A Combinatorial Perspective on Geometric Inequalities

Marius Tiba

University of Oxford

February 8th, 2024

Geometric inequalities

Isoperimetric inequality in the plane

Of all planar regions of a given area, the disc has the smallest perimeter.

Related inequalities

Discrete Isoperimetric inequalities, Brunn-Minkowski, Prékopa-Leindler, Borell-Brascamp–Lieb, etc.

Stability of Geometric inequalities

Isoperimetric inequality in the plane

If R is a region with area π , then R has perimeter at least 2π . Equality happens if and only if R is a disc of radius 1.

Stability principle

If we are close to equality in isoperimetric inequality, then R is close to being a disc.

Stability of the isoperimetric inequality

Bonnesen, 1924

If R is a region with area π and perimeter at most $2\pi + \delta$, then R is sandwiched between two concentric discs with radii $1 - O(\sqrt{\delta})$ and $1 + O(\sqrt{\delta})$, respectively.

Figure: Ellipse with major and minor axes $1 + \sqrt{\delta}$ and $\frac{1}{1+\sqrt{\delta}}$. Area π and perimeter $2\pi + O(\delta)$. Inner and outer circles with radii $\approx 1 - \sqrt{\delta}$ and $1 + \sqrt{\delta}$.

First step: find the center

We want to show R is sandwiched between two discs of radii $1 \pm O(\sqrt{\delta})$. Where is the center?

First step: find the center

Find a line segment \overline{xy} that divides both the perimeter and area in half and let *o* be the midpoint of \overline{xy} .

Second step: reduce to the case when R is symmetric

From *R* construct two regions by erasing one half and reflecting the other half in *o*. Crucially, *R*, *R'* and *R''* all have the area π and perimeter $2\pi + \delta$.

R is sandwiched between two discs centered at o if and only if R' and R'' are sandwiched between the same two discs.

Third step: resolve the case when R is symmetric in o

We assume R to be symmetric in o and show that R is sandwiched between two discs centered at the origin with radii $1 \pm O(\sqrt{\delta})$. This is equivalent to showing that for any segment \overline{pq} through o, we have $2 + O(\sqrt{\delta}) \ge \overline{pq} \ge 2 - O(\sqrt{\delta})$.

Third step: resolve the case when R is symmetric in o

The top half has area $\pi/2$ and red perimeter $\pi + \delta/2$. Consider a sector of a disc with chord \overline{pq} that has area $\pi/2$. We claim that this has red perimeter at most $\pi + \delta/2$.

Third step: resolve the case when R is symmetric in o

Indeed, we can add the complementary sector of a disc to both figures and apply the isoperimetric inequality. Hence, the left figure has larger (red) perimeter than the right figure.

Third step: resolve the case when R is symmetric in o

A simple trigonometric computation in the disc allows us to express \overline{pq} in terms of the area of the green sector and the red perimeter, giving the desired bound for \overline{pq} .

Sumsets

Minkowski sum

For $A, B \subset \mathbb{R}^d$,

$$A+B=\{x+y\colon x\in A, y\in B\}.$$

Example

If A is any set and B is a ball of radius r centered at origin, then,

$$A+B=\big\{z\in\mathbb{R}^d\colon {\rm dist}(z,A)\leq r\big\}.$$

Minkowski average

For $A, B \subset \mathbb{R}^d$,

$$\frac{A+B}{2} = \left\{ \frac{x+y}{2} \colon x \in A, \ y \in B \right\}.$$

Brunn 1887, Minkowski 1896

If 0 < t < 1 and $A, B \subset \mathbb{R}^d$ have the same volume, then

$$|tA+(1-t)B|\geq |A|.$$

In particular,

$$\left|\frac{A+B}{2}\right| \ge |A|.$$

Equality in Brunn-Minkowski inequality

Brunn 1887, Minkowski 1896

If $A, B \subset \mathbb{R}^d$ have the same volume, then

$$\left|\frac{A+B}{2}\right| \ge |A|.$$

Equality iff A and B are convex and equal up to translation.

Convex set

R is convex if for any points $x, y \in R$ the segment \overline{xy} between them is contained in R.

Brunn 1887, Minkowski 1896

If $A, B \subset \mathbb{R}^d$ have the same volume, then

$$\left|\frac{A+B}{2}\right| \ge |A|,$$

with equality iff A and B are convex and equal up to translation.

