Mean-Value Inequalities for Convex Domains

Stefan Steinerberger

Georgia Tech, 2021

W
UNIVERSITY of
WASHINGTON

Goal of the Talk
The goal of this talk is to discuss some interesting inequalities for convex/subharmonic functions.

Goal of the Talk
The goal of this talk is to discuss some interesting inequalities for convex/subharmonic functions. They turn out to be related to many interesting things and seem to be new.

Goal of the Talk
The goal of this talk is to discuss some interesting inequalities for convex/subharmonic functions. They turn out to be related to many interesting things and seem to be new.

There are relatively few results and lots of fun questions!

The Mean Value Theorem I
Let $B_{r}(0) \subset \mathbb{R}^{d}$ and let $\Delta f=0$ for some $f: B_{r}(0) \rightarrow \mathbb{R}$. Then

$$
f(0)=\frac{1}{\left|\partial B_{r}(0)\right|} \int_{\partial B_{r}(0)} f(x) d x
$$

The Mean Value Theorem I
Let $B_{r}(0) \subset \mathbb{R}^{d}$ and let $\Delta f=0$ for some $f: B_{r}(0) \rightarrow \mathbb{R}$. Then

$$
f(0)=\frac{1}{\left|\partial B_{r}(0)\right|} \int_{\partial B_{r}(0)} f(x) d x
$$

The Mean Value Inequality I
Let $B_{r}(0) \subset \mathbb{R}^{d}$ and let $\Delta f \geq 0$ for some $f: B_{r}(0) \rightarrow \mathbb{R}$. Then

$$
f(0) \leq \frac{1}{\left|\partial B_{r}(0)\right|} \int_{\partial B_{r}(0)} f(x) d x
$$

The Mean Value Theorem I
Let $B_{r}(0) \subset \mathbb{R}^{d}$ and let $\Delta f=0$ for some $f: B_{r}(0) \rightarrow \mathbb{R}$. Then

$$
f(0)=\frac{1}{\left|\partial B_{r}(0)\right|} \int_{\partial B_{r}(0)} f(x) d x
$$

The Mean Value Inequality I
Let $B_{r}(0) \subset \mathbb{R}^{d}$ and let $\Delta f \geq 0$ for some $f: B_{r}(0) \rightarrow \mathbb{R}$. Then

$$
f(0) \leq \frac{1}{\left|\partial B_{r}(0)\right|} \int_{\partial B_{r}(0)} f(x) d x
$$

Proof.
Mean-Value Theorem and Maximum Principle.

The Mean Value Theorem II
Let $B_{r}(0) \subset \mathbb{R}^{d}$ and let $\Delta f=0$ for some $f: B_{r}(0) \rightarrow \mathbb{R}$. Then

$$
\frac{1}{\left|B_{r}(0)\right|} \int_{B_{r}(0)} f(x) d x=\frac{1}{\left|\partial B_{r}(0)\right|} \int_{\partial B_{r}(0)} f(x) d x
$$

The Mean Value Theorem II
Let $B_{r}(0) \subset \mathbb{R}^{d}$ and let $\Delta f=0$ for some $f: B_{r}(0) \rightarrow \mathbb{R}$. Then

$$
\frac{1}{\left|B_{r}(0)\right|} \int_{B_{r}(0)} f(x) d x=\frac{1}{\left|\partial B_{r}(0)\right|} \int_{\partial B_{r}(0)} f(x) d x
$$

The Mean Value Inequality II
Let $B_{r}(0) \subset \mathbb{R}^{d}$ and let $\Delta f \geq 0$ for some $f: B_{r}(0) \rightarrow \mathbb{R}$. Then

$$
\frac{1}{\left|B_{r}(0)\right|} \int_{B_{r}(0)} f(x) d x \leq \frac{1}{\left|\partial B_{r}(0)\right|} \int_{\partial B_{r}(0)} f(x) d x
$$

The Mean Value Theorem II
Let $B_{r}(0) \subset \mathbb{R}^{d}$ and let $\Delta f=0$ for some $f: B_{r}(0) \rightarrow \mathbb{R}$. Then

$$
\frac{1}{\left|B_{r}(0)\right|} \int_{B_{r}(0)} f(x) d x=\frac{1}{\left|\partial B_{r}(0)\right|} \int_{\partial B_{r}(0)} f(x) d x
$$

The Mean Value Inequality II
Let $B_{r}(0) \subset \mathbb{R}^{d}$ and let $\Delta f \geq 0$ for some $f: B_{r}(0) \rightarrow \mathbb{R}$. Then

$$
\frac{1}{\left|B_{r}(0)\right|} \int_{B_{r}(0)} f(x) d x \leq \frac{1}{\left|\partial B_{r}(0)\right|} \int_{\partial B_{r}(0)} f(x) d x
$$

General Mean-Value Inequalities?
What if the domain is not a ball?

