pi p_{s}}\left(\begin{array}{cc}
0 & -e^{-s} \\
-e^{-s} & 0
\end{array}\right) \text {. So for } f_{i}=e^{-\phi_{i}}, \\
\left(\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x\right)^{p_{s}}=\left\|e^{-\pi\left\langle x, p_{s} \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)\right\|_{L_{x_{1}, x_{2}}^{1 / p_{s}}} \\
\rightarrow \sup _{x_{1}, x_{2} \in \mathbb{R}} e^{x_{1} x_{2}} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)=\sup _{x_{1}} e^{-\phi_{1}\left(x_{1}\right)+\phi_{2}^{*}\left(x_{1}\right)}
\end{gathered}
$$

## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb For each $s>0$ (small), take $p_{s}>0$ and symmetric matrix $\mathcal{Q}_{s}$ s.t.

$$
\begin{gathered}
\frac{1}{p_{s}} \rightarrow+\infty, \quad p_{s} \mathcal{Q}_{s} \rightarrow-\frac{1}{2 \pi}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { as } s \downarrow 0 . \\
\text { E.g. } p_{s}:=1-e^{-2 s} \sim 2 s, \quad \mathcal{Q}_{s}:=\frac{1}{2 \pi p_{s}}\left(\begin{array}{cc}
0 & -e^{-s} \\
-e^{-s} & 0
\end{array}\right) \text {. So for } f_{i}=e^{-\phi_{i}}, \\
\left(\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x\right)^{p_{s}}=\left\|e^{-\pi\left\langle x, p_{s} \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)\right\|_{L_{x_{1}, x_{2}}^{1 / p_{s}}} \\
\rightarrow \sup _{x_{1}, x_{2} \in \mathbb{R}} e^{x_{1} x_{2}} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)=\sup _{x_{1}} e^{-\phi_{1}\left(x_{1}\right)+\phi_{2}^{*}\left(x_{1}\right)} . \\
f_{1}=e^{-\phi^{*}}, f_{2}=e^{-\phi} \rightsquigarrow \lim _{s \downarrow 0}\left(\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} \times\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{p_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{p_{s}}} d x\right)^{p_{s}}=1 .
\end{gathered}
$$

## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

- If $f_{1}=e^{-\phi^{*}}$ and $f_{2}=e^{-\phi}$ then

$$
\lim _{s \downarrow 0}\left(\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x\right)^{p_{s}}=1
$$

## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

- If $f_{1}=e^{-\phi^{*}}$ and $f_{2}=e^{-\phi}$ then

$$
\lim _{s \downarrow 0}\left(\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{p_{s}}} d x\right)^{p_{s}}=1
$$

- $\mathrm{BL}_{s} \geq 0$ : the largest const of the ineq of

$$
\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x \geq \mathrm{BL}_{s} \prod_{i=1,2}\left(\int_{\mathbb{R}} f_{i} d x_{i}\right)^{\frac{1}{\rho_{s}}}, \forall f_{i} \in L^{1}
$$

## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

- If $f_{1}=e^{-\phi^{*}}$ and $f_{2}=e^{-\phi}$ then

$$
\lim _{s \downarrow 0}\left(\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{p_{s}}} d x\right)^{p_{s}}=1
$$

- $\mathrm{BL}_{s} \geq 0$ : the largest const of the ineq of

$$
\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{p_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x \geq \mathrm{BL}_{s} \prod_{i=1,2}\left(\int_{\mathbb{R}} f_{i} d x_{i}\right)^{\frac{1}{\rho_{s}}}, \forall f_{i} \in L^{1}
$$

Then

$$
v\left(e^{-\phi}\right)=\int e^{-\phi} d x \int e^{-\phi^{*}} d x \leq \lim _{s \downarrow 0} \mathrm{BL}_{s}^{-p_{s}}
$$

## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

- If $f_{1}=e^{-\phi^{*}}$ and $f_{2}=e^{-\phi}$ then

$$
\lim _{s \downarrow 0}\left(\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{p_{s}}} d x\right)^{p_{s}}=1
$$

- $\mathrm{BL}_{s} \geq 0$ : the largest const of the ineq of

$$
\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{p_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x \geq \mathrm{BL}_{s} \prod_{i=1,2}\left(\int_{\mathbb{R}} f_{i} d x_{i}\right)^{\frac{1}{\rho_{s}}}, \forall f_{i} \in L^{1}
$$

Then

$$
v\left(e^{-\phi}\right)=\int e^{-\phi} d x \int e^{-\phi^{*}} d x \leq \lim _{s \downarrow 0} \mathrm{BL}_{s}^{-p_{s}} ?=?(2 \pi)^{n}
$$

## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

- If $f_{1}=e^{-\phi^{*}}$ and $f_{2}=e^{-\phi}$ then

$$
\lim _{s \downarrow 0}\left(\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x\right)^{p_{s}}=1
$$

- $\mathrm{BL}_{s} \geq 0$ : the largest const of the ineq of

$$
\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{p_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x \geq \mathrm{BL}_{s} \prod_{i=1,2}\left(\int_{\mathbb{R}} f_{i} d x_{i}\right)^{\frac{1}{\rho_{s}}}, \forall f_{i} \in L^{1}
$$

Then

$$
v\left(e^{-\phi}\right)=\int e^{-\phi} d x \int e^{-\phi^{*}} d x \leq \lim _{s \downarrow 0} \mathrm{BL}_{s}^{-p_{s}} ?=?(2 \pi)^{n}
$$

- Apply Lieb's type theorem (the best cosnt is exhausted by centered Gaussians) and identify $\mathrm{BL}_{s} \ldots$ ? $\rightarrow$ A study of the inverse Brascamp-Lieb inequality.


## Functional volume product $\leftrightarrow$ inverse Brascamp-Lieb

- If $f_{1}=e^{-\phi^{*}}$ and $f_{2}=e^{-\phi}$ then

$$
\lim _{s \downarrow 0}\left(\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x\right)^{p_{s}}=1
$$

- $\mathrm{BL}_{s} \geq 0$ : the largest const of the ineq of

$$
\int_{\mathbb{R}^{2}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{p_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x \geq \mathrm{BL}_{s} \prod_{i=1,2}\left(\int_{\mathbb{R}} f_{i} d x_{i}\right)^{\frac{1}{\rho_{s}}}, \forall f_{i} \in L^{1}
$$

Then

$$
v\left(e^{-\phi}\right)=\int e^{-\phi} d x \int e^{-\phi^{*}} d x \leq \lim _{s \downarrow 0} \mathrm{BL}_{s}^{-p_{s}} ?=?(2 \pi)^{n}
$$

- Apply Lieb's type theorem (the best cosnt is exhausted by centered Gaussians) and identify $\mathrm{BL}_{s} \ldots$ ? $\rightarrow$ A study of the inverse Brascamp-Lieb inequality.
- Prékopa-Leindler $=$ limiting case of the sharp reverse Young (Brascamp-Lieb).


## General theory on inverse Brascamp-Lieb: Barthe-Wolff

- IF one could have Lieb's type result for this specific BL data:

$$
\inf _{f_{i} \in L^{1}} \frac{\int_{\mathbb{R}^{2 n}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x}{\prod_{i=1,2}\left(\int_{\mathbb{R}^{n}} f_{i} d x_{i}\right)^{\frac{1}{\rho_{s}}}}=\inf _{A_{1}, A_{2}>0} \Lambda_{s}\left(\gamma_{A_{1}}, \gamma_{A_{2}}\right)
$$

for each $s>0$, then this would be enough to derive $v(f) \leq v(\gamma)$.

## General theory on inverse Brascamp-Lieb: Barthe-Wolff

- IF one could have Lieb's type result for this specific BL data:

$$
\inf _{f_{i} \in L^{1}} \frac{\int_{\mathbb{R}^{2 n}} e^{-\pi\left\langle x, \mathcal{Q}_{s} \times\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x}{\prod_{i=1,2}\left(\int_{\mathbb{R}^{n}} f_{i} d x_{i}\right)^{\frac{1}{\rho_{s}}}}=\inf _{A_{1}, A_{2}>0} \Lambda_{s}\left(\gamma_{A_{1}}, \gamma_{A_{2}}\right)
$$

for each $s>0$, then this would be enough to derive $v(f) \leq v(\gamma)$.