Brunn 1887, Minkowski 1896

If $A, B \subset \mathbb{R}^d$ have the same volume, then

$$\left|\frac{A+B}{2}\right| \ge |A|,$$

with equality iff A and B are convex and equal up to translation.

Brunn 1887, Minkowski 1896

If $A, B \subset \mathbb{R}^d$ have the same volume, then

$$\left|\frac{A+B}{2}\right| \ge |A|,$$

with equality iff A and B are convex and equal up to translation.

Brunn 1887, Minkowski 1896

If $A, B \subset \mathbb{R}^d$ have the same volume, then

$$\left|\frac{A+B}{2}\right| \ge |A|,$$

with equality iff A and B are convex and equal up to translation.

Figure: $A \neq B$ are convex. $|A| = |B| = 1 - \delta^2$; $|\frac{A+B}{2}| = 1$.

Stability of Brunn-Minkowski inequality

Brunn 1887, Minkowski 1896

If $A, B \subset \mathbb{R}^d$ have the same volume, then

$$\left|\frac{A+B}{2}\right| \ge |A|,$$

with equality iff A and B are convex and equal up to translation.

Stability principle

If we are close to equality, then A and B are close to being convex and equal up to translation.

Stability of Brunn-Minkowski inequality

First Folklore Conjecture

If $A, B \subset \mathbb{R}^d$ have the same volume and

$$\left| rac{A+B}{2}
ight| \leq (1+\delta) |A|, \, \, {
m where} \, \, \delta \ll 1,$$

then, up to translation, $|A \triangle B| \leq O(\sqrt{\delta})|A|$.

Figure: $|A| = |B| = 1 - \delta$, $|\frac{A+B}{2}| = 1$; $|A \triangle B| = 2\sqrt{\delta} - 2\delta$.

20 / 51

Stability of Brunn-Minkowski inequality

Second Folklore conjecture

If $A, B \subset \mathbb{R}^d$ have the same volume and $|\frac{A+B}{2}| \leq (1+\delta)|A|$, where $\delta \ll 1$, then $|\operatorname{co}(A) \setminus A|, |\operatorname{co}(B) \setminus B| \leq O(\delta)|A|$.

co(X) is the smallest convex set containing X.

Figure: |A| = |B| = 1, $|\frac{A+B}{2}| = 1 + \delta$, $|co(A) \setminus A| = \delta$ where co(A) is outer disc.

When one of the sets is convex

Folklore conjectures

If $A, B \subset \mathbb{R}^d$ have the same volume and $|\frac{A+B}{2}| \leq (1+\delta)|A|$, then, up to translation, $|A \triangle B| \leq O(\sqrt{\delta})|A|$. Also, $|\operatorname{co}(A) \setminus A|, |\operatorname{co}(B) \setminus B| \leq O(\delta)|A|$.

Figalli, Maggi, Pratelli 2009

Resolved the first conjecture when A and B are convex.

When one of the sets is convex

Folklore conjectures

If $A, B \subset \mathbb{R}^d$ have the same volume and $|\frac{A+B}{2}| \leq (1+\delta)|A|$, then, up to translation, $|A \triangle B| \leq O(\sqrt{\delta})|A|$. Also, $|\operatorname{co}(A) \setminus A|, |\operatorname{co}(B) \setminus B| \leq O(\delta)|A|$.

Figalli, Maggi, Pratelli 2009

Resolved the first conjecture when A and B are convex.

Figalli, Maggi, Mooney 2016

Resolved the first conjecture when A is a ball and B is arbitrary.

When one of the sets is convex

Folklore conjectures

If $A, B \subset \mathbb{R}^d$ have the same volume and $|\frac{A+B}{2}| \leq (1+\delta)|A|$, then, up to translation, $|A \triangle B| \leq O(\sqrt{\delta})|A|$. Also, $|\operatorname{co}(A) \setminus A|, |\operatorname{co}(B) \setminus B| \leq O(\delta)|A|$.

Figalli, Maggi, Pratelli 2009

Resolved the first conjecture when A and B are convex.

Figalli, Maggi, Mooney 2016

Resolved the first conjecture when A is a ball and B is arbitrary.

