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Symmetrization resistance

Definition

Z ∈R R is symmetric about zero iff ∀z P(Z ≤ −z) = P(Z ≥ z)

▶ For discrete Z ∈R R, denote its PMF by fZ
▶ Equivalent for discrete Z :

Definition

∀z ∈ supp(fZ ), fZ (−z) = fZ (z) (symmetry equations)

Definition

For discrete X ∈R R, a symmetrizer is an independent Y ∈R R such that
X + Y is symmetric about zero.
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Definition

Discrete X ∈R R is...

▶ variance symmetrization resistant iff all symmetrizers Y satisfy
Var(Y ) ≥ Var(X )

▶ entropic symmetrization resistant iff all symmetrizers Y satisfy
H(Y ) ≥ H(X )

Continuous question is also interesting.

Motivation:
▶ Original question of KMSVV99: Gaussianization. Given non-Gaussian

X , how can we choose Y such that X + Y is “as Gaussian as
possible”?

▶ If we use KL-divergence from Gaussian, equivalent to problem of
maximizing capacity of additive noise channel with noise X
▶ X is noise, Y is signal
▶ Transmit power constrains Y

▶ Recent work on Gaussian mixtures and additive noise: Eskenazis,
Nayar & Tkocz 2018; Madiman, Nayar & Tkocz 2019, 2021
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Symmetrization Resistance: Known Results

▶ The only distributions on R known to be symmetrization resistant are
Bernoulli.

▶ Notation: X ∼ Bernoulli(p, a, b) (a < b):

P(X = a) = q and P(X = b) = p.

▶ Notation: q = 1− p.

Theorem (Kagan, Mallows, Shepp, Vanderbei and Vardi 1999)

Asymmetric Bernoulli r.v.s are variance symmetrization resistant.

▶ Proof: exhibited solution to linear program.
▶ Second proof: Pal 2008 (stochastic calculus; Skorokhod embedding).
▶ Third proof: Madiman and Pollard 2023 (find basis for affine hull of

space of symmetrizers; bound coefficients)

Theorem (Madiman and Pollard 2023)

Asymmetric Bernoulli r.v.s are entropic symmetrization resistant.

In both cases, equality iff fY = f−X . 4 / 21



Known negative results

▶ Symmetric integrable X ∈R R are never symmetrization resistant.
▶ −EX is a symmetrizer
▶ Var(−EX ) = H(−EX ) = 0

▶ Definition: X has a symmetric component if there exist independent
U and V (symmetric V ) and X = U + V .

Lemma (Kagan, Mallows, Shepp, Vanderbei and Vardi 1999)

X has nontrivial symmetric component ⇒ not variance symm. res.

Lemma

X has nontrivial symmetric component ⇒ not entropic symm. res.

▶ Note: For Bernoulli, fX has nontrivial symmetric component iff fX is
symmetric.
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Known negative results: Binomial

▶ KMSVV (1999) showed asymmetric fX ∼ Binomial(n, p) with n ≥ 4
and and p ∈ (0.489, 0.5) are not variance symm. res.

▶ We believe these are not entropic symm. res. either (numerical
support)

▶ Asymmetric Binomial with n = 2, 3 open.
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Elementary observations

▶ Notation: convolution
for PMFs f , g on R,

(f ∗ g)(u) =
∑

w∈supp(g)

f (u − w)g(w) =
∑

w∈supp(f )

f (w)g(u − w)

▶ Y ∼ f symmetrizes X
iff f symmetrizes fX
iff f ∗ fX is symmetric about zero

▶ |supp(X )| = 2: sufficient to investigate X ∼ Bernoulli(p,−1, 1);
p > 1

2 .
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The space Y of symmetrizer PMFs

▶ Notation: for X ∈R R,

Y = Y[fX ] = {PMFs f | f ∗ fX is symmetric about zero }.

▶ Y is convex

▶ H and Var are concave
▶ Idea: Krein-Milman?

▶ Difficulty 1: Unclear whether Y is compact
▶ Difficulty 2: Many extreme points, some not obvious.