- Comprehensive study of the inverse BL ineq by Barthe-Wolff: let $L_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{i}}, c_{1}, \ldots, c_{m} \in \mathbb{R} \backslash\{0\}$, and $\mathcal{Q}: n \times n$ symmetric. Then

$$
\inf _{f_{i} \in L^{1}} \frac{\int_{\mathbb{R}^{n}} e^{-\pi\langle x, \mathcal{Q} x\rangle} \prod_{i=1}^{m} f_{i}\left(L_{i} x\right)^{c_{i}} d x}{\prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i} d x_{i}\right)^{c_{i}}}=\inf _{A_{i}>0} \Lambda\left(\gamma_{A_{1}}, \ldots, \gamma_{A_{m}}\right),
$$

## General theory on inverse Brascamp-Lieb: Barthe-Wolff

- IF one could have Lieb's type result for this specific BL data:

$$
\inf _{f_{i} \in L^{1}} \frac{\int_{\mathbb{R}^{2 n}} e^{-\pi\left\langle x, \mathcal{Q}_{s} \times\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x}{\prod_{i=1,2}\left(\int_{\mathbb{R}^{n}} f_{i} d x_{i}\right)^{\frac{1}{\rho_{s}}}}=\inf _{A_{1}, A_{2}>0} \Lambda_{s}\left(\gamma_{A_{1}}, \gamma_{A_{2}}\right)
$$

for each $s>0$, then this would be enough to derive $v(f) \leq v(\gamma)$.

- Comprehensive study of the inverse BL ineq by Barthe-Wolff: let $L_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{i}}, c_{1}, \ldots, c_{m} \in \mathbb{R} \backslash\{0\}$, and $\mathcal{Q}: n \times n$ symmetric. Then

$$
\inf _{f_{i} \in L^{1}} \frac{\int_{\mathbb{R}^{n}} e^{-\pi\langle x, \mathcal{Q} x\rangle} \prod_{i=1}^{m} f_{i}\left(L_{i} x\right)^{c_{i}} d x}{\prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i} d x_{i}\right)^{c_{i}}}=\inf _{A_{i}>0} \Lambda\left(\gamma_{A_{1}}, \ldots, \gamma_{A_{m}}\right),
$$

if the data satisfies the non-degenerate condition:

$$
\left.\mathcal{Q}\right|_{\mathrm{ker} \mathbf{L}_{+}}>0, n \geq s^{+}(\mathcal{Q})+\sum_{i=1}^{m_{+}} n_{i} \text { where } \quad \mathbf{L}_{+}(x):=\left(L_{1} x, \ldots, L_{m_{+}} x\right)
$$

## General theory on inverse Brascamp-Lieb: Barthe-Wolff

- IF one could have Lieb's type result for this specific BL data:

$$
\inf _{f_{i} \in L^{1}} \frac{\int_{\mathbb{R}^{2 n}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x}{\prod_{i=1,2}\left(\int_{\mathbb{R}^{n}} f_{i} d x_{i}\right)^{\frac{1}{\rho_{s}}}}=\inf _{A_{1}, A_{2}>0} \Lambda_{s}\left(\gamma_{A_{1}}, \gamma_{A_{2}}\right)
$$

for each $s>0$, then this would be enough to derive $v(f) \leq v(\gamma)$.

- Comprehensive study of the inverse BL ineq by Barthe-Wolff: let $L_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{i}}, c_{1}, \ldots, c_{m} \in \mathbb{R} \backslash\{0\}$, and $\mathcal{Q}: n \times n$ symmetric. Then

$$
\inf _{f_{i} \in L^{1}} \frac{\int_{\mathbb{R}^{n}} e^{-\pi\langle x, \mathcal{Q} x\rangle} \prod_{i=1}^{m} f_{i}\left(L_{i} x\right)^{c_{i}} d x}{\prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i} d x_{i}\right)^{c_{i}}}=\inf _{A_{i}>0} \Lambda\left(\gamma_{A_{1}}, \ldots, \gamma_{A_{m}}\right),
$$

if the data satisfies the non-degenerate condition:

$$
\left.\mathcal{Q}\right|_{\mathrm{ker} \mathbf{L}_{+}}>0, n \geq s^{+}(\mathcal{Q})+\sum_{i=1}^{m_{+}} n_{i} \text { where } \mathbf{L}_{+}(x):=\left(L_{1} x, \ldots, L_{m_{+}} x\right)
$$

- Our specific data fails to satisfy the non-degenerate condition $\rightsquigarrow$ Need to go beyond the condition to enter convex geometry world!


## Functional volume product $\leftrightarrow$ regularization of OU flow

$$
p_{s}:=1-e^{-2 s}, \quad \mathcal{Q}_{s}:=\frac{1}{2 \pi p_{s}}\left(\begin{array}{cc}
0 & -e^{-s} \mathrm{id}_{\mathbb{R}^{n}} \\
-e^{-s} \mathrm{id}_{\mathbb{R}^{n}} & 0
\end{array}\right) .
$$

- For the purpose of deriving $v(f)$, the specific form of $p_{s}$ and $\mathcal{Q}_{s}$ in the above is not important;


## Functional volume product $\leftrightarrow$ regularization of OU flow

$$
p_{s}:=1-e^{-2 s}, \quad \mathcal{Q}_{s}:=\frac{1}{2 \pi p_{s}}\left(\begin{array}{cc}
0 & -e^{-s} \mathrm{id}_{\mathbb{R}^{n}} \\
-e^{-s} \mathrm{id}_{\mathbb{R}^{n}} & 0
\end{array}\right) .
$$

- For the purpose of deriving $v(f)$, the specific form of $p_{s}$ and $\mathcal{Q}_{s}$ in the above is not important; indeed the argument works as long as

$$
p_{s} \rightarrow 0, \quad p_{s} \mathcal{Q}_{s} \rightarrow \frac{1}{2 \pi}\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \quad \text { as } \quad s \rightarrow 0
$$

## Functional volume product $\leftrightarrow$ regularization of OU flow

$$
p_{s}:=1-e^{-2 s}, \quad \mathcal{Q}_{s}:=\frac{1}{2 \pi p_{s}}\left(\begin{array}{cc}
0 & -e^{-s} \mathrm{id}_{\mathbb{R}^{n}} \\
-e^{-s} \mathrm{id}_{\mathbb{R}^{n}} & 0
\end{array}\right) .
$$

- For the purpose of deriving $v(f)$, the specific form of $p_{s}$ and $\mathcal{Q}_{s}$ in the above is not important; indeed the argument works as long as

$$
p_{s} \rightarrow 0, \quad p_{s} \mathcal{Q}_{s} \rightarrow \frac{1}{2 \pi}\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \quad \text { as } \quad s \rightarrow 0
$$

- However, for our proof of the monotonicity of $v(f)$, this specific choice is crucial.


## Functional volume product $\leftrightarrow$ regularization of OU flow

$$
p_{s}:=1-e^{-2 s}, \quad \mathcal{Q}_{s}:=\frac{1}{2 \pi p_{s}}\left(\begin{array}{cc}
0 & -e^{-s} \mathrm{id}_{\mathbb{R}^{n}} \\
-e^{-s} \mathrm{id}_{\mathbb{R}^{n}} & 0
\end{array}\right) .
$$

- For the purpose of deriving $v(f)$, the specific form of $p_{s}$ and $\mathcal{Q}_{s}$ in the above is not important; indeed the argument works as long as

$$
p_{s} \rightarrow 0, \quad p_{s} \mathcal{Q}_{s} \rightarrow \frac{1}{2 \pi}\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \quad \text { as } \quad s \rightarrow 0
$$

- However, for our proof of the monotonicity of $v(f)$, this specific choice is crucial.
- In fact, we are guided to this specific choice of $p_{s}$ and $\mathcal{Q}_{s}$ by a nature of the Orntein-Uhlenbeck flow: for each $s>0$,

$$
P_{s} g(x):=\int_{\mathbb{R}^{n}} g\left(e^{-s} x+\sqrt{1-e^{-2 s}} y\right) d \gamma(y), \quad x \in \mathbb{R}^{n}
$$

which is a sol to $\partial_{s} u_{s}=\Delta u_{s}-x \cdot \nabla u_{s}, u_{0}=g$.