Barchiesi, Julin 2017

Resolved the first conjecture when A is a convex and B is arbitrary.

When both sets are arbitrary

Folklore conjectures

If $A, B \subset \mathbb{R}^d$ have the same volume and $|\frac{A+B}{2}| \leq (1+\delta)|A|$, then, up to translation, $|A \triangle B| \leq O(\sqrt{\delta})|A|$ and $|\operatorname{co}(A) \setminus A|, |\operatorname{co}(B) \setminus B| \leq O(\delta)|A|$.

Figalli, Jerison 2014

Established sub-optimal bounds for both conjectures of the form

$$|A riangle B|, |\mathsf{co}(A) \setminus A| \leq \delta^{\mathsf{exp}^{-\operatorname{exp}(d)}} |A|.$$

Folklore conjectures

If $A, B \subset \mathbb{R}^d$ have the same volume and $|\frac{A+B}{2}| \leq (1+\delta)|A|$, then, up to translation, $|A \triangle B| \leq O(\sqrt{\delta})|A|$. Also, $|\operatorname{co}(A) \setminus A|, |\operatorname{co}(B) \setminus B| \leq O(\delta)|A|$.

van Hintum, Spink, Tiba 2019

Resolved both conjectures in the plane.

Folklore conjectures

If $A, B \subset \mathbb{R}^d$ have the same volume and $|\frac{A+B}{2}| \leq (1+\delta)|A|$, then, up to translation, $|A \triangle B| \leq O(\sqrt{\delta})|A|$. Also, $|\operatorname{co}(A) \setminus A|, |\operatorname{co}(B) \setminus B| \leq O(\delta)|A|$.

van Hintum, Spink, Tiba 2019

Resolved both conjectures in the plane.

Figalli, van Hintum, Tiba 2023

Resolved both conjectures in all dimensions.

Folklore conjectures

If $A, B \subset \mathbb{R}^d$ have the same volume and $|\frac{A+B}{2}| \leq (1+\delta)|A|$, then, up to translation, $|A \triangle B| \leq O(\sqrt{\delta})|A|$. Also, $|\operatorname{co}(A) \setminus A|, |\operatorname{co}(B) \setminus B| \leq O(\delta)|A|$.

van Hintum, Spink, Tiba 2019

Resolved both conjectures in the plane.

Figalli, van Hintum, Tiba 2023

Resolved both conjectures in all dimensions.

van Hintum, Spink, Tiba 2019

Determined the optimal constant when A = B in dimension ≤ 4 and the asymptotic constant in all dimensions.

Theorem Figalli, van Hintum, Tiba (2023)

If $A, B \subset \mathbb{R}^d$ have the same volume and

$$tA + (1-t)B| \le (1+\delta)|A|$$
, where $\delta \ll_{d,t} 1$,

then, up to translation, $|A \triangle B| \leq O_d(\sqrt{\delta/t})|A|$.

Figure: $|A| = |B| = 1 - \delta$, $|\frac{A+B}{2}| = 1$; $|A \triangle B| = 2\sqrt{\delta} - 2\delta$.

If $A, B \subset \mathbb{R}^d$ have the same volume and

$$|tA + (1-t)B| \le (1+\delta)|A|, ext{ where } \delta \ll_{d,t} 1,$$

then $|co(A) \setminus A|, |co(B) \setminus B| \le O_{d,t}(\delta)|A|.$

Figure: |A| = |B| = 1, $|\frac{A+B}{2}| = 1 + \delta$, $|co(A) \setminus A| = \delta$ where co(A) is outer disc.

26 / 51

If $A, B \subset \mathbb{R}^d$ have the same volume then $|(A + B)/2| \ge |A|$.

Proof

1. Do parallel hyperplane cuts to partition $A = \sqcup A_i$ and $B = \sqcup B_i$ s.t. $|A_i| = |B_i|$ and $(A_i + B_i)/2$ are disjoint.

2. Prove BM inequality for A_i and B_i i.e. $|(A_i + B_i)/2| \ge |A_i|$.

If $A, B \subset \mathbb{R}^d$ have the same volume then $|(A + B)/2| \ge |A|$.