▶ Solution: find basis in Y for aff(Y); control negative coeffs
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The functions f̂

Now let X ∼ Bernoulli(p,−1, 1), p > 1
2 .

Notation:

▶ Indicator function of E ⊆ R: χE

▶ Point indicator: χw = χ{w} for w ∈ R

Useful symmetrizer PMFs: For any PMF fX on R and any z ∈ R, define

▶ f̂z(u) =
1

2

(
(χ−z ∗ f−X )(u) + (χz ∗ f−X )(u)

)
Lemma (The f̂ are symmetrizers)

For any PMF fX on R, for any z ∈ R, f̂z ∈ Y[fX ].
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Define for r ∈ [0, 1],

▶ S r = 2Z+ {±r} (partition of R)
▶ Y r = {f ∈ Y | supp(f ) ⊆ S r}.

▶ I r =


{1, 2, . . . } when r = 0

Z when r ∈ (0, 1)

{0, 1, 2, . . . } when r = 1.

▶ f̂ rk (z) = f̂2k+1+r ∈ Y r for all k ∈ I r

▶ and Rf = {r ∈ [0, 1] | supp(f ) ∩ S r ̸= ∅}
Lemma (Extreme symmetrizer spaces Y r )

f ∈ Y, r ∈ Rf ⇒ the unique PMF f r ∝ f
∣∣
S r satisfies f

r ∈ Y r .

Also, if f ̸∈ Y r , then the unique PMF g ∝ f
∣∣
R\S r satisfies g ∈ Y, and

∃c r ∈ (0, 1) s.t. f = c r f r + (1− c r )g.

Proof: symmetry equations respect partition S r .
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Theorem (Representation theorem for Y(Bernoulli))

For fX ∼ Bernoulli(p,−1, 1) and f ∈ Y[fX ],

f =
∑
r∈Rf

∑
k∈I r

αr
k f̂

r
k .

Moreover,
∑

r∈Rf

∑
k∈I r α

r
k = 1.

Specifically:

▶ αr
k = 2

p−q (pf (−2k − r)− qf (2k + r)),

▶ except α0
1 =

1
p−q (pf (−2k − r)− qf (2k + r)).

Proof:

▶ First prove for f ∈ Y r , then sum over Rf

▶ For f ∈ Y r : prove for finite dimensional spaces
Y r
n = {f ∈ Y r | supp(f ) ⊆ [−2n − r , 2n + r ]}

▶ Then take n → ∞.
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Lemma (Negative coefficient control)

Let
f =

∑
r∈Rf

∑
k∈I r

αr
k f̂

r
k ∈ Y.

If αr
j ≤ 0:

▶ αr
j+1 ≥

p
q

∣∣∣αr
j

∣∣∣ > ∣∣∣αr
j

∣∣∣
▶ also αr

j−1 ≥
p
q

∣∣∣αr
j

∣∣∣ > ∣∣∣αr
j

∣∣∣ when it exists (i.e. when j − 1 ∈ I r )

Also, α0
1 ≥ 0.

Proof.

From symmetry equations.
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Theorem (Entropic symm. res. of Bernoulli)

Asymmetric Bernoulli r.v.s are entropic symmetrization resistant.

That is, for X ∼ Bernoulli(p, a, b) with p ̸= 1
2 , any f ∈ Y[fX ] satisfies

H(f ) ≥ H(fX ).

Proof (outline).

▶ Sufficient to investigate fX ∼ Bernoulli(p,−1, 1), p > 1
2 .

▶ Any f ∈ Y with H(f ) < H(fX ) must satisfy f (0) > 0

▶ Therefore sufficient to investigate Y0 (concavity of entropy)

▶ Show that f (0) ≥ p > 1
2 for f ∈ Y0

▶ This implies 1
2 < f (0) = α1

0 f̂
1
0 (0) =

α1
0
2 , thus α1

0 > 1

▶ But
∑

r ,k α
r
k = 1, so

1 < α1
0 ≤ α1

0 +
∑

(r ,k )̸=(1,0)

αr
k =

∑
r ,k

αr
k = 1, contradiction.
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Theorem (Variance symm. res. of Bernoulli)(KMSVV 1999)

Asymmetric Bernoulli r.v.s are variance symmetrization resistant.