## Functional volume product $\leftrightarrow$ regularization of OU flow

In fact, our BL is a dual form of the reverse hypercontractivity: for given $f_{0}$

$$
C_{s} \int_{\mathbb{R}^{2 n}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x=\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{\rho_{s}}}\right]\right\|_{L^{q_{s}}}(\gamma)
$$

for

$$
f_{1}=f_{0}, \quad f_{2}(x):=\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{\rho_{s}}}\right]\right\|_{L q_{s}(\gamma)}^{-q_{s}} P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{\rho_{s}}}\right]^{q_{s}}(x) \gamma(x),
$$

## Functional volume product $\leftrightarrow$ regularization of OU flow

In fact, our BL is a dual form of the reverse hypercontractivity: for given $f_{0}$

$$
C_{s} \int_{\mathbb{R}^{2 n}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x=\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{\rho_{s}}}\right]\right\|_{L^{q_{s}}(\gamma)}
$$

for

$$
\begin{gathered}
f_{1}=f_{0}, \quad f_{2}(x):=\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]\right\|_{L q_{s}(\gamma)}^{-q_{s}} P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]^{q_{s}}(x) \gamma(x), \\
q_{s}:=p_{s}^{\prime}=1-e^{2 s}<0, \quad C_{s}:=\left(\frac{(2 \pi)^{\frac{1}{2}\left(\frac{1}{p_{s}}+\frac{1}{q_{s}^{\prime}}\right)-1}}{\sqrt{1-e^{-2 s}}}\right)^{n} .
\end{gathered}
$$

## Functional volume product $\leftrightarrow$ regularization of OU flow

In fact, our BL is a dual form of the reverse hypercontractivity: for given $f_{0}$

$$
C_{s} \int_{\mathbb{R}^{2 n}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{p_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x=\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{\rho_{s}}}\right]\right\|_{q_{s}(\gamma)}
$$

for

$$
\begin{gathered}
f_{1}=f_{0}, \quad f_{2}(x):=\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]\right\|_{L q_{s}(\gamma)}^{-q_{s}} P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]^{q_{s}}(x) \gamma(x), \\
q_{s}:=p_{s}^{\prime}=1-e^{2 s}<0, \quad C_{s}:=\left(\frac{(2 \pi)^{\frac{1}{2}\left(\frac{1}{p_{s}}+\frac{1}{q_{s}^{\prime}}\right)-1}}{\sqrt{1-e^{-2 s}}}\right)^{n} .
\end{gathered}
$$

Our inverse BL: $\int e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x \geq \mathrm{BL}_{s} \prod_{i=1,2}\left(\int f_{i}\right)^{\frac{1}{\rho_{s}}}$ is reduced to the $L^{p}-L^{q}$ bound of $P_{s}$ :

$$
\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{\rho_{s}}}\right]\right\|_{L^{q_{s}}(\gamma)} \geq \frac{\mathrm{BL}_{s}}{C_{s}}\left(\int_{\mathbb{R}^{n}} \frac{f_{0}}{\gamma} d \gamma\right)^{\frac{1}{\rho_{s}}}
$$

## Borell's reverse hypercontractivity

- A family of inequalities of the form $\left\|P_{s} g\right\|_{L^{q}(\gamma)} \geq\|g\|_{L^{p}(\gamma)}$ for $q<0<p<1$ is known as Borell's reverse hypercontractivity. What is a manifestation of the ineq?


## Borell's reverse hypercontractivity

- A family of inequalities of the form $\left\|P_{s} g\right\|_{L^{q}(\gamma)} \geq\|g\|_{L^{p}(\gamma)}$ for $q<0<p<1$ is known as Borell's reverse hypercontractivity. What is a manifestation of the ineq?
- $P_{s} g$ solves a heat equation $\partial_{s} u=(\Delta-x \cdot \nabla) u$ with $u_{s}:=P_{s} g$.


## Borell's reverse hypercontractivity

- A family of inequalities of the form $\left\|P_{s} g\right\|_{L^{q}(\gamma)} \geq\|g\|_{L^{p}(\gamma)}$ for $q<0<p<1$ is known as Borell's reverse hypercontractivity. What is a manifestation of the ineq?
- $P_{s} g$ solves a heat equation $\partial_{s} u=(\Delta-x \cdot \nabla) u$ with $u_{s}:=P_{s} g$.
- (Regularizing property of $P_{s}$ : Qualitative) Dirac delta $\delta_{0} \notin L^{\infty}$ and $\delta_{0}=0$ a lot $\rightsquigarrow P_{s} \delta_{0} \in L^{\infty}$ and $P_{s} \delta_{0}>0$.


## Borell's reverse hypercontractivity

- A family of inequalities of the form $\left\|P_{s} g\right\|_{L^{q}(\gamma)} \geq\|g\|_{L^{p}(\gamma)}$ for $q<0<p<1$ is known as Borell's reverse hypercontractivity. What is a manifestation of the ineq?
- $P_{s} g$ solves a heat equation $\partial_{s} u=(\Delta-x \cdot \nabla) u$ with $u_{s}:=P_{s} g$.
- (Regularizing property of $P_{s}$ : Qualitative) Dirac delta $\delta_{0} \notin L^{\infty}$ and $\delta_{0}=0$ a lot $\rightsquigarrow P_{s} \delta_{0} \in L^{\infty}$ and $P_{s} \delta_{0}>0$.
- The rev heypercontractivity is a quantitative statement of the regularizing property of $P_{s}$


## Borell's reverse hypercontractivity

- $\|h\|_{L^{q}(\gamma)} \gg 0$ for very small $q<0 \Rightarrow h$ is very positive:


## Borell's reverse hypercontractivity

- $\|h\|_{L^{q}(\gamma)} \gg 0$ for very small $q<0 \Rightarrow h$ is very positive: If $h=\chi_{[-1,1]}$, then $\|h\|_{L^{q}(\gamma)}=\infty^{-1}=0$ for any $q<0$. More quantitatively, consider $h_{q}(x)=e^{-\frac{1}{2|q|}|x|^{2}} \rightsquigarrow\left\|h_{q}\right\|_{L^{q+\varepsilon}(\gamma)}>0$ but $\left\|h_{q}\right\|_{L^{q-\varepsilon}(\gamma)}=0$.


## Borell's reverse hypercontractivity

- $\|h\|_{L^{q}(\gamma)} \gg 0$ for very small $q<0 \Rightarrow h$ is very positive: If $h=\chi_{[-1,1]}$, then $\|h\|_{L^{q}(\gamma)}=\infty^{-1}=0$ for any $q<0$. More quantitatively, consider $h_{q}(x)=e^{-\frac{1}{2|q|}|x|^{2}} \rightsquigarrow\left\|h_{q}\right\|_{L^{q+\varepsilon}(\gamma)}>0$ but $\left\|h_{q}\right\|_{L^{q-\varepsilon}(\gamma)}=0$.
- (Borell's reverse hypercontractivity) Suppose $s>0$ and $q<0<p<1$ satisfy

$$
\text { (Nelson's time) } \quad q \geq q(s, p), \quad q(s, p):=1+e^{2 s}(p-1)
$$

Then for all $g \geq 0$,

$$
\left\|P_{s} g\right\|_{L^{q}(\gamma)} \geq\|g\|_{L^{p}(\gamma)}
$$

## Borell's reverse hypercontractivity

- $\|h\|_{L^{q}(\gamma)} \gg 0$ for very small $q<0 \Rightarrow h$ is very positive: If $h=\chi_{[-1,1]}$, then $\|h\|_{L^{q}(\gamma)}=\infty^{-1}=0$ for any $q<0$. More quantitatively, consider $h_{q}(x)=e^{-\frac{1}{2|q|}|x|^{2}} \rightsquigarrow\left\|h_{q}\right\|_{L^{q+\varepsilon}(\gamma)}>0$ but $\left\|h_{q}\right\|_{L^{q-\varepsilon}(\gamma)}=0$.
- (Borell's reverse hypercontractivity) Suppose $s>0$ and $q<0<p<1$ satisfy

$$
\text { (Nelson's time) } \quad q \geq q(s, p), \quad q(s, p):=1+e^{2 s}(p-1)
$$