Proof

1. Do parallel hyperplane cuts to partition $A = \sqcup A_i$ and $B = \sqcup B_i$ s.t. $|A_i| = |B_i|$ and $(A_i + B_i)/2$ are disjoint.

2. Prove BM inequality for A_i and B_i i.e. $|(A_i + B_i)/2| \ge |A_i|$.

If $A, B \subset \mathbb{R}^d$ have the same volume then $|(A + B)/2| \ge |A|$.

Proof

1. Do parallel hyperplane cuts to partition $A = \sqcup A_i$ and $B = \sqcup B_i$ s.t. $|A_i| = |B_i|$ and $(A_i + B_i)/2$ are disjoint.

2. Prove BM inequality for A_i and B_i i.e. $|(A_i + B_i)/2| \ge |A_i|$.

If $A, B \subset \mathbb{R}^d$ have the same volume then $|(A + B)/2| \ge |A|$.

Proof

1. Do parallel hyperplane cuts to partition $A = \sqcup A_i$ and $B = \sqcup B_i$ s.t. $|A_i| = |B_i|$ and $(A_i + B_i)/2$ are disjoint.

2. Prove BM inequality for A_i and B_i i.e. $|(A_i + B_i)/2| \ge |A_i|$.

If $A, B \subset \mathbb{R}^d$ have the same volume then $|(A + B)/2| \ge |A|$.

Proof

1. Do parallel hyperplane cuts to partition $A = \sqcup A_i$ and $B = \sqcup B_i$ s.t. $|A_i| = |B_i|$ and $(A_i + B_i)/2$ are disjoint.

2. Prove BM inequality for A_i and B_i i.e. $|(A_i + B_i)/2| \ge |A_i|$.

Theorem (Figalli, van Hintum, Tiba)

If $A, B \subset \mathbb{R}^d$ have the same volume and $|\frac{A+B}{2}| \leq (1+\delta)|A|$ where $\delta \ll 1$ then, up to translation, $|A \triangle B| \leq O(\sqrt{\delta})|A|$.

Proof

1. Do parallel hyperplane cuts to partition $A = \sqcup A_i$ and $B = \sqcup B_i$ as before $|A_i| = |B_i|$, $(A_i + B_i)/2$ disjoint. Say $|(A_i + B_i)/2| = (1 + \delta_i)|A_i|$.

Claim: $(1 + \delta)|A| \ge |(A + B)/2| \ge \sum_i |(A_i + B_i)/2| = \sum_i (1 + \delta_i)|A_i|$.

2. Prove BM stability for A_i and B_i : $\exists z \text{ s.t. } |A_i \triangle (z + B_i)| \le O(\sqrt{\delta_i})|A_i|$.

Conclude $|A \triangle (z+B)| \leq \sum_i |A_i \triangle (z+B_i)| \leq \sum_i O(\sqrt{\delta_i})|A_i| \leq O(\sqrt{\delta})|A|$.

Theorem (Figalli, van Hintum, Tiba)

If $A, B \subset \mathbb{R}^d$ have the same volume and $|\frac{A+B}{2}| \leq (1+\delta)|A|$ where $\delta \ll 1$ then, up to translation, $|A \triangle B| \leq O(\sqrt{\delta})|A|$.

Proof

1. Do parallel hyperplane cuts to partition $A = \sqcup A_i$ and $B = \sqcup B_i$ as before $|A_i| = |B_i|$, $(A_i + B_i)/2$ disjoint. Say $|(A_i + B_i)/2| = (1 + \delta_i)|A_i|$.

Claim: $(1 + \delta)|A| \ge |(A + B)/2| \ge \sum_i |(A_i + B_i)/2| = \sum_i (1 + \delta_i)|A_i|$.

2. Prove BM stability for A_i and B_i : $\exists z_i$ s.t. $|A_i \triangle (z_i + B_i)| \le O(\sqrt{\delta_i})|A_i|$! The translates z_i are not the same ! Conclude $|A \triangle (z + B)| \le \sum_i |A_i \triangle (z + B_i)| \le \sum_i O(\sqrt{\delta_i})|A_i| \le O(\sqrt{\delta})|A|$.

Cone

 $C \in \mathbb{R}^d$ is a cone with vertex at origin o if $C = H_1^+ \cap \cdots \cap H_n^+$, where H_1, \ldots, H_n are hyperplanes passing through the origin o.

