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Poisson Distribution

Introduced by the Siméon-Denis Poisson in 1837.

The probability of k events occurring in an interval of unit time, which
gives the Poisson distribution as

_ N

BX = k) =e o k=12, (1)

where 0 < A = E(X) = Var(X).
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For N independent Poisson distributed random variables Xy, ..., Xy their
sum SN X; ~ Poisson(S"N, \y).
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Multinomial Distribution

Conditional distribution of X = (X1,...,Xy) | Z,N:l Xi=M.

P(XNS=M)
P(S = M)

M
N e—/\i)\x,' e Zf\l:l Ai (ZlNzl )\,’)
- (H ;| ) / M

i=1

M N X\
~ \xq. x X, H Ny
1, X255 AN/ 20 Zi:l Ai

NMuItinom(M; ,\)I\l , ,\)1\2 Yy 21\/ )
Zi:l Aj Zi:l Ai Zi:l Ai

It is hard to work with Multinomial distribution - this is the distribution
function for discrete processes in which fixed probabilities prevail for each
independently generated value.

P(X|S = M) =




Khinchine Inequality

Let a € RN,

ei, i =1,..., N are independent Rademacher random variables, i.e.
1
P(ei = 1):IP>(5—:,-:—1):§, fori=1,...,N.

Khinchine Inequality

For g > 0, there exists constant Kj, such that

9

N a\ q
> aie ) < Kqllal2. (2)
i=1
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Khinchine Type Inequality for different variables

@ Continuous random variables uniformly distributed on symmetric
intervals and random vectors uniformly distributed on the Euclidian
spheres and balls (H. Konig, S. Kwapién, R. Latala, K, Oleszkiewicz);

o Centered Gaussian random variables (A. Eskenazis, P. Nayar,
T. Tkocz);

@ Dependent random signs (O. Herscovici, A.B. Kashlak, S. Spektor).



Let X;,i =1,2,..., N be independent Poisson random variables with
parameters \; correspondingly. Let a € RN. We would like to prove the
following inequality:

<E

Moreover, we are interested in the inequality (3) in the case when Poisson
random variables are conditioned as following:

N

Z a,-X,-

i=1

q\ 1/a
) < Cq llalloo- (3)

N
PO=> Xi=Mz>0. (4)

i=1

By Epo we will be denoting expectation under assumption (4).



@ Tools

@ Khinchine type inequality for independent Poisson random variables.

@ Khinchine-type inequality under condition that the sum of the Poisson
random variables is equal to some value M.

@ Applications to bootstrap resampling in Big Data Sciences.
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The value of the Bell polynomial B, x(x1, X2, ...) on the sequence of ones
equals a Stirling number of the second kind:

Bok(1,1,...,1) = S(n, k) = {Z}



Bell Numbers

The sum of these values gives the value of the complete Bell polynomial
on the sequence of ones:

n

B,,(l,l,...,l):zn:Bn,k(l,l,...,l):Z{n},
k=1

k
k=1

which is the n-th Bell number.



Bell Numbers

The sum of these values gives the value of the complete Bell polynomial
on the sequence of ones:

n

B,,(Ll,...,l):ZBn,k(lvlv---71):Z{Z}’
k=1

k=1

which is the n-th Bell number.

Bell numbers-upper bound (D. Berend, T. Tassa, 2010):
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Touchard Polynomials

If X is a random variable with a Poisson distribution with expected value
A, then its n-th moment is E(X") = T,(\), where

is a Touchard polynomial.

It can be expressed as the value of the complete Bell polynomial on all

arguments being A:
Ta(A) = Ba(A, ..., A).



Lambert W function

W(x)eV™) = x. (8)

The W function has two real, and infinitely many complex branches.
Real branches:
Wo:[-1/e,o0) = [~1,00)
and
W_1:[-1/e,0) = (—o0, —1].
Both of these are strictly monotone.

Special values:

Wo(0) = 0, Wo(e) = 1, Wo(—1/€) = —1, W_1(—1/e) = —1.



Khinchine type inequality for Independent Poisson Random

variables

Theorem (HKS, 2021)

Let X;,i =1,...,N be independent Poisson random variables with
parameters \j,i = 1,..., N correspondingly. Let a;,i =1,...,N are in R.
Then, for positive integers q, we have

q
< Ty )\1 A oo AR )\N) ||a||go (9)




Proof of Theorem

Using multinomial theorem,
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Proof of Theorem

Using multinomial theorem,

N q N
|
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Since X; are Poisson variables with means \;, i = 1,..., N, the expectation
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Since X; are Poisson variables with means \;, i = 1,..., N, the expectation
EX? = Tg,(\i). Due to the independence of the variables, we have

N N
TTEX" =] Ta(M).
i=1 i=1

Altogether then,

N
>_aiXi
i—1

q N
q!
E =lall 3> o [T T

I
qi+...+an=q qa i=1

=Teg(M+ ...+ )al|d. O



Corollaries

In case when \y = ... = Ay = , we have

q

0.792 x ¢\ °
< B, lall%, < (—) lale, (o)

£ In(g + 1)

N
E aiX;
i—1

Idea of the proof:
N N
TTEX" =] Ta(M).
i=1 i=1

Use property Tq(A1+ ...+ An) = T4(1) = Bg and apply upper bound for
Bell numbers.