General Mean-Value Inequalities?

General Mean-Value Inequalities?
Let $\Omega \subset \mathbb{R}^{d}$, let $f: \Omega \rightarrow \mathbb{R}$ satisfy $\Delta f \geq 0$

General Mean-Value Inequalities?
Let $\Omega \subset \mathbb{R}^{d}$, let $f: \Omega \rightarrow \mathbb{R}$ satisfy $\Delta f \geq 0$ and suppose $\left.f\right|_{\partial \Omega} \geq 0$.

General Mean-Value Inequalities?
Let $\Omega \subset \mathbb{R}^{d}$, let $f: \Omega \rightarrow \mathbb{R}$ satisfy $\Delta f \geq 0$ and suppose $\left.f\right|_{\partial \Omega} \geq 0$. Is there an inequality

$$
\int_{\Omega} f(x) d x \leq c_{\Omega} \int_{\partial \Omega} f(x) d x ?
$$

General Mean-Value Inequalities?
Let $\Omega \subset \mathbb{R}^{d}$, let $f: \Omega \rightarrow \mathbb{R}$ satisfy $\Delta f \geq 0$ and suppose $\left.f\right|_{\partial \Omega} \geq 0$. Is there an inequality

$$
\int_{\Omega} f(x) d x \leq c_{\Omega} \int_{\partial \Omega} f(x) d x ?
$$

How does the constant c_{Ω} depend on Ω ?

General Mean-Value Inequalities?
Let $\Omega \subset \mathbb{R}^{d}$, let $f: \Omega \rightarrow \mathbb{R}$ satisfy $\Delta f \geq 0$ and suppose $\left.f\right|_{\partial \Omega} \geq 0$. Is there an inequality

$$
\int_{\Omega} f(x) d x \leq c_{\Omega} \int_{\partial \Omega} f(x) d x ?
$$

How does the constant c_{Ω} depend on Ω ?

Let's start with something 'simpler': convex functions.

My interest in this arose when seeing a fun paper on the arXiv.

My interest in this arose when seeing a fun paper on the arXiv.

JENSEN-TYPE GEOMETRIC SHAPES

PAWEŁ PASTECZKA

Abstract. We present both necessary and sufficient conditions to the convex closed shape X such that the inequality

$$
\frac{1}{|X|} \int_{X} f(x) d x \leq \frac{1}{|\partial X|} \int_{\partial X} f(x) d x
$$

is valid for every convex function $f: X \rightarrow \mathbb{R}(\partial X$ stands for the boundary of X).

It is proved that this inequality holds if X is (i) an n-dimensional parallelotope, (ii) an n-dimensional ball, (iii) a convex polytope having an inscribed sphere (tangent to all its facets) with center in the center of mass of ∂X.

From a letter of Hermite to Hadamard:

From a letter of Hermite to Hadamard: let $f:[0,1] \rightarrow \mathbb{R}$ be convex, then

$$
f(x) \leq(1-x) f(0)+x f(1) .
$$

From a letter of Hermite to Hadamard: let $f:[0,1] \rightarrow \mathbb{R}$ be convex, then

$$
f(x) \leq(1-x) f(0)+x f(1) .
$$

Integrating on both sides, we get (not very impressive....)

$$
\int_{0}^{1} f(x) d x \leq \frac{f(0)+f(1)}{2}
$$

or

From a letter of Hermite to Hadamard: let $f:[0,1] \rightarrow \mathbb{R}$ be convex, then

$$
f(x) \leq(1-x) f(0)+x f(1) .
$$

Integrating on both sides, we get (not very impressive....)

$$
\int_{0}^{1} f(x) d x \leq \frac{f(0)+f(1)}{2}
$$

or, for $\Omega=[0,1]$,

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

Hermite-Hadamard Inequalities

Let $f: \Omega \rightarrow \mathbb{R}$ be convex. Then we have the inequality

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

when

Hermite-Hadamard Inequalities

Let $f: \Omega \rightarrow \mathbb{R}$ be convex. Then we have the inequality

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

when

- Ω is a ball in \mathbb{R}^{d} (Dragomir, Pearce)

Hermite-Hadamard Inequalities

Let $f: \Omega \rightarrow \mathbb{R}$ be convex. Then we have the inequality

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

when

- Ω is a ball in \mathbb{R}^{d} (Dragomir, Pearce)
- Ω is a Platonic solids (Pasteczka)