Cone-like set

 $X \subset C$ is 100-C-like if $C \cap B(o, 1/100) \subset X \subset C \cap B(o, 100)$

Lemma

Say *C* is a cone and *X*, $Y \subset C$ are 100-C-like sets. Assume that |X| = |Y|, $|(X + Y)/2| \le (1 + \delta)|X|$ and $\exists z \text{ s.t } |X \triangle (Y + z)| = O(\sqrt{\delta})|X|$ Then, $|X \triangle Y| = O(\sqrt{\delta})|X|$ i.e. up to constants the optimal translate is 0.

Lemma

Say C is a cone and X, $Y \subset C$ are 100-C-like sets. Assume that |X| = |Y|, $|(X + Y)/2| \le (1 + \delta)|X|$ and $\exists z \text{ s.t } |X \triangle (Y + z)| = O(\sqrt{\delta})|X|$ Then, $|X \triangle Y| = O(\sqrt{\delta})|X|$ i.e. up to constants the optimal translate is 0.

Proof. Affine transform so $\angle \alpha = 30^{\circ}$, which implies |X| = |Y| = c.

Claim $|z| \leq c\sqrt{\delta}$. Enough $h_i \leq c\sqrt{\delta}$. Note $R \subset X \triangle (Y + z)$ so $|R| \leq c\sqrt{\delta}$, but $|R| \geq ch_1$. Dream $|X \triangle Y| = |X \triangle (Y + z)| + c|z| \leq c\sqrt{\delta}$. True if X, Y are (nearly) convex. Other Main Thm $|co(X) \setminus X| \leq O(\delta)|X|$

Lemma

Say C is a cone and X, $Y \subset C$ are 100-C-like sets. Assume that |X| = |Y|, $|(X + Y)/2| \le (1 + \delta)|X|$ and $\exists z \text{ s.t } |X \triangle (Y + z)| = O(\sqrt{\delta})|X|$ Then, $|X \triangle Y| = O(\sqrt{\delta})|X|$ i.e. up to constants the optimal translate is 0.

Proof. Affine transform so $\angle \alpha = 30^{\circ}$, which implies |X| = |Y| = c.

Claim $|z| \leq c\sqrt{\delta}$. Enough $h_i \leq c\sqrt{\delta}$. Note $R \subset X \triangle (Y + z)$ so $|R| \leq c\sqrt{\delta}$, but $|R| \geq ch_1$. Dream $|X \triangle Y| = |X \triangle (Y + z)| + c|z| \leq c\sqrt{\delta}$. True if X, Y are (nearly) convex. Other Main Thm $|co(X) \setminus X| \leq O(\delta)|X|$

Theorem (Figalli, van Hintum, Tiba)

If $A, B \subset \mathbb{R}^d$ have the same volume and $|\frac{A+B}{2}| \leq (1+\delta)|A|$ where $\delta \ll 1$ then, up to translation, $|A \triangle B| \leq O(\sqrt{\delta})|A|$.

Proof Revised

1. Do hyperplane cuts to partition $\mathbb{R}^d = \sqcup C_i$, where C_i are arbitrary narrow cones at origin s.t. 1. $A_i, B_i \subset C_i$ are 100- C_i -like and 2. $|A_i| = |B_i|$

2. Prove BM stability for A_i and B_i : $\exists z_i \text{ s.t. } |A_i \triangle (z_i + B_i)| \le O(\sqrt{\delta_i})|A_i|$! Optimal translates $z_i = 0$ coincide ! Conclude $|A \triangle (z + B)| \le \sum_i |A_i \triangle (z + B_i)| \le \sum_i O(\sqrt{\delta_i})|A_i| \le O(\sqrt{\delta})|A|$.

Theorem (Figalli, van Hintum, Tiba)

If A and B have the same volume and $|\frac{A+B}{2}| \leq (1+\delta)|A|$ where $\delta \ll 1$, then, up to translation, $|A \triangle B| \leq O(\sqrt{\delta})|A|$.