In case when \{ = ... = Ay = 1, we have

q

E < (1.15)9)|a]| . (11)

N
>_aiX;
=i

Idea of the proof:
N N
[TExe = I] a0
i=1 i=1

Note, E (X") = B,.
We have,

N N N .

. 0.792q; \ ¥
||EX-q’:||B. || — 1.15)9.
-1 i @ = <|”(qi+1)> <({119)

i=1



Let a; e R and X;,i =1,..., N be independent Poisson random variables
with parameters \1 = ... = Ay = A. Then, for positive integers q,

N q
E Z a,-X,-
i=1

N aX
. ,Wherea—NZ, 1 @i and

< Tq(A) N9/2||all3. (12)

In partlcu/ar denoting Z = — Z

= NZ: 1(3, a) ’

E|Z|7 < To()). (13)

Idea of the proof is based on use of Holder's inequality and logarithmic
convexity of the Touchard Polynomials.



Khinchine type inequality for Dependent Poisson Random
variables

Theorem (HKS, 2021)

Let X;, i=1,...,N be positive Poisson random variables with parameters
Ai, i =1,..., N correspondingly, with additional condition that
PO:Z?IZIX,- =M. Leta;,i=1,...,N are in R. Then,

N q
Epo |Y aiXi| < M9|ja]e. (14)
i=1
and, under assumption that X;,i =1,..., N are taking on values > 1,
N q
Epo | aiXi| <(M—N+1)9|all{. (15)
i=1
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Second bound:
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Second bound:
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N
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Let a; e R and X;,i =1,..., N be Poisson random variables with
parameters A\1 = ... = Ay = A and such that PO = Z,N:l X; = M. Then,
for positive integers q,

q
< By N9/2||al). (16)

N

Z a,-X,-

i=1

Epo

: , 1 aiXi -
In particular, denoting Z = —; SN %, where 3= L SN | a; and

N -
ol = % >oiq(ai — 3)?,

E|Z|7 < B,. (17)




Applications to the Bootstrap

Bootstrapping - powerful technique (Bradley Efron, 1979), used to
construct Confidence Intervals (Cl) for estimators with unknown
distributions.

Given N data points a1, ...,ay € R. It resamples the data with
replacement by randomly drawing a new sample of size N from the
empirical distribution.

To construct a (1 — «) bootstrapped confidence interval for the mean of
the a;:
@ generate D random resamples of the a; and compute the mean each
time giving an ordered set a7 < ... < ap,.

@ The bootstrapped confidence interval: [3|pa/2), a[p(1—a/2)]]; for
a € (0,1).



Advantages:

@ Non-parametric statistical analysis.

@ Easy construction of the Cl from the resampling distribution.
Disadvantages:

o Computationally expensive.



Our results

q

Poission: E ‘ﬁ Z,Nzl aiXi| < Tq(N)|allg,
q

Multinomial: Epo ‘ﬁ SN aiXi| < Bglalld.

are used to construct a computation time-free approach of analytic
formulae for bootstrap confidence intervals under Poisson and Multinomial
resampling.

We also demonstrate an equivalence between these two resampling
distributions.



The Poisson Bootstrap

Theorem (HKS, 2021)

Let X;,i =1,..., N be independent Poisson random variables with
parameters A\1 = ... = Ay = A. Let a; be i.i.d. nonnegative random

, o . 1 aiX;
variables with finite variance. Let Z = - SN T2 where
(o

a=4 SN L aiand 0% = 5 SN (ai—3)%

Then, for any o € (0,1), A > —In(a/2), the confidence interval for Z is
given by

P A+ In(a/2) <7< -\ —In(a/2)

woy (-1 (1+252)) Wer (=1 (14 er2)) Zl—a,)




Consider Z = N~ 171 ZlNzl aiX;.



Consider Z = N~ 171 ZlNzl aiX;.
Denote, yu = E(Z) = \d/o, where 3= N"1 SN a;.



Consider Z = N~ 171 ZlNzl aiX;.

Denote, yu = E(Z) = \d/o, where 3= N"1 SN a;.
By our theorem E|Z|9 < T4(A).



Consider Z = N~ 171 ZlNzl aiX;.

