Symmetrization Resistance

Emma Pollard
joint work with Mokshay Madiman

Asymptotic Geometric Analysis Seminar

2024 January 18

Symmetrization resistance

Definition

$Z \in_{R} \mathbb{R}$ is symmetric about zero iff $\forall z \quad \mathbb{P}(Z \leq-z)=\mathbb{P}(Z \geq z)$

- For discrete $Z \in_{R} \mathbb{R}$, denote its PMF by f_{Z}
- Equivalent for discrete Z :

Definition

$\forall z \in \operatorname{supp}\left(f_{Z}\right), \quad f_{Z}(-z)=f_{Z}(z)$ (symmetry equations)

Definition

For discrete $X \in_{R} \mathbb{R}$, a symmetrizer is an independent $Y \in_{R} \mathbb{R}$ such that $X+Y$ is symmetric about zero.

Definition

Discrete $X \in R \mathbb{R}$ is...

- variance symmetrization resistant iff all symmetrizers Y satisfy $\operatorname{Var}(Y) \geq \operatorname{Var}(X)$
- entropic symmetrization resistant iff all symmetrizers Y satisfy $H(Y) \geq H(X)$

Continuous question is also interesting.
Motivation:

- Original question of KMSVV99: Gaussianization. Given non-Gaussian X, how can we choose Y such that $X+Y$ is "as Gaussian as possible"?
- If we use KL-divergence from Gaussian, equivalent to problem of maximizing capacity of additive noise channel with noise X
- X is noise, Y is signal
- Transmit power constrains Y
- Recent work on Gaussian mixtures and additive noise: Eskenazis, Nayar \& Tkocz 2018; Madiman, Nayar \& Tkocz 2019, 2021

Symmetrization Resistance: Known Results

- The only distributions on \mathbb{R} known to be symmetrization resistant are Bernoulli.
- Notation: $X \sim \operatorname{Bernoulli}(p, a, b)(a<b)$:

$$
\mathbb{P}(X=a)=q \text { and } \mathbb{P}(X=b)=p
$$

- Notation: $q=1-p$.

Theorem (Kagan, Mallows, Shepp, Vanderbei and Vardi 1999)

Asymmetric Bernoulli r.v.s are variance symmetrization resistant.

- Proof: exhibited solution to linear program.
- Second proof: Pal 2008 (stochastic calculus; Skorokhod embedding).
- Third proof: Madiman and Pollard 2023 (find basis for affine hull of space of symmetrizers; bound coefficients)

Theorem (Madiman and Pollard 2023)

Asymmetric Bernoulli r.v.s are entropic symmetrization resistant.
In both cases, equality iff $f_{Y}=f_{-X}$.

Known negative results

- Symmetric integrable $X \in R \mathbb{R}$ are never symmetrization resistant.
$\triangleright-\mathbb{E} X$ is a symmetrizer
- $\operatorname{Var}(-\mathbb{E} X)=H(-\mathbb{E} X)=0$
- Definition: X has a symmetric component if there exist independent U and V (symmetric V) and $X=U+V$.

Lemma (Kagan, Mallows, Shepp, Vanderbei and Vardi 1999)

X has nontrivial symmetric component \Rightarrow not variance symm. res.

Lemma

X has nontrivial symmetric component \Rightarrow not entropic symm. res.

- Note: For Bernoulli, f_{X} has nontrivial symmetric component iff f_{X} is symmetric.

Known negative results: Binomial

- KMSVV (1999) showed asymmetric $f_{X} \sim \operatorname{Binomial}(n, p)$ with $n \geq 4$ and and $p \in(0.489,0.5)$ are not variance symm. res.
- We believe these are not entropic symm. res. either (numerical support)
- Asymmetric Binomial with $n=2,3$ open.

Elementary observations

- Notation: convolution for PMFs f, g on \mathbb{R},

$$
(f * g)(u)=\sum_{w \in \operatorname{supp}(g)} f(u-w) g(w)=\sum_{w \in \operatorname{supp}(f)} f(w) g(u-w)
$$

- $Y \sim f$ symmetrizes X
iff f symmetrizes f_{X}
iff $f * f_{X}$ is symmetric about zero
$\vee|\operatorname{supp}(X)|=2:$ sufficient to investigate $X \sim \operatorname{Bernoulli}(p,-1,1)$; $p>\frac{1}{2}$.