Hermite-Hadamard Inequalities

Let $f: \Omega \rightarrow \mathbb{R}$ be convex. Then we have the inequality

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

when

- Ω is a ball in \mathbb{R}^{d} (Dragomir, Pearce)
- Ω is a Platonic solids (Pasteczka)
- Ω is some type of polytope (Pasteczka)

Hermite-Hadamard Inequalities

Let $f: \Omega \rightarrow \mathbb{R}$ be convex. Then we have the inequality

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

when

- Ω is a ball in \mathbb{R}^{d} (Dragomir, Pearce)
- Ω is a Platonic solids (Pasteczka)
- Ω is some type of polytope (Pasteczka)
- ...and?

Hermite-Hadamard Inequalities

Let $f: \Omega \rightarrow \mathbb{R}$ be convex and suppose we have the inequality

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

Hermite-Hadamard Inequalities

Let $f: \Omega \rightarrow \mathbb{R}$ be convex and suppose we have the inequality

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

Proposition (Pasteczka)
then Ω and $\partial \Omega$ have the same center of mass.

Hermite-Hadamard Inequalities

Let $f: \Omega \rightarrow \mathbb{R}$ be convex and suppose we have the inequality

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

Proposition (Pasteczka)

then Ω and $\partial \Omega$ have the same center of mass.
Proof.
Plug in $f(x)=\langle a, x\rangle+b$.

Hermite-Hadamard Inequalities

Let $f: \Omega \rightarrow \mathbb{R}$ be convex and suppose we have the inequality

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

Proposition (Pasteczka)

then Ω and $\partial \Omega$ have the same center of mass.
Proof.
Plug in $f(x)=\langle a, x\rangle+b$. Both f and $-f$ are convex, therefore

Hermite-Hadamard Inequalities

Let $f: \Omega \rightarrow \mathbb{R}$ be convex and suppose we have the inequality

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

Proposition (Pasteczka)

then Ω and $\partial \Omega$ have the same center of mass.
Proof.
Plug in $f(x)=\langle a, x\rangle+b$. Both f and $-f$ are convex, therefore

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x=\frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

for all functions of this type.

Hermite-Hadamard Inequalities

Let $f: \Omega \rightarrow \mathbb{R}$ be convex and suppose we have the inequality

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

Proposition (Pasteczka)
then Ω and $\partial \Omega$ have the same center of mass.

Hermite-Hadamard Inequalities

Let $f: \Omega \rightarrow \mathbb{R}$ be convex and suppose we have the inequality

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

Proposition (Pasteczka)

then Ω and $\partial \Omega$ have the same center of mass.
Conjecture (Pasteczka)
'Our conjecture is that every convex shape which satisfies this condition is of Jensen-type'.
I think this would be really nice if it were true (maybe too nice?)

Hermite-Hadamard Inequalities

Proposition (Pasteczka)
If, for all convex $f: \Omega \rightarrow \mathbb{R}$

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

then Ω and $\partial \Omega$ have the same center of mass.

Hermite-Hadamard Inequalities

Proposition (Pasteczka)
If, for all convex $f: \Omega \rightarrow \mathbb{R}$

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

then Ω and $\partial \Omega$ have the same center of mass.

In particular, if Ω and $\partial \Omega$ have different centers of mass, then the optimal constant c_{Ω}

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{c_{\Omega}}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

satisfies $c_{\Omega}>1$.

Hermite-Hadamard Inequalities

$f: \Omega \rightarrow \mathbb{R}^{d}$ convex and

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{c_{\Omega}}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x
$$

Theorem (S. 2018)
$c_{\Omega} \leq c_{n}$ for all convex domains $\Omega \subset \mathbb{R}^{n}$.

Hermite-Hadamard Inequalities

$f: \Omega \rightarrow \mathbb{R}^{d}$ convex and

$$
\frac{1}{|\Omega|} \int_{\Omega} f(x) d x \leq \frac{c_{\Omega}}{|\partial \Omega|} \int_{\partial \Omega} f(x) d x .
$$

Theorem (S. 2018)
$c_{\Omega} \leq c_{n}$ for all convex domains $\Omega \subset \mathbb{R}^{n}$.

I will later show much better results. But what is interesting here is that there is a fun transport problem hiding here. I always thought that this was independently interesting.

A Transport Problem

Sending a little bit of Lebesgue mass at x to both y and z.

