Symmetrization Resistance

Emma Pollard joint work with Mokshay Madiman

Asymptotic Geometric Analysis Seminar

2024 January 18

Definition

 $Z \in_{R} \mathbb{R}$ is symmetric about zero iff $\forall z \quad \mathbb{P}(Z \leq -z) = \mathbb{P}(Z \geq z)$

- For discrete $Z \in_R \mathbb{R}$, denote its PMF by f_Z
- Equivalent for discrete Z:

Definition

 $\forall z \in \operatorname{supp}(f_Z), \quad f_Z(-z) = f_Z(z) \text{ (symmetry equations)}$

Definition

For discrete $X \in_R \mathbb{R}$, a *symmetrizer* is an independent $Y \in_R \mathbb{R}$ such that X + Y is symmetric about zero.

Definition

Discrete $X \in_R \mathbb{R}$ is...

- ► variance symmetrization resistant iff all symmetrizers Y satisfy Var(Y) ≥ Var(X)
- entropic symmetrization resistant iff all symmetrizers Y satisfy H(Y) ≥ H(X)

Continuous question is also interesting.

Motivation:

- Original question of KMSVV99: Gaussianization. Given non-Gaussian X, how can we choose Y such that X + Y is "as Gaussian as possible"?
- If we use KL-divergence from Gaussian, equivalent to problem of maximizing capacity of additive noise channel with noise X
 - X is noise, Y is signal
 - Transmit power constrains Y
- Recent work on Gaussian mixtures and additive noise: Eskenazis, Nayar & Tkocz 2018; Madiman, Nayar & Tkocz 2019, 2021

Symmetrization Resistance: Known Results

- ► The only distributions on R known to be symmetrization resistant are Bernoulli.
- Notation: $X \sim \text{Bernoulli}(p, a, b)$ (a < b):

$$\mathbb{P}(X = a) = q$$
 and $\mathbb{P}(X = b) = p$.

• Notation: q = 1 - p.

Theorem (Kagan, Mallows, Shepp, Vanderbei and Vardi 1999)

Asymmetric Bernoulli r.v.s are variance symmetrization resistant.

- Proof: exhibited solution to linear program.
- Second proof: Pal 2008 (stochastic calculus; Skorokhod embedding).
- Third proof: Madiman and Pollard 2023 (find basis for affine hull of space of symmetrizers; bound coefficients)

Theorem (Madiman and Pollard 2023)

Asymmetric Bernoulli r.v.s are entropic symmetrization resistant.

In both cases, equality iff $f_Y = f_{-X}$.

Known negative results

- Symmetric integrable $X \in_R \mathbb{R}$ are never symmetrization resistant.
 - \blacktriangleright $-\mathbb{E}X$ is a symmetrizer
 - ► $Var(-\mathbb{E}X) = H(-\mathbb{E}X) = 0$
- Definition: X has a symmetric component if there exist independent U and V (symmetric V) and X = U + V.

Lemma (Kagan, Mallows, Shepp, Vanderbei and Vardi 1999)

X has nontrivial symmetric component \Rightarrow not variance symm. res.

Lemma

X has nontrivial symmetric component \Rightarrow not entropic symm. res.

Note: For Bernoulli, f_X has nontrivial symmetric component iff f_X is symmetric.

- KMSVV (1999) showed asymmetric f_X ~ Binomial(n, p) with n ≥ 4 and and p ∈ (0.489, 0.5) are not variance symm. res.
- We believe these are not entropic symm. res. either (numerical support)
- Asymmetric Binomial with n = 2, 3 open.

Elementary observations

► Notation: convolution for PMFs f, g on ℝ,

$$(f*g)(u) = \sum_{w \in \operatorname{supp}(g)} f(u-w)g(w) = \sum_{w \in \operatorname{supp}(f)} f(w)g(u-w)$$

- Y ~ f symmetrizes X
 iff f symmetrizes f_X
 iff f * f_X is symmetric about zero
- |supp(X)| = 2: sufficient to investigate X ~ Bernoulli(p, −1, 1); p > ¹/₂.

The space ${\mathcal Y}$ of symmetrizer PMFs

• Notation: for $X \in_R \mathbb{R}$,

 $\mathcal{Y} = \mathcal{Y}[f_X] = \{ \mathsf{PMFs} \ f \mid f * f_X \text{ is symmetric about zero } \}.$

- \blacktriangleright \mathcal{Y} is convex
- H and Var are concave
- Idea: Krein-Milman?
 - Difficulty 1: Unclear whether Y is compact
 - Difficulty 2: Many extreme points, some not obvious.
- Solution: find basis in Y for aff(Y); control negative coeffs

The functions \hat{f}

Now let $X \sim \text{Bernoulli}(p, -1, 1)$, $p > \frac{1}{2}$.