The space \mathcal{Y} of symmetrizer PMFs

- Notation: for $X \in_{R} \mathbb{R}$,

$$
\mathcal{Y}=\mathcal{Y}\left[f_{X}\right]=\left\{\text { PMFs } f \mid f * f_{X} \text { is symmetric about zero }\right\} .
$$

$\checkmark \mathcal{Y}$ is convex

- H and Var are concave
\triangleright Idea: Krein-Milman?
D Difficulty 1: Unclear whether \mathcal{Y} is compact
- Difficulty 2: Many extreme points, some not obvious.
- Solution: find basis in \mathcal{Y} for aff (\mathcal{Y}); control negative coeffs

The functions \hat{f}

Now let $X \sim \operatorname{Bernoulli}(p,-1,1), p>\frac{1}{2}$.
Notation:

- Indicator function of $E \subseteq \mathbb{R}: \chi_{E}$
- Point indicator: $\chi_{w}=\chi_{\{w\}}$ for $w \in \mathbb{R}$

Useful symmetrizer PMFs: For any PMF f_{X} on \mathbb{R} and any $z \in \mathbb{R}$, define
$-\hat{f}_{z}(u)=\frac{1}{2}\left(\left(\chi_{-z} * f_{-X}\right)(u)+\left(\chi_{z} * f_{-X}\right)(u)\right)$
Lemma (The \hat{f} are symmetrizers)
For any PMF f_{X} on \mathbb{R}, for any $z \in \mathbb{R}, \hat{f}_{z} \in \mathcal{Y}\left[f_{X}\right]$.

Define for $r \in[0,1]$,
$\triangleright S^{r}=2 \mathbb{Z}+\{ \pm r\}($ partition of $\mathbb{R})$

- $\mathcal{Y}^{r}=\left\{f \in \mathcal{Y} \mid \operatorname{supp}(f) \subseteq S^{r}\right\}$.
$I^{r}= \begin{cases}\{1,2, \ldots\} & \text { when } r=0 \\ \mathbb{Z} & \text { when } r \in(0,1) \\ \{0,1,2, \ldots\} & \text { when } r=1 .\end{cases}$
- $\hat{f}_{k}^{r}(z)=\hat{f}_{2 k+1+r} \in \mathcal{Y}^{r}$ for all $k \in I^{r}$
\triangleright and $R_{f}=\left\{r \in[0,1] \mid \operatorname{supp}(f) \cap S^{r} \neq \emptyset\right\}$

Lemma (Extreme symmetrizer spaces \mathcal{Y}^{r})

$f \in \mathcal{Y}, r \in R_{f} \Rightarrow$ the unique PMF $\left.f^{r} \propto f\right|_{S^{r}}$ satisfies $f^{r} \in \mathcal{Y}^{r}$. Also, if $f \notin \mathcal{\mathcal { V }}^{r}$, then the unique PMF $\left.g \propto f\right|_{\mathbb{R} \backslash S^{r}}$ satisfies $g \in \mathcal{Y}$, and $\exists c^{r} \in(0,1)$ s.t. $f=c^{r} f^{r}+\left(1-c^{r}\right) g$.

Proof: symmetry equations respect partition S^{r}.

Theorem (Representation theorem for \mathcal{Y} (Bernoulli))
For $f_{X} \sim \operatorname{Bernoulli}(p,-1,1)$ and $f \in \mathcal{Y}\left[f_{X}\right]$,

$$
f=\sum_{r \in R_{f}} \sum_{k \in I^{r}} \alpha_{k}^{r} \hat{f}_{k}^{r} .
$$

Moreover, $\sum_{r \in R_{f}} \sum_{k \in r^{r}} \alpha_{k}^{r}=1$.
Specifically:
$>\alpha_{k}^{r}=\frac{2}{p-q}(p f(-2 k-r)-q f(2 k+r))$,
\triangleright except $\alpha_{1}^{0}=\frac{1}{p-q}(p f(-2 k-r)-q f(2 k+r))$.
Proof:

- First prove for $f \in \mathcal{Y}^{r}$, then sum over R_{f}
- For $f \in \mathcal{Y}^{r}$: prove for finite dimensional spaces $\mathcal{Y}_{n}^{r}=\left\{f \in \mathcal{Y}^{r} \mid \operatorname{supp}(f) \subseteq[-2 n-r, 2 n+r]\right\}$
- Then take $n \rightarrow \infty$.