A Transport Problem

Sending a little bit of Lebesgue mass at x to both y and z.

$$
1 \text { unit of Lebesgue at } x \rightarrow\left\{\begin{array}{lr}
t & \text { at } y \\
1-t & \text { at } z .
\end{array}\right.
$$

A Transport Problem

Sending a little bit of Lebesgue mass at x to both y and z.

$$
1 \text { unit of Lebesgue at } x \rightarrow\left\{\begin{array}{lr}
t & \text { at } y \\
1-t & \text { at } z
\end{array}\right.
$$

Mechanism to send $\mathcal{H}^{d}(\Omega)$ to $\mathcal{H}^{d-1}(\partial \Omega)$.

A Transport Problem

Main Question

How do you send the \mathcal{H}^{d} to the boundary so that the final measure on the boundary is as flat as possible?

A Transport Problem

Main Question
How do you send the \mathcal{H}^{d} to the boundary so that the final boundary measure is as flat as possible?

If we call the measure on the boundary ν, then

$$
\nu(\partial \Omega)=|\Omega| .
$$

A Transport Problem

Main Question

How do you send the \mathcal{H}^{d} to the boundary so that the final boundary measure is as flat as possible?

If we call the measure on the boundary ν, then

$$
\nu(\partial \Omega)=|\Omega| .
$$

Moreover, for all convex $f: \Omega \rightarrow \mathbb{R}$, we have

$$
\int_{\Omega} f(x) d x \leq \int_{\partial \Omega} f d \nu
$$

A Transport Problem

Main Question

How do you send the \mathcal{H}^{d} to the boundary so that the final boundary measure is as flat as possible?

If we call the measure on the boundary ν, then

$$
\nu(\partial \Omega)=|\Omega| .
$$

Moreover, for all convex $f: \Omega \rightarrow \mathbb{R}$, we have

$$
\int_{\Omega} f(x) d x \leq \int_{\partial \Omega} f d \nu
$$

and in particular, in terms of the Radon-Nikodym derivative,

$$
\int_{\Omega} f d x \leq\left\|\frac{d \nu}{d \sigma}\right\|_{L^{\infty}} \cdot \int_{\partial \Omega} f d \sigma
$$

A Transport Problem

If Ω and $\partial \Omega$ have a different center of mass, then the final measure satisfies

$$
\left\|\frac{d \mu}{d \sigma}\right\|>\frac{|\Omega|}{|\partial \Omega|},
$$

A Transport Problem

If Ω and $\partial \Omega$ have a different center of mass, then the final measure satisfies

$$
\left\|\frac{d \mu}{d \sigma}\right\|>\frac{|\Omega|}{|\partial \Omega|},
$$

so it cannot be too evenly distributed. How evenly distributed can it be?

A Transport Problem

This interpretation gives a quick proof-by-picture why the constant for the ball is 1 .

A Transport Problem

This interpretation gives a quick proof-by-picture why the constant for the ball is 1 .

A Transport Problem

This interpretation gives a quick proof-by-picture why the constant for the ball is 1 .

If we distribute the mass randomly in all directions, then the final distribution on the boundary has to be uniform. Thus the constant is 1 for the ball is admissible (and clearly optimal).

Back to subharmonic

Let $\Omega \subset \mathbb{R}^{d}$, let $f: \Omega \rightarrow \mathbb{R}$ satisfy $\Delta f \geq 0$ and suppose $\left.f\right|_{\partial \Omega} \geq 0$.

$$
\int_{\Omega} f(x) d x \leq c_{\Omega} \int_{\partial \Omega} f(x) d x
$$

and how does the constant c_{Ω} depend on Ω ?

Back to subharmonic

Let $\Omega \subset \mathbb{R}^{d}$, let $f: \Omega \rightarrow \mathbb{R}$ satisfy $\Delta f \geq 0$ and suppose $\left.f\right|_{\partial \Omega} \geq 0$.

$$
\int_{\Omega} f(x) d x \leq c_{\Omega} \int_{\partial \Omega} f(x) d x
$$

and how does the constant c_{Ω} depend on Ω ?