Then for all $g \geq 0$,

$$
\left\|P_{s} g\right\|_{L^{q}(\gamma)} \geq\|g\|_{L^{p}(\gamma)}
$$

- (Nelson's time) is necessary:

$$
q<q(s, p) \Rightarrow \inf _{a \in \mathbb{R}^{n}} \frac{\left\|P_{s}\left[e^{a \cdot x}\right]\right\|_{L^{q}}(\gamma)}{\left\|e^{a \cdot x}\right\|_{L^{p}}(\gamma)}=0
$$

## Borell's reverse hypercontractivity

- $\|h\|_{L^{q}(\gamma)} \gg 0$ for very small $q<0 \Rightarrow h$ is very positive: If $h=\chi_{[-1,1]}$, then $\|h\|_{L^{q}(\gamma)}=\infty^{-1}=0$ for any $q<0$. More quantitatively, consider $h_{q}(x)=e^{-\frac{1}{2|q|}|x|^{2}} \rightsquigarrow\left\|h_{q}\right\|_{L^{q+\varepsilon}(\gamma)}>0$ but $\left\|h_{q}\right\|_{L^{q-\varepsilon}(\gamma)}=0$.
- (Borell's reverse hypercontractivity) Suppose $s>0$ and $q<0<p<1$ satisfy

$$
\text { (Nelson's time) } \quad q \geq q(s, p), \quad q(s, p):=1+e^{2 s}(p-1)
$$

Then for all $g \geq 0$,

$$
\left\|P_{s} g\right\|_{L^{q}(\gamma)} \geq\|g\|_{L^{p}(\gamma)}
$$

- (Nelson's time) is necessary:

$$
q<q(s, p) \Rightarrow \inf _{a \in \mathbb{R}^{n}} \frac{\left\|P_{s}\left[e^{a \cdot x}\right]\right\|_{L^{q}}(\gamma)}{\left\|e^{a \cdot x}\right\|_{L^{p}}(\gamma)}=0 .
$$

$\rightsquigarrow \operatorname{Rev} \mathrm{HC}$ for smaller $q<0$ quantifies stronger regularization of $P_{s}$.
Limitation of the regularization is up to $q \geq q(s, p)$.

## Improvement of Borell's reverse hypercontractivity

- Our expected rev HC:

$$
\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]\right\|_{L^{q_{s}}(\gamma)} \geq \frac{\mathrm{BL}_{s}}{C_{s}}\left(\int_{\mathbb{R}^{n}} \frac{f_{0}}{\gamma} d \gamma\right)^{\frac{1}{p_{s}}}, \quad p_{s}:=1-e^{-2 s}, q_{s}=1-e^{2 s}
$$

## Improvement of Borell's reverse hypercontractivity

- Our expected rev HC:

$$
\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]\right\|_{L^{q_{s}}(\gamma)} \geq \frac{\mathrm{BL}_{s}}{C_{s}}\left(\int_{\mathbb{R}^{n}} \frac{f_{0}}{\gamma} d \gamma\right)^{\frac{1}{p_{s}}}, \quad p_{s}:=1-e^{-2 s}, \quad q_{s}=1-e^{2 s}
$$

However, $q_{s} \ll q\left(s, p_{s}\right)$ : beyond Nelson's time. $\rightsquigarrow$ Need more regularization from $P_{s}$ which is impossible in general.

## Improvement of Borell's reverse hypercontractivity

- Our expected rev HC:
$\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]\right\|_{L^{q_{s}}(\gamma)} \geq \frac{\mathrm{BL}_{s}}{C_{s}}\left(\int_{\mathbb{R}^{n}} \frac{f_{0}}{\gamma} d \gamma\right)^{\frac{1}{p_{s}}}, \quad p_{s}:=1-e^{-2 s}, \quad q_{s}=1-e^{2 s}$
However, $q_{s} \ll q\left(s, p_{s}\right)$ : beyond Nelson's time. $\rightsquigarrow$ Need more regularization from $P_{s}$ which is impossible in general.
- So $\mathrm{BL}_{s}=0$ if one takes account of all $f_{0} \geq 0$.


## Improvement of Borell's reverse hypercontractivity

- Our expected rev HC:
$\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{\rho_{s}}}\right]\right\|_{L^{q_{s}}(\gamma)} \geq \frac{\mathrm{BL}_{s}}{C_{s}}\left(\int_{\mathbb{R}^{n}} \frac{f_{0}}{\gamma} d \gamma\right)^{\frac{1}{\rho_{s}}}, \quad p_{s}:=1-e^{-2 s}, q_{s}=1-e^{2 s}$
However, $q_{s} \ll q\left(s, p_{s}\right)$ : beyond Nelson's time. $\rightsquigarrow$ Need more regularization from $P_{s}$ which is impossible in general.
- So $\mathrm{BL}_{s}=0$ if one takes account of all $f_{0} \geq 0$.
- Recall that the Blaschke-Santaló ineq required some symmetry $\rightsquigarrow$ possibly $\mathrm{BL}_{s}>0$ by restricting attention to even $f_{0} \ldots$ ?


## Improvement of Borell's reverse hypercontractivity

- Our expected rev HC:

$$
\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]\right\|_{L^{q_{s}}(\gamma)} \geq \frac{\mathrm{BL}_{s}}{C_{s}}\left(\int_{\mathbb{R}^{n}} \frac{f_{0}}{\gamma} d \gamma\right)^{\frac{1}{\rho_{s}}}, \quad p_{s}:=1-e^{-2 s}, q_{s}=1-e^{2 s}
$$

However, $q_{s} \ll q\left(s, p_{s}\right)$ : beyond Nelson's time. $\rightsquigarrow$ Need more regularization from $P_{s}$ which is impossible in general.

- So $\mathrm{BL}_{s}=0$ if one takes account of all $f_{0} \geq 0$.
- Recall that the Blaschke-Santaló ineq required some symmetry $\rightsquigarrow$ possibly $\mathrm{BL}_{s}>0$ by restricting attention to even $f_{0} \ldots$ ?


## Theorem 3 ( N -Tsuji)

Let $s>0$ and $1-e^{2 s} \leq q<0<p \leq 1-e^{-2 s}$. Then for any even $f_{0}$,

$$
\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{\rho}}\right]\right\|_{L^{q}(\gamma)} \geq\left(\int_{\mathbb{R}^{n}} \frac{f_{0}}{\gamma} d \gamma\right)^{\frac{1}{p}} .
$$

Moreover, the range of $q<0<p$ is best possible. Equality when $f_{0}=\gamma$.

## Monotonicity statement

- The convex geometrical argument due to Lehec (Prékopa-Leindler + Yao-Yao equipartition) is applicable to the problem of rev HC but the yielding range of $p, q$ is not sharp: $q \geq-p$ and $p \leq 1-e^{-2 s}$.


## Monotonicity statement

- The convex geometrical argument due to Lehec (Prékopa-Leindler + Yao-Yao equipartition) is applicable to the problem of rev HC but the yielding range of $p, q$ is not sharp: $q \geq-p$ and $p \leq 1-e^{-2 s}$. $\rightsquigarrow$ Need a new idea to complete the possible range of $p, q$.


## Monotonicity statement

- The convex geometrical argument due to Lehec (Prékopa-Leindler + Yao-Yao equipartition) is applicable to the problem of rev HC but the yielding range of $p, q$ is not sharp: $q \geq-p$ and $p \leq 1-e^{-2 s} . \rightsquigarrow$ Need a new idea to complete the possible range of $p, q$.
- Our improved rev HC is a consequence from stronger monotonicity statement along Fokker-Planck flow.