Lemma (Negative coefficient control)

Let

$$
f=\sum_{r \in R_{f}} \sum_{k \in I^{r}} \alpha_{k}^{r} \hat{f}_{k}^{r} \in \mathcal{Y} .
$$

If $\alpha_{j}^{r} \leq 0$:
$>\alpha_{j+1}^{r} \geq \frac{p}{q}\left|\alpha_{j}^{r}\right|>\left|\alpha_{j}^{r}\right|$
$>$ also $\alpha_{j-1}^{r} \geq \frac{p}{q}\left|\alpha_{j}^{r}\right|>\left|\alpha_{j}^{r}\right|$ when it exists (i.e. when $j-1 \in I^{r}$) Also, $\alpha_{1}^{0} \geq 0$.

Proof.

From symmetry equations.

Theorem (Entropic symm. res. of Bernoulli)
Asymmetric Bernoulli r.v.s are entropic symmetrization resistant. That is, for $X \sim \operatorname{Bernoulli}(p, a, b)$ with $p \neq \frac{1}{2}$, any $f \in \mathcal{Y}\left[f_{X}\right]$ satisfies $H(f) \geq H\left(f_{x}\right)$.

Proof (outline).

- Sufficient to investigate $f_{X} \sim \operatorname{Bernoulli}(p,-1,1), p>\frac{1}{2}$.
- Any $f \in \mathcal{Y}$ with $H(f)<H\left(f_{X}\right)$ must satisfy $f(0)>0$

Therefore sufficient to investigate \mathcal{Y}^{0} (concavity of entropy)

- Show that $f(0) \geq p>\frac{1}{2}$ for $f \in \mathcal{Y}^{0}$
- This implies $\frac{1}{2}<f(0)=\alpha_{0}^{1} \hat{f}_{0}^{1}(0)=\frac{\alpha_{0}^{1}}{2}$, thus $\alpha_{0}^{1}>1$
- But $\sum_{r, k} \alpha_{k}^{r}=1$, so

$$
1<\alpha_{0}^{1} \leq \alpha_{0}^{1}+\sum_{(r, k) \neq(1,0)} \alpha_{k}^{r}=\sum_{r, k} \alpha_{k}^{r}=1, \quad \text { contradiction. }
$$

Theorem (Variance symm. res. of Bernoulli)(KMSVV 1999)
Asymmetric Bernoulli r.v.s are variance symmetrization resistant. That is, for $X \sim \operatorname{Bernoulli}(p, a, b)$ with $p \neq \frac{1}{2}$, any $f \in \mathcal{Y}\left[f_{X}\right]$ satisfies $\operatorname{Var}(f) \geq \operatorname{Var}\left(f_{X}\right)$.

New proof (1/2)

- Sufficient to investigate $X \sim \operatorname{Bernoulli}(p,-1,1), p>\frac{1}{2}$
- Sufficient to investigate second moment M_{2}
- Concavity of variance: sufficient to investigate $f \in \mathcal{Y}^{0}$

New proof (2/2).

- For $f \in \mathcal{Y}^{0}$, compute

$$
\begin{aligned}
M_{2}(f)=\sum_{z \in / /^{0}=2 \mathbb{Z}} z^{2} f(z) & \geq 4 \sum_{z \neq 0} f(z) \\
& =4(1-f(0)) \\
& =4\left(1-\alpha_{1}^{0} \hat{f}_{1}^{0}(0)\right) \\
& \geq 4\left(1-\frac{1}{2}\right)=2=M_{2}(f-x) .
\end{aligned}
$$

Corollary (hypercube, entropy version)

Let:

- $X=\left(X_{1}, \ldots, X_{d}\right) \in_{R}\{-1,1\}^{d}$, all X_{i} asymmetric
- $Y=\left(Y_{1}, \ldots, Y_{d}\right) \in \mathcal{Y}\left[f_{X}\right]$

Then:

$$
H(Y) \geq \frac{1}{d} H(X) .
$$

Constant $\frac{1}{d}$ results from dependence between coordinates

- Rotate, translate, scale
$>$ Define: matrix norm $\|A\|_{1,1}=\sum_{i, j}\left|A_{i j}\right|$

Corollary (Hypercube, variance version)

Let:

- $X=\left(X_{1}, \ldots, X_{d}\right) \in_{R}\{-1,1\}^{d}$, all X_{i} asymmetric
- $Y=\left(Y_{1}, \ldots, Y_{d}\right) \in \mathcal{Y}\left[f_{X}\right]$