We start by recalling some arguments from Niculescu-Persson. To this end, we introduce the function $\phi: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
-\Delta \phi & =1 & & \text { in } \Omega \\
\phi & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Integration by Parts

$$
\begin{aligned}
\int_{\Omega} f(x) d x & =\int_{\Omega} f(x)(-\Delta \phi(x)) d x \\
& =\int_{\Omega}(-\Delta f(x)) \phi(x) d x+\int_{\partial \Omega} f(x) \frac{\partial \phi}{\partial n} d \sigma \\
& \leq \int_{\partial \Omega} f(x) \frac{\partial \phi}{\partial n} d \sigma
\end{aligned}
$$

Integration by Parts

$$
\begin{aligned}
\int_{\Omega} f(x) d x & =\int_{\Omega} f(x)(-\Delta \phi(x)) d x \\
& =\int_{\Omega}(-\Delta f(x)) \phi(x) d x+\int_{\partial \Omega} f(x) \frac{\partial \phi}{\partial n} d \sigma \\
& \leq \int_{\partial \Omega} f(x) \frac{\partial \phi}{\partial n} d \sigma
\end{aligned}
$$

where n points inside the domain. Equality if and only if f is harmonic.

Integration by Parts

$$
\begin{aligned}
\int_{\Omega} f(x) d x & =\int_{\Omega} f(x)(-\Delta \phi(x)) d x \\
& =\int_{\Omega}(-\Delta f(x)) \phi(x) d x+\int_{\partial \Omega} f(x) \frac{\partial \phi}{\partial n} d \sigma \\
& \leq \int_{\partial \Omega} f(x) \frac{\partial \phi}{\partial n} d \sigma
\end{aligned}
$$

where n points inside the domain. Equality if and only if f is harmonic. Moreover,

$$
\left\|\frac{\partial \phi}{\partial n}\right\|_{L^{\infty}} \quad \text { is the sharp constant. }
$$

Integration by Parts

$$
\begin{aligned}
\int_{\Omega} f(x) d x & =\int_{\Omega} f(x)(-\Delta \phi(x)) d x \\
& =\int_{\Omega}(-\Delta f(x)) \phi(x) d x+\int_{\partial \Omega} f(x) \frac{\partial \phi}{\partial n} d \sigma \\
& \leq \int_{\partial \Omega} f(x) \frac{\partial \phi}{\partial n} d \sigma
\end{aligned}
$$

where n points inside the domain. Equality if and only if f is harmonic. Moreover,

$$
\left\|\frac{\partial \phi}{\partial n}\right\|_{L^{\infty}} \quad \text { is the sharp constant. }
$$

Find harmonic function corresponding to boundary data given by a characteristic function in the neighborhood where gradient is large.

Back to subharmonic

Let $\Omega \subset \mathbb{R}^{d}$, let $f: \Omega \rightarrow \mathbb{R}$ satisfy $\Delta f \geq 0$ and suppose $\left.f\right|_{\partial \Omega} \geq 0$.

$$
\int_{\Omega} f(x) d x \leq c_{\Omega} \int_{\partial \Omega} f(x) d x
$$

Back to subharmonic

Let $\Omega \subset \mathbb{R}^{d}$, let $f: \Omega \rightarrow \mathbb{R}$ satisfy $\Delta f \geq 0$ and suppose $\left.f\right|_{\partial \Omega} \geq 0$.

$$
\int_{\Omega} f(x) d x \leq c_{\Omega} \int_{\partial \Omega} f(x) d x
$$

We have

$$
c_{\Omega} \leq\left\|\frac{\partial \phi}{\partial n}\right\|_{L^{\infty}}
$$

where $\phi: \Omega \rightarrow \mathbb{R}$ is such that

$$
\begin{aligned}
-\Delta \phi & =1 & & \text { in } \Omega \\
\phi & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

So it boils down to understanding the maximal gradient of

$$
\begin{aligned}
&-\Delta \phi=1 \\
& \text { in } \Omega \\
& \phi=0 \\
& \text { on } \partial \Omega .
\end{aligned}
$$

So it boils down to understanding the maximal gradient of

$$
\begin{aligned}
-\Delta \phi & =1 & & \text { in } \Omega \\
\phi & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

(solution on an equilateral triangle)
This turns out to be a classical problem and there are lots of estimates that are known.

This perspective lead to some nice results.

This perspective lead to some nice results.
Theorem (Beck, Brandolini, Burdzy, Henrot, Langford, Larson, Smits, S, 2019)
Let $f: \Omega \rightarrow \mathbb{R}$ be positive, $\Delta f \geq 0$ and let Ω be convex. Then

$$
\frac{1}{|\Omega|} \int_{\Omega} f d x \leq \frac{c_{n}}{|\partial \Omega|} \int_{\partial \Omega} f d \sigma
$$

where $n \lesssim c_{n} \lesssim n^{3 / 2}$.