Denote, yu = E(Z) = \d/o, where 3= N"1 SN a;.
By our theorem E|Z|9 < T4(A).

The Markov-Chernoff's inequality: for any v >0, t > 0,

P(Z > t+ p) = P(e¥? > e(tTH)



Consider Z = N~ 171 ZlNzl aiX;.

Denote, yu = E(Z) = \d/o, where 3= N"1 SN a;.
By our theorem E|Z|9 < T4(A).

The Markov-Chernoff's inequality: for any v >0, t > 0,

P(Z > t+ p) = P(e¥? > e(tTH)

< efu(t+,LL)EeuZ



Consider Z = N~ 171 ZlNzl aiX;.
Denote, yu = E(Z) = \d/o, where 3= N"1 SN a;.
By our theorem E|Z|9 < T4(A).

The Markov-Chernoff's inequality: for any v >0, t > 0,
P(Z > t+ p) = P(e¥? > e(tTH)
< efu(t+,LL)EeuZ

< vt g\ 1))



Consider Z = N~ 171 Z,N:l aiX;.
Denote, yu = E(Z) = \d/o, where 3= N"1 SN a;.
By our theorem E|Z|9 < T4(A).

The Markov-Chernoff's inequality: for any v >0, t > 0,

P(Z > t+ p) = P(e¥? > e(tTH)
< efu(t+,LL)Eel/Z
< e V(ttn) g(M(e" 1))

< e ANHR(t o p) () gt

Last inequality comes form minimizing over all v:

0= % (—v(t+p) + A" —1)) = —(t+ p) + Ae,

and v =In (t”;“).
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is a linear trancendental equation with known solution in terms of the
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The relation

= A+ n(a/2) (18)

is a linear trancendental equation with known solution in terms of the
Lambert W function:

u<l+In(\)+W_ (_1_In(a/2)>.
e el
Since t + 1 = e, we get

t < —A — In(a/2) B

S L (1 Ry
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Combining Z with the obtained bound for t gives us the right Cl bound:
P(Z>t+p) <aj2

plz< —A = In(a/2) >1-a/2
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Combining Z with the obtained bound for t gives us the right Cl bound:

P(Z>t+p) <aj2

“X —In(a/2)
. (Z = W_l{ (1+ n(a/z))}> z1-af2

By considering P(Z < —t + u) < «/2 and applying similar technique,we
will get the left Cl bound:

P (z > In(a/2) ) >1-a/2. 0.

ERe)




The Poisson Bootstrap

Corollary
Let X;,i =1,..., N be independent Poisson random variables with
parameters A1 = ... = Ay = A. Let a; be i.i.d. nonnegative random
. sy e . 1 a; X;
variables with finite variance. Let Z = N vazl =L where
o

3= Litaaiand o® = 5 YL (2 - 3)°

Then, for any o € (0, 1), the confidence interval for Z is given by

p (,/—wn (3)+ Mns(%) <z<y/-2n(3) - M”3(%)> >1—a

(19)

.




The Multinomial Bootstrap

Theorem (HKS, 2021)

Let X;,i =1,...,N be independent Poisson random variables with
parameters A\1 = ... = Ay = A and such that PO = Z,N:l Xi = M. Let a;

be i.i.d. nonnegative random variables with finite variance. Let
1 N a,-X,-
=_ 1 N . 2 _ 1 N L =\2
Z——N ) =1 where 3= 5> i—jai and 0 = 5 > i_4(ai — 3)°.

Then, for any o € (0,1), the confidence interval for Z is given by

P(\/—2In (%) +Mn3(%) <z<y/-21(3) —M”T@U >1—a

(20)
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Comparison of Poisson and Multinomial

We want to compare the confidence bounds from our Theorems with
simulation-based Multinomial and Poisson bootstraps as well as with the
standard parametric confidence interval based on the central limit theorem.
We will simulate from two different distributions:

@ Exponential distribution with a rate parameter of 1.

@ a mixture of two exponential distributions with rate parameter of 1/3.
The number of bootstrap samples for each method is 100 and each sample
size was replicated 500 times.

Sampling regimes:
@ M = N for multinomial and A = 1 for Poisson.
e M = N/2 for multinomial and A = 1/2 for Poisson.
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Figure: Simulated confidence upper and lower bounds for the four testing settings
and five methods of interval construction.
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Asymptotics for Massive Data

There are situations where it would be impossible to fully resample a
dataset such as for high throughput streaming data.

The total sample size is set to N = 1000000, but the resampling size is
only considered for M = 50, 100, 1000 or A = 0.00005, 0.0001, 0.001.



Extreme Subsampling, N = 1,000,000
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Figure: Simulated confidence upper and lower bounds in the extreme
subsampling setting of N = 1000000 and M = 50, 100, 1000.
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