## Monotonicity statement

- The convex geometrical argument due to Lehec (Prékopa-Leindler + Yao-Yao equipartition) is applicable to the problem of rev HC but the yielding range of $p, q$ is not sharp: $q \geq-p$ and $p \leq 1-e^{-2 s} . \rightsquigarrow$ Need a new idea to complete the possible range of $p, q$.
- Our improved rev HC is a consequence from stronger monotonicity statement along Fokker-Planck flow.


## Theorem 4 ( N -Tsuji)

Let $s>0$ and $p_{s}:=1-e^{-2 s}, q_{s}=p_{s}^{\prime}=1-e^{2 s}$. Then for any even $f_{0}$,

$$
[0, \infty) \ni t \mapsto Q_{s}(t):=\left\|P_{s}\left[\left(\frac{f_{t}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]\right\|_{L^{q_{s}}(\gamma)}^{q_{s}}
$$

is monotone increasing where $f_{t}$ is FP flow: $\partial_{t} f_{t}=(\Delta+x \cdot \nabla+n) f_{t}$.

## Monotonicity of the functional volume product (again)

- Recall our observation:

$$
\lim _{s \downarrow 0}\left(\int_{\mathbb{R}^{2 n}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{p_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{p_{s}}} d x\right)^{p_{s}}=\sup _{x} f_{1}(x) f_{2}^{\circ}(x) .
$$

## Monotonicity of the functional volume product (again)

- Recall our observation:

$$
\lim _{s \downarrow 0}\left(\int_{\mathbb{R}^{2 n}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{p_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{p_{s}}} d x\right)^{p_{s}}=\sup _{x} f_{1}(x) f_{2}^{\circ}(x) .
$$

- Following similar idea, one can show

$$
\lim _{s \downarrow 0} c_{s}\left(\int_{\mathbb{R}^{n}} f_{0} d x\right)^{-\frac{q_{s}}{\rho_{s}}}\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{\rho_{s}}}\right]\right\|_{L q_{s}(\gamma)}^{q_{s}}=v\left(f_{0}\right):=\int f_{0} d x \int f_{0}^{\circ} d x
$$

for some explicit $C_{s}$. This is how we prove the monotonicity of the functional volume product.

## Monotonicity of the functional volume product (again)

- Recall our observation:

$$
\lim _{s \downarrow 0}\left(\int_{\mathbb{R}^{2 n}} e^{-\pi\left\langle x, \mathcal{Q}_{s} x\right\rangle} f_{1}\left(x_{1}\right)^{\frac{1}{\rho_{s}}} f_{2}\left(x_{2}\right)^{\frac{1}{\rho_{s}}} d x\right)^{p_{s}}=\sup _{x} f_{1}(x) f_{2}^{\circ}(x)
$$

- Following similar idea, one can show

$$
\lim _{s \downarrow 0} c_{s}\left(\int_{\mathbb{R}^{n}} f_{0} d x\right)^{-\frac{q_{s}}{\rho_{s}}}\left\|P_{s}\left[\left(\frac{f_{0}}{\gamma}\right)^{\frac{1}{\rho_{s}}}\right]\right\|_{L q_{s}(\gamma)}^{q_{s}}=v\left(f_{0}\right):=\int f_{0} d x \int f_{0}^{\circ} d x
$$

for some explicit $C_{s}$. This is how we prove the monotonicity of the functional volume product.

- The monotonicity scheme $Q_{s}(t):=\left\|P_{s}\left[\left(\frac{f_{t}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]\right\|_{L_{s}(\gamma)}^{q_{s}}$ is introduced by Aoki-Bennett-Bez-Machihara-Matsuura-Shiraki where they proved the monotonicity under Nelson's time condition.


## Proof of the monotonicity

Goal: $\frac{d}{d t} \widetilde{Q_{s}}(t) \geq 0$ where $\left(p_{s}, q_{s}\right)=\left(1-e^{-2 s}, 1-e^{2 s}\right)$ and

$$
\widetilde{Q_{s}}(t):=\log Q(s)=\log \left\|P_{s}\left[\left(\frac{f_{t}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]\right\|_{L q_{s}(\gamma)}^{q_{s_{s}}}, \partial_{t} f_{t}=(\Delta+x \cdot \nabla+n) f_{t} .
$$

## Proof of the monotonicity

Goal: $\frac{d}{d t} \widetilde{Q_{s}}(t) \geq 0$ where $\left(p_{s}, q_{s}\right)=\left(1-e^{-2 s}, 1-e^{2 s}\right)$ and

$$
\widetilde{Q_{s}}(t):=\log Q(s)=\log \left\|P_{s}\left[\left(\frac{f_{t}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]\right\|_{L q_{s}(\gamma)}^{q_{s_{s}}}, \partial_{t} f_{t}=(\Delta+x \cdot \nabla+n) f_{t} .
$$

- Although the rev HC at $(p, q)=\left(p_{s}, q_{s}\right)$ is the strongest ineq, it appears to be the "easiest" to prove (things becomes canonical).


## Proof of the monotonicity

Goal: $\frac{d}{d t} \widetilde{Q_{s}}(t) \geq 0$ where $\left(p_{s}, q_{s}\right)=\left(1-e^{-2 s}, 1-e^{2 s}\right)$ and

$$
\widetilde{Q_{s}}(t):=\log Q(s)=\log \left\|P_{s}\left[\left(\frac{f_{t}}{\gamma}\right)^{\frac{1}{p_{s}}}\right]\right\|_{L q_{s}(\gamma)}^{q_{s_{s}}}, \partial_{t} f_{t}=(\Delta+x \cdot \nabla+n) f_{t}
$$

- Although the rev HC at $(p, q)=\left(p_{s}, q_{s}\right)$ is the strongest ineq, it appears to be the "easiest" to prove (things becomes canonical).
- A virtue of this specific choice: from $\partial_{t} f_{t}=\mathcal{L}^{*} f_{t}$,

$$
C_{s} \frac{d}{d t} \widetilde{Q_{s}}(t)=-\frac{1}{p^{2}} \int x^{2} F_{t}^{q} d x-\frac{2}{p}\left(\frac{1}{p}-1\right) \int F_{t}^{q}\left(x \int e ^ { - \frac { 1 } { p } x z } f _ { t } ( z ) ^ { \frac { 1 } { p } } \left(\log f_{t}(z\right.\right.
$$

## Proof of the monotonicity

Goal: $\frac{d}{d t} \widetilde{Q_{s}}(t) \geq 0$ where $\left(p_{s}, q_{s}\right)=\left(1-e^{-2 s}, 1-e^{2 s}\right)$ and
$\widetilde{Q_{s}}(t):=\log Q(s)=\log \left\|P_{s}\left[\left(\frac{f_{t}}{\gamma}\right)^{\frac{1}{\rho_{s}}}\right]\right\|_{L q_{s}(\gamma)}^{q_{s_{s}}}, \partial_{t} f_{t}=(\Delta+x \cdot \nabla+n) f_{t}$.