This perspective lead to some nice results.
Theorem (Beck, Brandolini, Burdzy, Henrot, Langford, Larson, Smits, S, 2019)
Let $f: \Omega \rightarrow \mathbb{R}$ be positive, $\Delta f \geq 0$ and let Ω be convex. Then

$$
\frac{1}{|\Omega|} \int_{\Omega} f d x \leq \frac{c_{n}}{|\partial \Omega|} \int_{\partial \Omega} f d \sigma
$$

where $n \lesssim c_{n} \lesssim n^{3 / 2}$.
Theorem (Simon Larson, 2020)
Let $f: \Omega \rightarrow \mathbb{R}$ be positive, $\Delta f \geq 0$ and let Ω be convex. Then

$$
\frac{1}{|\Omega|} \int_{\Omega} f d x<\frac{n}{|\partial \Omega|} \int_{\partial \Omega} f d \sigma
$$

and n is the sharp constant. (No extremizers!)

$$
\frac{1}{|\Omega|} \int_{\Omega} f d x \leq \frac{n}{|\partial \Omega|} \int_{\partial \Omega} f d \sigma
$$

is the sharp result in terms of $|\Omega|$ and $|\partial \Omega|$. However, one could also invoke other (or fewer/other) geometric quantities.

$$
\frac{1}{|\Omega|} \int_{\Omega} f d x \leq \frac{n}{|\partial \Omega|} \int_{\partial \Omega} f d \sigma
$$

is the sharp result in terms of $|\Omega|$ and $|\partial \Omega|$. However, one could also invoke other (or fewer/other) geometric quantities.
Theorem (Jianfeng Lu and S, 2019)
Let $f: \Omega \rightarrow \mathbb{R}$ be positive, $\Delta f \geq 0$ and let Ω be convex. Then

$$
\int_{\Omega} f d x \leq|\Omega|^{1 / n} \int_{\partial \Omega} f d \sigma
$$

$$
\frac{1}{|\Omega|} \int_{\Omega} f d x \leq \frac{n}{|\partial \Omega|} \int_{\partial \Omega} f d \sigma
$$

is the sharp result in terms of $|\Omega|$ and $|\partial \Omega|$. However, one could also invoke other (or fewer/other) geometric quantities.
Theorem (Jianfeng Lu and S, 2019)
Let $f: \Omega \rightarrow \mathbb{R}$ be positive, $\Delta f \geq 0$ and let Ω be convex. Then

$$
\int_{\Omega} f d x \leq|\Omega|^{1 / n} \int_{\partial \Omega} f d \sigma
$$

Open Problem: the sharp constant and whether there is an extremal domain is less clear.

$$
\frac{1}{|\Omega|} \int_{\Omega} f d x \leq \frac{n}{|\partial \Omega|} \int_{\partial \Omega} f d \sigma
$$

is the sharp result in terms of $|\Omega|$ and $|\partial \Omega|$. However, one could also invoke other (or fewer/other) geometric quantities.
Theorem (Jianfeng Lu and S, 2019)
Let $f: \Omega \rightarrow \mathbb{R}$ be positive, $\Delta f \geq 0$ and let Ω be convex. Then

$$
\int_{\Omega} f d x \leq|\Omega|^{1 / n} \int_{\partial \Omega} f d \sigma
$$

The optimal constant has to satisfy $1 /(2 \sqrt{\pi e}) \leq c_{n} \leq 1$. (Lower bound given by ellipsoids, example by Thomas Beck.)

$$
\frac{1}{|\Omega|} \int_{\Omega} f d x \leq \frac{n}{|\partial \Omega|} \int_{\partial \Omega} f d \sigma
$$

is the sharp result in terms of $|\Omega|$ and $|\partial \Omega|$. However, one could also invoke other (or fewer/other) geometric quantities.

Theorem (Jianfeng Lu and S, 2019)
Let $f: \Omega \rightarrow \mathbb{R}$ be positive, $\Delta f \geq 0$ and let Ω be convex. Then

$$
\int_{\Omega} f d x \leq|\Omega|^{1 / n} \int_{\partial \Omega} f d \sigma
$$

The optimal constant has to satisfy $1 /(2 \sqrt{\pi e}) \leq c_{n} \leq 1$. (Lower bound given by ellipsoids, example by Thomas Beck.) It's not entirely clear how extremal domain has to look.

Focusing on $n=2$

The goal is to now focus on convex sets $\Omega \subset \mathbb{R}^{2}$ which are scaled to have area 1 .

Focusing on $n=2$

The goal is to now focus on convex sets $\Omega \subset \mathbb{R}^{2}$ which are scaled to have area 1. From the previous inequality, we have

$$
\int_{\Omega} f d x \leq \int_{\partial \Omega} f d \sigma
$$

but the hope would be that in $n=2$ dimensions, more can be said.