Notation:

- ▶ Indicator function of $E \subseteq \mathbb{R}$: χ_E
- Point indicator: $\chi_w = \chi_{\{w\}}$ for $w \in \mathbb{R}$

Useful symmetrizer PMFs: For any PMF f_X on \mathbb{R} and any $z \in \mathbb{R}$, define $\hat{f}_z(u) = \frac{1}{2} \left((\chi_{-z} * f_{-X})(u) + (\chi_z * f_{-X})(u) \right)$

Lemma (The \hat{f} are symmetrizers)

For any PMF f_X on \mathbb{R} , for any $z \in \mathbb{R}$, $\hat{f}_z \in \mathcal{Y}[f_X]$.

Define for $r \in [0, 1]$,

Proof: symmetry equations respect partition S^r .

Theorem (Representation theorem for $\mathcal{Y}(\text{Bernoulli}))$

For $f_X \sim \text{Bernoulli}(p, -1, 1)$ and $f \in \mathcal{Y}[f_X]$,

$$f = \sum_{r \in R_f} \sum_{k \in I^r} \alpha_k^r \hat{f}_k^r.$$

Moreover,
$$\sum_{r \in R_f} \sum_{k \in I^r} \alpha_k^r = 1$$
.

Specifically:

Proof:

- First prove for $f \in \mathcal{Y}^r$, then sum over R_f
- ► For $f \in \mathcal{Y}^r$: prove for finite dimensional spaces $\mathcal{Y}_n^r = \{f \in \mathcal{Y}^r \mid \operatorname{supp}(f) \subseteq [-2n - r, 2n + r]\}$
- \blacktriangleright Then take $n \to \infty$.

Lemma (Negative coefficient control)

Let

$$f = \sum_{r \in R_f} \sum_{k \in I^r} \alpha_k^r \hat{f}_k^r \in \mathcal{Y}.$$

If
$$\alpha_{j}^{r} \leq 0$$
:
 $\alpha_{j+1}^{r} \geq \frac{p}{q} |\alpha_{j}^{r}| > |\alpha_{j}^{r}|$
 $also \alpha_{j-1}^{r} \geq \frac{p}{q} |\alpha_{j}^{r}| > |\alpha_{j}^{r}|$ when it exists (i.e. when $j - 1 \in I^{r}$)
Also, $\alpha_{1}^{0} \geq 0$.

Proof.

From symmetry equations.

Theorem (Entropic symm. res. of Bernoulli)

Asymmetric Bernoulli r.v.s are entropic symmetrization resistant. That is, for $X \sim \text{Bernoulli}(p, a, b)$ with $p \neq \frac{1}{2}$, any $f \in \mathcal{Y}[f_X]$ satisfies $H(f) \geq H(f_X)$.

Proof (outline).

- Sufficient to investigate $f_X \sim \text{Bernoulli}(p, -1, 1)$, $p > \frac{1}{2}$.
- Any $f \in \mathcal{Y}$ with $H(f) < H(f_X)$ must satisfy f(0) > 0
- Therefore sufficient to investigate Y⁰ (concavity of entropy)
- Show that $f(0) \ge p > \frac{1}{2}$ for $f \in \mathcal{Y}^0$
- This implies $\frac{1}{2} < f(0) = \alpha_0^1 \hat{f}_0^1(0) = \frac{\alpha_0^1}{2}$, thus $\alpha_0^1 > 1$

• But
$$\sum_{r,k} \alpha_k^r = 1$$
, so

$$1 < \alpha_0^1 \le \alpha_0^1 + \sum_{(r,k) \neq (1,0)} \alpha_k^r = \sum_{r,k} \alpha_k^r = 1,$$
 contradiction.

Theorem (Variance symm. res. of Bernoulli)(KMSVV 1999) Asymmetric Bernoulli r.v.s are variance symmetrization resistant. That is, for $X \sim \text{Bernoulli}(p, a, b)$ with $p \neq \frac{1}{2}$, any $f \in \mathcal{Y}[f_X]$ satisfies $\text{Var}(f) \geq \text{Var}(f_X)$.

New proof (1/2)

- Sufficient to investigate $X \sim \text{Bernoulli}(p, -1, 1)$, $p > \frac{1}{2}$
- Sufficient to investigate second moment M₂
- Concavity of variance: sufficient to investigate $f \in \mathcal{Y}^0$

New proof (2/2).