- Although the rev HC at $(p, q)=\left(p_{s}, q_{s}\right)$ is the strongest ineq, it appears to be the "easiest" to prove (things becomes canonical).
- A virtue of this specific choice: from $\partial_{t} f_{t}=\mathcal{L}^{*} f_{t}$,

$$
\begin{aligned}
& C_{s} \frac{d}{d t} \\
& \widetilde{Q}_{s}(t)=-\frac{1}{p^{2}} \int x^{2} F_{t}^{q} d x-\frac{2}{p}\left(\frac{1}{p}-1\right) \int F_{t}^{q}\left(x \int e ^ { - \frac { 1 } { p } x z } f _ { t } ( z ) ^ { \frac { 1 } { p } } \left(\log f_{t}(z\right.\right. \\
&=-\int_{\mathbb{R}} x^{2} F_{t}(x)^{q_{s}} d x \\
&-\left(1-p_{s}\right) \int\left(\int e^{\frac{1}{\rho_{s}} x z} f_{t}(z)^{\frac{1}{\rho_{s}}}\left(\log f_{t}\right)(z)^{\prime \prime} d z\right) F_{t}(x)^{q_{s}-1} d x, \\
& F_{t}(x):=\frac{1}{Z_{t}} \int_{\mathbb{R}} e^{\frac{1}{\rho_{s}} \times z} f_{t}(z)^{\frac{1}{\rho_{s}}} d z, \quad Z_{t}:=\left\|\int_{\mathbb{R}} e^{\frac{1}{\rho_{s}} \times z} f_{t}(z)^{\frac{1}{\rho_{s}}} d z\right\|_{L^{q_{s}}(d x)} .
\end{aligned}
$$

## Proof of the monotonicity

$$
C_{s} \frac{d}{d t} \widetilde{Q}_{s}(t)=-\int_{\mathbb{R}} x^{2} F_{t}(x)^{q_{s}} d x-\left(1-p_{s}\right) \int \cdots
$$

- New tools: (i) Brascamp-Lieb inequality generalizing Poincaré ineq and (ii) Cremér-Rao ineq:


## Proof of the monotonicity

$$
C_{s} \frac{d}{d t} \widetilde{Q}_{s}(t)=-\int_{\mathbb{R}} x^{2} F_{t}(x)^{q_{s}} d x-\left(1-p_{s}\right) \int \cdots
$$

- New tools: (i) Brascamp-Lieb inequality generalizing Poincaré ineq and (ii) Cremér-Rao ineq: for a log-concave $F$ s.t. $\int F d x=1$,

$$
\int \phi^{2} F d x-\left(\int \phi F d x\right)^{2} \leq \int \frac{1}{(-\log F)^{\prime \prime}}\left|\phi^{\prime}\right|^{2} F d x
$$

## Proof of the monotonicity

$$
C_{s} \frac{d}{d t} \widetilde{Q}_{s}(t)=-\int_{\mathbb{R}} x^{2} F_{t}(x)^{q_{s}} d x-\left(1-p_{s}\right) \int \cdots
$$

- New tools: (i) Brascamp-Lieb inequality generalizing Poincaré ineq and (ii) Cremér-Rao ineq: for a log-concave $F$ s.t. $\int F d x=1$,

$$
\int \phi^{2} F d x-\left(\int \phi F d x\right)^{2} \leq \int \frac{1}{(-\log F)^{\prime \prime}}\left|\phi^{\prime}\right|^{2} F d x
$$

and $\operatorname{Var}(F) \geq I(F)^{-1}$ i.e.

$$
\int x^{2} F d x-\left(\int x F d x\right)^{2} \geq\left(\int(-\log F)^{\prime \prime} F d x\right)^{-1}
$$

## Proof of the monotonicity

$$
C_{s} \frac{d}{d t} \widetilde{Q}_{s}(t)=-\int_{\mathbb{R}} x^{2} F_{t}(x)^{q_{s}} d x-\left(1-p_{s}\right) \int \cdots
$$

- New tools: (i) Brascamp-Lieb inequality generalizing Poincaré ineq and (ii) Cremér-Rao ineq: for a log-concave $F$ s.t. $\int F d x=1$,

$$
\int \phi^{2} F d x-\left(\int \phi F d x\right)^{2} \leq \int \frac{1}{(-\log F)^{\prime \prime}}\left|\phi^{\prime}\right|^{2} F d x
$$

and $\operatorname{Var}(F) \geq I(F)^{-1}$ i.e.

$$
\int x^{2} F d x-\left(\int x F d x\right)^{2} \geq\left(\int(-\log F)^{\prime \prime} F d x\right)^{-1}
$$

- Apply P-BL with $F=F_{t}^{q_{s}}$ and $\phi(x)=x$. Notice $F_{t}^{q_{s}}=F_{t}^{q_{s}}(-\cdot)$ so $\int x F_{t}^{q_{s}} d x=0 \rightsquigarrow$

$$
\int x^{2} F_{t}^{q_{s}} d x \leq \int \frac{1}{\left(-\log F_{t}^{q_{s}}\right)^{\prime \prime}} F_{t}^{q_{s}} d x
$$

## Proof of the monotonicity

$$
\int x^{2} F_{t}^{q_{s}} d x \leq \int \frac{1}{\left(-\log F_{t}^{q_{s}}\right)^{\prime \prime}} F_{t}^{\sigma_{s}} d x, \quad F_{t}(x):=\frac{1}{Z_{t}} \int_{\mathbb{R}} e^{\frac{1}{p_{s} z z} f_{t}(z)^{\frac{1}{p_{s}}} d z}
$$

## Proof of the monotonicity

$$
\int x^{2} F_{t}^{q_{s}} d x \leq \int \frac{1}{\left(-\log F_{t}^{q_{s}}\right)^{\prime \prime}} F_{t}^{q_{s}} d x, \quad F_{t}(x):=\frac{1}{Z_{t}} \int_{\mathbb{R}} e^{\frac{1}{\rho_{s}} \times z} f_{t}(z)^{\frac{1}{\rho_{s}}} d z
$$

From the def of $F_{t}^{q_{s}}(x):=\left(\frac{1}{Z_{t}} \int_{\mathbb{R}} e^{\frac{1}{\rho_{s}} x z} f_{t}(z)^{\frac{1}{\rho_{s}}} d z\right)^{q_{s}}$,

$$
\begin{gathered}
\left(-\log F_{t}^{q_{s}}\right)^{\prime \prime}(x)=-\frac{q_{s}}{p_{s}^{2}}\left(\int z^{2} G_{x, t}(z) d z-\left(\int z G_{x, t}(z) d z\right)^{2}\right) \\
G_{x, t}(z):=\frac{1}{\int e^{\frac{1}{p_{s}} \times y} f_{t}(y)^{\frac{1}{\rho_{s}}} d y} e^{\frac{1}{\rho_{s}} \times z} f_{t}(z)^{\frac{1}{\rho_{s}}}
\end{gathered}
$$

## Proof of the monotonicity

$$
\int x^{2} F_{t}^{q_{s}} d x \leq \int \frac{1}{\left(-\log F_{t}^{q_{s}}\right)^{\prime \prime}} F_{t}^{q_{s}} d x, \quad F_{t}(x):=\frac{1}{Z_{t}} \int_{\mathbb{R}} e^{\frac{1}{p_{s}} x z} f_{t}(z)^{\frac{1}{p_{s}}} d z
$$

From the def of $F_{t}^{q_{s}}(x):=\left(\frac{1}{Z_{t}} \int_{\mathbb{R}} e^{\frac{1}{p_{s}} x z} f_{t}(z)^{\frac{1}{\rho_{s}}} d z\right)^{q_{s}}$,

$$
\begin{gathered}
\left(-\log F_{t}^{q_{s}}\right)^{\prime \prime}(x)=-\frac{q_{s}}{p_{s}^{2}}\left(\int z^{2} G_{x, t}(z) d z-\left(\int z G_{x, t}(z) d z\right)^{2}\right) \\
G_{x, t}(z):=\frac{1}{\int e^{\frac{1}{p_{s}} \times y} f_{t}(y)^{\frac{1}{\rho_{s}}} d y} e^{\frac{1}{p_{s}} \times z} f_{t}(z)^{\frac{1}{p_{s}}}
\end{gathered}
$$

Apply Cremér-Rao,
$\left(-\log F_{t}^{q_{s}}\right)^{\prime \prime}(x)=-\frac{q_{s}}{p_{s}^{2}} \operatorname{Var}\left(G_{x, t}\right) \geq-\frac{q_{s}}{p_{s}^{2}}\left(\int \frac{1}{p_{s}}\left(-\log f_{t}\right)^{\prime \prime}(z) G_{x, t}(z) d z\right)^{-1}$

## Proof of the monotonicity

$$
\int x^{2} F_{t}^{q_{s}} d x \leq \int \frac{1}{\left(-\log F_{t}^{q_{s}}\right)^{\prime \prime}} F_{t}^{q_{s}} d x, \quad F_{t}(x):=\frac{1}{Z_{t}} \int_{\mathbb{R}} e^{\frac{1}{p_{s}} x z} f_{t}(z)^{\frac{1}{p_{s}}} d z
$$