Then:

$$
\|\operatorname{Cov}(Y)\|_{1,1} \geq \frac{1}{d}\|\operatorname{Cov}(X)\|_{1,1}
$$

- Same constant $\frac{1}{d}$

Support in arithmetic progression, cardinality 3

- Symm. res. of discrete $X \in_{R} \mathbb{R}$ with $\left|\operatorname{supp}\left(f_{X}\right)\right|=2$ is solved.
- How to generalize to $X \in_{R} \mathbb{R}$ with $\left|\operatorname{supp}\left(f_{X}\right)\right|=3$?
- New difficulties:
$-\operatorname{supp}\left(f_{X}\right)$ might not be an arithmetic progression e.g. $\operatorname{supp}\left(f_{X}\right)=\{0,1,3\}$
$\checkmark \operatorname{supp}\left(f_{X}\right)$ might not even be contained in an arithmetic progression e.g. $\operatorname{supp}\left(f_{X}\right)=\{0,1, \pi\}$
- possible nontrivial symmetrizers $f \in \mathcal{Y}\left[f_{X}\right]$ with $\operatorname{supp}(f)<\operatorname{supp}\left(f_{X}\right)$
- symmetric part of asymmetric f_{X} may now be nontrivial
- New assumptions:
- Assume f_{X} has no nontrivial symmetric part
- Assume $\operatorname{supp}\left(f_{X}\right)$ is an arithmetic progression
- Equivalently: $\operatorname{supp}\left(f_{X}\right)=\{0, \pm 2\}$
- Other directions possible (Binomial f_{X}, monotone f_{X}, \ldots)

Redefine:

$\boldsymbol{\nabla} I^{r}= \begin{cases}\{0,1,2, \ldots\} & \text { when } r=0 \text { or } r=1 \\ \mathbb{Z} & \text { when } r \in(0,1) .\end{cases}$
Theorem (Representation theorem)
Let $\operatorname{supp}\left(f_{X}\right)=\{-2,0,2\}$ and let f_{X} have no nontrivial symmetric component. Then, for all $f \in \mathcal{Y}\left[f_{X}\right]$,

$$
f=\sum_{r \in R_{f}} \sum_{i \in I^{r}} \alpha_{i}^{r} \hat{f}_{i}^{r}
$$

everywhere on \mathbb{R}. Moreover, the coefficients α_{i}^{r} are the unique coefficients with this property.

- Difficulty/complexity seems to increase with $\left|\operatorname{supp}\left(f_{X}\right)\right|$.

References

- A. Eskenazis, P. Nayar, and T. Tkocz. Gaussian mixtures: entropy and geometric inequalities. Ann. Probab., 46(5):2908-2945, 2018.
- A. Kagan, C. L. Mallows, L. A. Shepp, R. J. Vanderbei, and Y. Vardi. Symmetrization of binary random variables. Bernoulli, 5(6):1013-1020, 1999.
- M. Madiman, P. Nayar and T. Tkocz: On the question of the best additive noise among symmetric log-concave noises. Proceedings of the 2019 IEEE International Symposium on Information Theory, Paris, France, July 2019.
- M. Madiman, P. Nayar, and T. Tkocz. Sharp moment-entropy inequalities and capacity bounds for log-concave distributions. IEEE Trans. Inform. Theory, 67(1):81-94, January 2021.
- S. Pal. Symmetrization of Bernoulli. Electron. Commun. Probab., 13:194-197, 2008.

Summary

Theorems

For asymmetric Bernoulli $X \in_{R} \mathbb{R}$ and independent $Y \in_{R} \mathbb{R}$ such that $X+Y$ is symmetric about zero,

- $\operatorname{Var}(Y) \geq \operatorname{Var}(X)$ (KMSVV99)
- $H(Y) \geq H(X)$ (Madiman \& Pollard)
with equality iff $f_{Y}=f_{-X}$.

Corollaries

For $X \in R\{-1,1\}^{d}$ with asymmetric coordinates and independent $Y \in_{R} \mathbb{R}^{d}$ such that $X+Y$ is symmetric about zero,

- $\operatorname{Var}(Y) \geq \frac{1}{d} \operatorname{Var}(X)$
- $H(Y) \geq \frac{1}{d} H(X)$

Thank you!