► For $f \in \mathcal{Y}^0$, compute $M_2(f) = \sum_{z \in I^0 = 2\mathbb{Z}} z^2 f(z) \ge 4 \sum_{z \neq 0} f(z)$ $= 4 \left(1 - f(0) \right)$ $= 4 \left(1 - \alpha_1^0 \hat{f}_1^0(0) \right)$ $\ge 4 \left(1 - \frac{1}{2} \right) = 2 = M_2(f_{-X}).$

Corollary (hypercube, entropy version)

Let:

$$X = (X_1, \dots, X_d) \in_R \{-1, 1\}^d, \text{ all } X_i \text{ asymmetric}$$

$$Y = (Y_1, \dots, Y_d) \in \mathcal{Y}[f_X]$$
Then:

$$H(Y) \geq \frac{1}{d}H(X).$$

Constant ¹/_d results from dependence between coordinates
 Rotate, translate, scale

• Define: matrix norm $\|A\|_{1,1} = \sum_{i,j} |A_{ij}|$

Corollary (Hypercube, variance version) Let: $\searrow X = (X_1, ..., X_d) \in_R \{-1, 1\}^d$, all X_i asymmetric $\bowtie Y = (Y_1, ..., Y_d) \in \mathcal{Y}[f_X]$ Then: $\|Cov(Y)\|_{1,1} \ge \frac{1}{d} \|Cov(X)\|_{1,1}$.

Same constant $\frac{1}{d}$

Support in arithmetic progression, cardinality 3

- Symm. res. of discrete $X \in_R \mathbb{R}$ with $|\operatorname{supp}(f_X)| = 2$ is solved.
- ▶ How to generalize to $X \in_R \mathbb{R}$ with $|supp(f_X)| = 3$?
- New difficulties:
 - supp(f_X) might not be an arithmetic progression e.g. supp(f_X) = {0,1,3}
 - supp(f_X) might not even be *contained* in an arithmetic progression
 e.g. supp(f_X) = {0, 1, π}
 - ▶ possible nontrivial symmetrizers $f \in \mathcal{Y}[f_X]$ with $supp(f) < supp(f_X)$
 - symmetric part of asymmetric f_X may now be nontrivial
- New assumptions:
 - Assume f_X has no nontrivial symmetric part
 - Assume $supp(f_X)$ is an arithmetic progression
 - Equivalently: $supp(f_X) = \{0, \pm 2\}$
- Other directions possible (Binomial f_X , monotone f_X , ...)

Redefine:

$$\blacktriangleright I^{r} = \begin{cases} \{0, 1, 2, \dots\} & \text{when } r = 0 \text{ or } r = 1 \\ \mathbb{Z} & \text{when } r \in (0, 1). \end{cases}$$

Theorem (Representation theorem)

Let $supp(f_X) = \{-2, 0, 2\}$ and let f_X have no nontrivial symmetric component. Then, for all $f \in \mathcal{Y}[f_X]$,

$$f = \sum_{r \in R_f} \sum_{i \in I^r} \alpha_i^r \hat{f}_i^r$$

everywhere on \mathbb{R} . Moreover, the coefficients α_i^r are the unique coefficients with this property.

• Difficulty/complexity seems to increase with $|supp(f_X)|$.

References

- A. Eskenazis, P. Nayar, and T. Tkocz. Gaussian mixtures: entropy and geometric inequalities. Ann. Probab., 46(5):2908–2945, 2018.
- A. Kagan, C. L. Mallows, L. A. Shepp, R. J. Vanderbei, and Y. Vardi. Symmetrization of binary random variables. Bernoulli, 5(6):1013–1020, 1999.
- M. Madiman, P. Nayar and T. Tkocz: On the question of the best additive noise among symmetric log-concave noises. Proceedings of the 2019 IEEE International Symposium on Information Theory, Paris, France, July 2019.
- M. Madiman, P. Nayar, and T. Tkocz. Sharp moment-entropy inequalities and capacity bounds for log-concave distributions. IEEE Trans. Inform. Theory, 67(1):81–94, January 2021.
- S. Pal. Symmetrization of Bernoulli. Electron. Commun. Probab., 13:194–197, 2008.

Summary

Theorems

For asymmetric Bernoulli $X \in_R \mathbb{R}$ and independent $Y \in_R \mathbb{R}$ such that X + Y is symmetric about zero,

- $Var(Y) \ge Var(X)$ (KMSVV99)
- ► $H(Y) \ge H(X)$ (Madiman & Pollard)

with equality iff $f_Y = f_{-X}$.

Corollaries

For $X \in_R \{-1, 1\}^d$ with asymmetric coordinates and independent $Y \in_R \mathbb{R}^d$ such that X + Y is symmetric about zero,

▶ Var(Y) $\geq \frac{1}{d}$ Var(X)

► $H(Y) \ge \frac{1}{d}H(X)$