From the def of $F_{t}^{q_{s}}(x):=\left(\frac{1}{Z_{t}} \int_{\mathbb{R}} e^{\frac{1}{\rho_{s}} x z} f_{t}(z)^{\frac{1}{\rho_{s}}} d z\right)^{q_{s}}$,

$$
\begin{gathered}
\left(-\log F_{t}^{q_{s}}\right)^{\prime \prime}(x)=-\frac{q_{s}}{p_{s}^{2}}\left(\int z^{2} G_{x, t}(z) d z-\left(\int z G_{x, t}(z) d z\right)^{2}\right) \\
G_{x, t}(z):=\frac{1}{\int e^{\frac{1}{p_{s}} \times y} f_{t}(y)^{\frac{1}{\rho_{s}}} d y} e^{\frac{1}{p_{s}} \times z} f_{t}(z)^{\frac{1}{p_{s}}}
\end{gathered}
$$

Apply Cremér-Rao,

$$
\begin{gathered}
\left(-\log F_{t}^{q_{s}}\right)^{\prime \prime}(x)=-\frac{q_{s}}{p_{s}^{2}} \operatorname{Var}\left(G_{x, t}\right) \geq-\frac{q_{s}}{p_{s}^{2}}\left(\int \frac{1}{p_{s}}\left(-\log f_{t}\right)^{\prime \prime}(z) G_{x, t}(z) d z\right)^{-1} \\
\rightsquigarrow \int x^{2} F_{t}^{q_{s}} d x \leq-\frac{p_{s}}{q_{s}} \int\left(\int\left(-\log f_{t}\right)^{\prime \prime}(z) G_{x, t}(z) d z\right) F_{t}^{q_{s}} d x
\end{gathered}
$$

## Proof of the monotonicity

$$
\begin{aligned}
\rightsquigarrow \int x^{2} F_{t}^{q_{s}} d x & \leq-\frac{p_{s}}{q_{s}} \int\left(\int\left(-\log f_{t}\right)^{\prime \prime}(z) G_{x, t}(z) d z\right) F_{t}^{q_{s}} d x \\
& =\frac{p_{s}}{q_{s}} \int\left(\int\left(\log f_{t}\right)^{\prime \prime}(z) e^{\frac{1}{p_{s}} \times z} f_{t}(z)^{\frac{1}{p_{s}}} d z\right) F_{t}(x)^{q_{s}-1} d x .
\end{aligned}
$$

## Proof of the monotonicity

$$
\begin{aligned}
\rightsquigarrow \int x^{2} F_{t}^{q_{s}} d x & \leq-\frac{p_{s}}{q_{s}} \int\left(\int\left(-\log f_{t}\right)^{\prime \prime}(z) G_{x, t}(z) d z\right) F_{t}^{q_{s}} d x \\
& =\frac{p_{s}}{q_{s}} \int\left(\int\left(\log f_{t}\right)^{\prime \prime}(z) e^{\frac{1}{p_{s}} \times z} f_{t}(z)^{\frac{1}{p_{s}}} d z\right) F_{t}(x)^{q_{s}-1} d x
\end{aligned}
$$

Overall,

$$
\begin{aligned}
C_{s} \frac{d}{d t} \widetilde{Q_{s}}(t)= & -\int_{\mathbb{R}} x^{2} F_{t}(x)^{q_{s}} d x \\
& -\left(1-p_{s}\right) \int\left(\int e^{\frac{1}{p_{s}} \times z} f_{t}(z)^{\frac{1}{p_{s}}}\left(\log f_{t}\right)(z)^{\prime \prime} d z\right) F_{t}(x)^{q-1} d x \\
\geq & \left(-\frac{p_{s}}{q_{s}}-1+p_{s}\right) \int(\cdots) d x=0 .
\end{aligned}
$$

## Stability of the functional BS

## Theorem 5 (Barthe-Böröczky-Fradelizi)

There exists $\varepsilon_{0}=\varepsilon_{0}(n)>0$ s.t. if $\phi_{0}$ is even convex and satisfies

$$
\frac{v(\gamma)}{v\left(e^{-\phi_{0}}\right)}<\frac{1}{1-\varepsilon}
$$

for some $\varepsilon \in\left(0, \varepsilon_{0}\right)$ then

$$
\left.\left.\inf _{B, \mu} \int_{|x| \leq R(\varepsilon)}\left|\frac{1}{2}\right| x\right|^{2}-\phi_{0}(B x)+\mu \right\rvert\, d x \leq C(n) \varepsilon^{\frac{1}{129 n^{2}}}
$$

Here $R(\varepsilon) \leq \frac{1}{8 n}\left(\log \frac{1}{\varepsilon}\right)^{\frac{1}{2}}$ and satisfies $\lim _{\varepsilon \rightarrow 0} R(\varepsilon)=+\infty$.
Barthe-Böröczky-Fradelizi conjectured that the power of the deficit $\frac{1}{129 n^{2}}$ can be replaced by some absolute constant independent of $n$. They considered more general functional ineq.

## Stability of the functional BS: Wealth of monotonicity

We confirm their conj for uniformly log-concave functs: for $\lambda, \lambda^{\circ}>0$,

$$
\mathcal{F}\left(\lambda, \lambda^{\circ}\right):=\left\{\phi: \lambda \leq \nabla^{2} \phi, \lambda^{\circ} \leq \nabla^{2} \phi^{*}\right\} .
$$

E.g. Eldan-Mikulincer: dimension free stability for Shannon-Stam.

## Stability of the functional BS: Wealth of monotonicity

We confirm their conj for uniformly log-concave functs: for $\lambda, \lambda^{\circ}>0$,

$$
\mathcal{F}\left(\lambda, \lambda^{\circ}\right):=\left\{\phi: \lambda \leq \nabla^{2} \phi, \lambda^{\circ} \leq \nabla^{2} \phi^{*}\right\} .
$$

E.g. Eldan-Mikulincer: dimension free stability for Shannon-Stam.

## Theorem 6 ( N -Tsuji)

There exists $\varepsilon_{0}=\varepsilon_{0}\left(n, \lambda \lambda^{\circ}\right)$ s.t.: If $\phi_{0} \in \mathcal{F}\left(\lambda, \lambda^{\circ}\right)$ is even and satisfies

$$
\frac{v(\gamma)}{v\left(e^{-\phi_{0}}\right)}<e^{\varepsilon} \sim 1+\varepsilon
$$

for some $\varepsilon \in\left(0, \varepsilon_{0}\right)$, then

$$
\left.\left.\inf _{B, \mu} \int_{|x| \leq R(\varepsilon)}\left|\frac{1}{2}\right| x\right|^{2}-\phi_{0}(B x)+\mu \right\rvert\, d x \leq C\left(n, \lambda \lambda^{\circ}\right) \varepsilon^{\frac{1}{7}}
$$

where $R(\varepsilon)=\frac{\lambda \lambda^{\circ}}{100}\left(\log \frac{1}{\varepsilon}\right)^{\frac{1}{2}}$ and so $\lim _{\varepsilon \rightarrow 0} R(\varepsilon)=+\infty$.

## Stability of the functional BS: Main ingredient

## Theorem 7 (Cordero-Erausquin)

Let $V \in C^{2}\left(\mathbb{R}^{n}\right) \cap L^{1}\left(\mathbb{R}^{n}\right)$ be nonnegative, $\int e^{-V} d x=1$ and strictly log-concave. Then for any locally Lipschitz $g \in L^{2}(h d x)$,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}|g|^{2} e^{-v} d x-\left(\int_{\mathbb{R}^{n}} g e^{-V} d x\right)^{2} \\
& \leq \int\left\langle\nabla g, \nabla^{2} V^{-1} \nabla g\right\rangle e^{-v} d x-c(h) \int_{\mathbb{R}^{n}}\left|g(x)-\left\langle u_{0}, \nabla V(x)\right\rangle\right|^{2} e^{-V} d x
\end{aligned}
$$

where

$$
u_{0}:=\int_{\mathbb{R}^{n}} y g(y) e^{-V} d y, c(h):=\frac{c \lambda(V)}{\sup _{x} \lambda_{\max }\left(\nabla^{2} V(x)\right)+c \lambda(V)}
$$

$c$ is a numerical constant, $\lambda(V)$ denotes its Poincaré constant, and $\lambda_{\max }(A)$ denotes the maximum eigenvalue of a symmetric matrix $A$.