Focusing on $n=2$

The goal is to now focus on convex sets $\Omega \subset \mathbb{R}^{2}$ which are scaled to have area 1. From the previous inequality, we have

$$
\int_{\Omega} f d x \leq \int_{\partial \Omega} f d \sigma
$$

but the hope would be that in $n=2$ dimensions, more can be said.

As it turns out, this question is 165 years old!

Focusing on $n=2$

Focusing on $n=2$

Let now $\Omega \subset \mathbb{R}^{2}$ and

$$
\begin{aligned}
-\Delta \phi & =1 & & \text { in } \Omega \\
\phi & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Focusing on $n=2$

Let now $\Omega \subset \mathbb{R}^{2}$ and

$$
\begin{aligned}
-\Delta \phi & =1 & & \text { in } \Omega \\
\phi & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

We need to understand how large ϕ can be.

Focusing on $n=2$

Let now $\Omega \subset \mathbb{R}^{2}$ and

$$
\begin{aligned}
-\Delta \phi & =1 & & \text { in } \Omega \\
\phi & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

We need to understand how large ϕ can be. The points where $\|\nabla \phi\|$ assumes its largest value are known as the fail points.

Focusing on $n=2$

Let now $\Omega \subset \mathbb{R}^{2}$ and

$$
\begin{aligned}
-\Delta \phi & =1 & & \text { in } \Omega \\
\phi & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

We need to understand how large ϕ can be. The points where $\|\nabla \phi\|$ assumes its largest value are known as the fail points. Or as points dangereux!

Focusing on $n=2$

Let now $\Omega \subset \mathbb{R}^{2}$ and

$$
\begin{aligned}
-\Delta \phi & =1 & & \text { in } \Omega \\
\phi & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

We need to understand how large ϕ can be. The points where $\|\nabla \phi\|$ assumes its largest value are known as the fail points. Or as points dangereux!

Les points dangereux sont donc, comme dans l'ellipse et le rectangle, les points du contour les plus rapproches de l'axe de torsion, ou les extremites des petits diametre. (Saint Venant, 1856)

Focusing on $n=2$

People thought that this was very strange!

Focusing on $n=2$

People thought that this was very strange!
M. de St. Venant also calls attention to a conclusion from his solutions which to many may be startling, that in the simpler cases the places of greatest distortion are those points of the boundary which are nearest to the axis [...] and the places of least distortion those farthest from it. (Thomson \& Tait, Treatise on Natural Philosophy, 1867)

Focusing on $n=2$

- 1871: Boussinesq gives a heuristic explanation

Focusing on $n=2$

- 1871: Boussinesq gives a heuristic explanation
- 1900: Filon gives an argument

Focusing on $n=2$

- 1871: Boussinesq gives a heuristic explanation
- 1900: Filon gives an argument
- 1920: Griffith \& Sir G. I. Taylor build a soap bubble machine to compute torsion

Focusing on $n=2$

- 1871: Boussinesq gives a heuristic explanation
- 1900: Filon gives an argument
- 1920: Griffith \& Sir G. I. Taylor build a soap bubble machine to compute torsion
- 1930: Polya proves the maximum is on the boundary.

Focusing on $n=2$

Suppose $\Omega \subset \mathbb{R}^{2}$ is a convex set and $-\Delta u=1$ with Dirichlet boundary conditions.

Focusing on $n=2$

Suppose $\Omega \subset \mathbb{R}^{2}$ is a convex set and $-\Delta u=1$ with Dirichlet boundary conditions.
Theorem (Hoskins \& S, 2019)
There exists $0.35 \leq c<(2 \pi)^{-1 / 2} \sim 0.39 \ldots$ such that

$$
\|\nabla u\|_{L^{\infty}} \leq c \cdot|\Omega|^{1 / 2}
$$

Focusing on $n=2$

Suppose $\Omega \subset \mathbb{R}^{2}$ is a convex set and $-\Delta u=1$ with Dirichlet boundary conditions.

Theorem (Hoskins \& S, 2019)
There exists $0.35 \leq c<(2 \pi)^{-1 / 2} \sim 0.39 \ldots$ such that

$$
\|\nabla u\|_{L^{\infty}} \leq c \cdot|\Omega|^{1 / 2}
$$

The lower bound follows from an explicit construction that we believe to be close to optimal.