That is, for X ∼ Bernoulli(p, a, b) with p ̸= 1
2 , any f ∈ Y[fX ] satisfies

Var(f ) ≥ Var(fX ).

New proof (1/2)

▶ Sufficient to investigate X ∼ Bernoulli(p,−1, 1), p > 1
2

▶ Sufficient to investigate second moment M2

▶ Concavity of variance: sufficient to investigate f ∈ Y0
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New proof (2/2).

▶ For f ∈ Y0, compute

M2(f ) =
∑

z∈I 0=2Z

z2f (z) ≥ 4
∑
z ̸=0

f (z)

= 4
(
1− f (0)

)
= 4

(
1− α0

1 f̂
0
1 (0)

)
≥ 4

(
1− 1

2

)
= 2 = M2(f−X ).
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Corollary (hypercube, entropy version)

Let:

▶ X = (X1, . . . ,Xd) ∈R {−1, 1}d , all Xi asymmetric

▶ Y = (Y1, . . . ,Yd) ∈ Y[fX ]

Then:

H(Y ) ≥ 1

d
H(X ).

▶ Constant 1
d results from dependence between coordinates

▶ Rotate, translate, scale
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▶ Define: matrix norm ∥A∥1,1 =
∑

i ,j |Aij |

Corollary (Hypercube, variance version)

Let:

▶ X = (X1, . . . ,Xd) ∈R {−1, 1}d , all Xi asymmetric

▶ Y = (Y1, . . . ,Yd) ∈ Y[fX ]

Then:

∥Cov(Y )∥1,1 ≥
1

d
∥Cov(X )∥1,1.

▶ Same constant 1
d
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Support in arithmetic progression, cardinality 3

▶ Symm. res. of discrete X ∈R R with |supp(fX )| = 2 is solved.

▶ How to generalize to X ∈R R with |supp(fX )| = 3?

▶ New difficulties:
▶ supp(fX ) might not be an arithmetic progression

e.g. supp(fX ) = {0, 1, 3}
▶ supp(fX ) might not even be contained in an arithmetic progression

e.g. supp(fX ) = {0, 1, π}
▶ possible nontrivial symmetrizers f ∈ Y[fX ] with supp(f ) < supp(fX )
▶ symmetric part of asymmetric fX may now be nontrivial

▶ New assumptions:
▶ Assume fX has no nontrivial symmetric part
▶ Assume supp(fX ) is an arithmetic progression
▶ Equivalently: supp(fX ) = {0,±2}

▶ Other directions possible (Binomial fX , monotone fX , . . . )
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Redefine:

▶ I r =

{
{0, 1, 2, . . . } when r = 0 or r = 1

Z when r ∈ (0, 1).

Theorem (Representation theorem)

Let supp(fX ) = {−2, 0, 2} and let fX have no nontrivial symmetric
component. Then, for all f ∈ Y[fX ],

f =
∑
r∈Rf

∑
i∈I r

αr
i f̂

r
i

everywhere on R. Moreover, the coefficients αr
i are the unique coefficients

with this property.

▶ Difficulty/complexity seems to increase with |supp(fX )|.
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Summary

Theorems

For asymmetric Bernoulli X ∈R R and independent Y ∈R R such that
X + Y is symmetric about zero,

▶ Var(Y ) ≥ Var(X ) (KMSVV99)

▶ H(Y ) ≥ H(X ) (Madiman & Pollard)

with equality iff fY = f−X .

Corollaries

For X ∈R {−1, 1}d with asymmetric coordinates and independent
Y ∈R Rd such that X + Y is symmetric about zero,

▶ Var(Y ) ≥ 1
d Var(X )

▶ H(Y ) ≥ 1
dH(X )

Thank you!
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