## Broad picture

- Barthe-Wolff's inverse Brascamp-Lieb inequality (General):
$(*) \inf _{f_{i}: \text { arbitrary }} \frac{\int_{\mathbb{R}^{n}} e^{-\pi\langle x, \mathcal{Q} x\rangle} \prod_{i=1}^{m} f_{i}\left(L_{i} x\right)^{c_{i}} d x}{\prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i} d x_{i}\right)^{c_{i}}}=\inf _{A_{i}>0} \Lambda\left(\gamma_{A_{1}}, \ldots, \gamma_{A_{m}}\right)$,
if the data $(\mathbf{c}, \mathbf{L}, \mathcal{Q})$ is non-degenerate in BW sense.


## Broad picture

- Barthe-Wolff's inverse Brascamp-Lieb inequality (General):
$(*) \inf _{f_{i}: \text { arbitrary }} \frac{\int_{\mathbb{R}^{n}} e^{-\pi\langle x, \mathcal{Q} x\rangle} \prod_{i=1}^{m} f_{i}\left(L_{i} x\right)^{c_{i}} d x}{\prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i} d x_{i}\right)^{c_{i}}}=\inf _{A_{i}>0} \Lambda\left(\gamma_{A_{1}}, \ldots, \gamma_{A_{m}}\right)$,
if the data $(\mathbf{c}, \mathbf{L}, \mathcal{Q})$ is non-degenerate in BW sense.
- Need to understand the degenerate case in view of the link to convex geometry but $(*)$ often fails in the such case.


## Broad picture

- Barthe-Wolff's inverse Brascamp-Lieb inequality (General):
$(*) \inf _{f_{i} \text { :arbitrary }} \frac{\int_{\mathbb{R}^{n}} e^{-\pi\langle x, \mathcal{Q} x\rangle} \prod_{i=1}^{m} f_{i}\left(L_{i} x\right)^{c_{i}} d x}{\prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i} d x_{i}\right)^{c_{i}}}=\inf _{A_{i}>0} \Lambda\left(\gamma_{A_{1}}, \ldots, \gamma_{A_{m}}\right)$,
if the data $(\mathbf{c}, \mathbf{L}, \mathcal{Q})$ is non-degenerate in BW sense.
- Need to understand the degenerate case in view of the link to convex geometry but $(*)$ often fails in the such case.
- Reasonable to expect

$$
\inf _{f_{i}: \text { even }} \frac{\int_{\mathbb{R}^{n}} e^{-\pi\langle x, \mathcal{Q} x\rangle} \prod_{i=1}^{m} f_{i}\left(L_{i} x\right)^{c_{i}} d x}{\prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i} d x_{i}\right)^{c_{i}}}=\inf _{A_{i}>0} \Lambda\left(\gamma_{A_{1}}, \ldots, \gamma_{A_{m}}\right)
$$

even when the the data $(\mathbf{c}, \mathbf{L}, \mathcal{Q})$ is degenerate.

## Broad picture

- Barthe-Wolff's inverse Brascamp-Lieb inequality (General):
$(*) \inf _{f_{i} \text { :arbitrary }} \frac{\int_{\mathbb{R}^{n}} e^{-\pi\langle x, \mathcal{Q} x\rangle} \prod_{i=1}^{m} f_{i}\left(L_{i} x\right)^{c_{i}} d x}{\prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i} d x_{i}\right)^{c_{i}}}=\inf _{A_{i}>0} \Lambda\left(\gamma_{A_{1}}, \ldots, \gamma_{A_{m}}\right)$,
if the data $(\mathbf{c}, \mathbf{L}, \mathcal{Q})$ is non-degenerate in BW sense.
- Need to understand the degenerate case in view of the link to convex geometry but $(*)$ often fails in the such case.
- Reasonable to expect

$$
\inf _{f_{i}: \text { even }} \frac{\int_{\mathbb{R}^{n}} e^{-\pi\langle x, \mathcal{Q} x\rangle} \prod_{i=1}^{m} f_{i}\left(L_{i} x\right)^{c_{i}} d x}{\prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i} d x_{i}\right)^{c_{i}}}=\inf _{A_{i}>0} \Lambda\left(\gamma_{A_{1}}, \ldots, \gamma_{A_{m}}\right)
$$

even when the the data $(\mathbf{c}, \mathbf{L}, \mathcal{Q})$ is degenerate. In the above, we confirmed this in a very specific data coming from hypercontractivity.

## Broad picture

- Barthe-Wolff's inverse Brascamp-Lieb inequality (General):
$(*) \inf _{f_{i} \text { :arbitrary }} \frac{\int_{\mathbb{R}^{n}} e^{-\pi\langle x, \mathcal{Q} x\rangle} \prod_{i=1}^{m} f_{i}\left(L_{i} x\right)^{c_{i}} d x}{\prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i} d x_{i}\right)^{c_{i}}}=\inf _{A_{i}>0} \Lambda\left(\gamma_{A_{1}}, \ldots, \gamma_{A_{m}}\right)$,
if the data $(\mathbf{c}, \mathbf{L}, \mathcal{Q})$ is non-degenerate in BW sense.
- Need to understand the degenerate case in view of the link to convex geometry but $(*)$ often fails in the such case.
- Reasonable to expect

$$
\inf _{f_{i}: \text { even }} \frac{\int_{\mathbb{R}^{n}} e^{-\pi\langle x, \mathcal{Q} x\rangle} \prod_{i=1}^{m} f_{i}\left(L_{i} x\right)^{c_{i}} d x}{\prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i} d x_{i}\right)^{c_{i}}}=\inf _{A_{i}>0} \Lambda\left(\gamma_{A_{1}}, \ldots, \gamma_{A_{m}}\right)
$$

even when the the data $(\mathbf{c}, \mathbf{L}, \mathcal{Q})$ is degenerate. In the above, we confirmed this in a very specific data coming from hypercontractivity.

- (Importance) If one could prove this, one would also solve Kolesnikov-Werner's conjecture about Blaschke-Santaló inequality for multiple convex bodies.


## Kolesnikov-Werner's conjecture

Simplest non-trivial case: If $f_{1}, f_{2}, f_{3}$ : even and satisfy

$$
\prod_{i=1}^{3} f_{i}\left(x_{i}\right) \leq \exp \left(-\frac{1}{3-1} \sum_{1 \leq i<j \leq 3}\left\langle x_{i}, x_{j}\right\rangle\right), \quad x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n}
$$

then

$$
\prod_{i=1}^{3} \int_{\mathbb{R}^{n}} f_{i} d x_{i} \leq\left(\int_{\mathbb{R}^{n}} e^{-\frac{1}{2}|x|^{2}} d x\right)^{3}=(2 \pi)^{\frac{3 n}{2}}
$$

## Kolesnikov-Werner's conjecture

Simplest non-trivial case: If $f_{1}, f_{2}, f_{3}$ : even and satisfy

$$
\prod_{i=1}^{3} f_{i}\left(x_{i}\right) \leq \exp \left(-\frac{1}{3-1} \sum_{1 \leq i<j \leq 3}\left\langle x_{i}, x_{j}\right\rangle\right), \quad x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n}
$$

then

$$
\prod_{i=1}^{3} \int_{\mathbb{R}^{n}} f_{i} d x_{i} \leq\left(\int_{\mathbb{R}^{n}} e^{-\frac{1}{2}|x|^{2}} d x\right)^{3}=(2 \pi)^{\frac{3 n}{2}}
$$

This would follow from the conjectural inv BL with a data
$L_{i}\left(x_{1}, x_{2}, x_{3}\right)=x_{i}, \quad c_{i}=\frac{1}{1-e^{-2 s}}, \quad \mathcal{Q}_{s}=-\frac{e^{-s}}{2 \pi(3-1)\left(1-e^{-2 s}\right)}\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$
and then take $s \rightarrow 0$.

Thank you for your attention.