Focusing on $n=2$

Suppose $\Omega \subset \mathbb{R}^{2}$ is a convex set and $-\Delta u=1$ with Dirichlet boundary conditions.
Theorem (Hoskins \& S, 2019)
There exists $0.35 \leq c<(2 \pi)^{-1 / 2} \sim 0.39 \ldots$ such that

$$
\|\nabla u\|_{L^{\infty}} \leq c \cdot|\Omega|^{1 / 2}
$$

The lower bound follows from an explicit construction that we believe to be close to optimal. We'll first discuss how we expect extremizers to look like.

The Probabilistic Interpretation

$$
\begin{aligned}
-\Delta \phi & =1 & & \text { in } \Omega \\
\phi & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

has a probabilistic interpretation.

The Probabilistic Interpretation

$$
\begin{aligned}
&-\Delta \phi=1 \\
& \text { in } \Omega \\
& \phi=0 \\
& \text { on } \partial \Omega .
\end{aligned}
$$

has a probabilistic interpretation.
Probabilistic Interpretation
ϕ is the expected lifetime of Brownian motion.

The Probabilistic Interpretation

$$
\begin{aligned}
&-\Delta \phi=1 \\
& \text { in } \Omega \\
& \phi=0 \\
& \text { on } \partial \Omega .
\end{aligned}
$$

has a probabilistic interpretation.
Probabilistic Interpretation
ϕ is the expected lifetime of Brownian motion.
Polya's Theorem
The maximal gradient is on the boundary.

The Probabilistic Interpretation

$$
\begin{aligned}
-\Delta \phi & =1 & & \text { in } \Omega \\
\phi & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

has a probabilistic interpretation.
Probabilistic Interpretation
ϕ is the expected lifetime of Brownian motion.
Polya's Theorem
The maximal gradient is on the boundary.
What we therefore looking for
The domain Ω such that the average lifetime of Brownian motion conditioned on starting close to the boundary is maximized.

The Probabilistic Interpretation

What we therefore looking for
The domain Ω such that the average lifetime of Brownian motion conditioned on starting close to the boundary is maximized.

The Probabilistic Interpretation

What we therefore looking for
The domain Ω such that the average lifetime of Brownian motion conditioned on starting close to the boundary is maximized.

If we start Brownian motion close to the boundary of a convex domain, we are going to hit the boundary pretty quickly.

The Probabilistic Interpretation

What we therefore looking for
The domain Ω such that the average lifetime of Brownian motion conditioned on starting close to the boundary is maximized.

If we start Brownian motion close to the boundary of a convex domain, we are going to hit the boundary pretty quickly. But certainly if the boundary is curved, we are going to hit it even faster.

The Probabilistic Interpretation

What we therefore looking for
The domain Ω such that the average lifetime of Brownian motion conditioned on starting close to the boundary is maximized.

If we start Brownian motion close to the boundary of a convex domain, we are going to hit the boundary pretty quickly. But certainly if the boundary is curved, we are going to hit it even faster. So the boundary should be pretty flat close to the point of optimal gradient.

Focusing on $n=2$

Here's the result of some high precision numerics.

Focusing on $n=2$

Here's the result of some high precision numerics.

Focusing on $n=2$

Independent argument proposed by Guido Sweers.

Focusing on $n=2$

Independent argument proposed by Guido Sweers.
coming with an explicit construction. Let Ω be a simply connected domain and let $h: E \rightarrow \Omega$ be a biconformal map. Then the solutions of

$$
\begin{cases}-\Delta w=f & \text { in } \Omega \\ w=0 & \text { on } \partial \Omega\end{cases}
$$

and

$$
\begin{cases}-\Delta u=\left|h^{\prime}(\cdot)\right|^{2}(f \circ h) & \text { in } E \\ u=0 & \text { on } \partial E\end{cases}
$$

are related via

$$
(w \circ h)(x, y)=u(x, y)
$$

Focusing on $n=2$

Independent argument proposed by Guido Sweers.

Focusing on $n=2$

Independent argument proposed by Guido Sweers.

Figure 13. Left: $h_{q}\left(E_{q}\right)$ for $1 \leq q \leq 2$. Right: $h_{q}\left(E_{q}\right)$ for $q=1.386$.

Shape Optimization?

What can be said about this domain?

- best constant in mean value inequalities

Shape Optimization?

What can be said about this domain?

- best constant in mean value inequalities
- largest possible strain in material science (points dangereoux)

Shape Optimization?

What can be said about this domain?

- best constant in mean value inequalities
- largest possible strain in material science (points dangereoux)
- longest lifetime of Brownian motion close to boundary

Shape Optimization?

What can be said about this domain?

- best constant in mean value inequalities
- largest possible strain in material science (points dangereoux)
- longest lifetime of Brownian motion close to boundary

And what about higher dimensions?