Proof Revised

1. Do hyperplane cuts to partition $\mathbb{R}^d = \sqcup C_i$, where C_i are arbitrary narrow cones at origin s.t. 1. $A_i, B_i \subset C_i$ are 100- C_i -like and 2. $|A_i| = |B_i|$! 1 is always satisfied; 2 is interesting ! 2. Prove BM stability for A_i and B_i : $\exists z$ s.t. $|A_i \triangle (z + B_i)| \leq O(\sqrt{\delta_i})|A_i|$. ! Optimal translates $z_i = 0$ coincide ! Conclude $|A \triangle (z + B)| \leq \sum_i |A_i \triangle (z + B_i)| \leq \sum_i O(\sqrt{\delta_i})|A_i| \leq O(\sqrt{\delta})|A|$.

Refining move in \mathbb{R}^3

Lemma

Let C_i be a cone such that inside C_i we have $|A_i| = |B_i|$. Let ℓ be a line through the origin o. There exists a plane H through ℓ which partitions $C_i = C_i^+ \sqcup C_i^-$ such that $|A_i^+| = |B_i^+|$ and $|A_i^-| = |B_i^-|$.

Refining the partition of \mathbb{R}^3 into narrow cones

Game

At each stage we choose a cone C_i , we choose a line ℓ through o and then the enemy chooses a plane H through ℓ dividing the cone C_i into two smaller cones.

Hope

Can we play the game to produce a partition into arbitrarily narrow cones?

Refining the partition of \mathbb{R}^3 into narrow cones

Theorem (Figalli, van Hintum, Tiba)

We can play the game to produce a partition $\mathbb{R}^3 = C_1 \sqcup \cdots \sqcup C_n$ where each cone C_i falls into one of two categories:

- 1. C_i has O(1) faces and is arbitrarily narrow.
- 2. C_i is trapezoidal and is arbitrarily narrow in the direction of the base.

Refining the partition of \mathbb{R}^3 into narrow cones

Theorem (Figalli, van Hintum, Tiba)

In both cases, the sets A_i (and B_i) inside C_i are simple:

1. Every section parallel to a given plane is entirely in A_i or disjoint from A_i

2. Every fiber parallel to the basis is entirely in A_i or disjoint from A_i

Theorem (Figalli, van Hintum, Tiba)

For simple sets A_i and B_i with the same volume, if $|\frac{A_i+B_i}{2}| \leq (1+\delta)|A_i|$ where $\delta \ll 1$, then, up to translation, $|A_i \triangle B_i| \leq O(\sqrt{\delta})|A_i|$.

First Main Result

Theorem (Figalli, van Hintum, Tiba) If $A, B \subset \mathbb{R}^d$ have the same volume and $|tA + (1 - t)B| \le (1 + \delta)|A|$, where $\delta \ll_{d,t} 1$, then, up to translation, $|A \triangle B| \le O_d(\sqrt{\delta/t})|A|$.

Figure: $|A| = |B| = 1 - \delta$, $|\frac{A+B}{2}| = 1$; $|A \triangle B| = 2\sqrt{\delta} - 2\delta$.

44 / 51

Second Main Result

Figure:
$$|A| = |B| = 1$$
, $|\frac{A+B}{2}| = 1 + \delta$, $|co(A) \setminus A| = \delta$ where $co(A)$ is outer disc.

Marius Tiba (U. of Oxford)

Combinatorial Perspective on Geometric Ine

Optimal dependency on t in linear BM stability

Conjecture

If $A, B \subset \mathbb{R}^d$ have the same volume and

$$|tA + (1-t)B| \le (1+\delta)|A|$$
, where $\delta \ll_{d,t} 1$,

then

$$|\mathrm{co}(A)\setminus A|\leq O_d(t^{-1}\delta)|A|$$
 and $|\mathrm{co}(B)\setminus B|\leq O_d(t^{-d+1}\delta)|A|$

Higher values of δ in linear BM stability

Conjecture

If $A \subset \mathbb{R}^d$ and

$$\left|rac{A+A}{2}
ight|\leq (1+\delta)|A|, ext{ where }\delta\ll_{d,t}1,$$

then $|co(A) \setminus A| \le (\frac{2^d}{d} + o(1))\delta|A|$.

Higher values of δ in linear BM stability

Stability of Prékopa-Leindler

Prékopa-Leindler

Let $f, g: \mathbb{R}^d \to \mathbb{R}_+$ be continuous with bounded support and $\int f = \int g = 1$. Define $h(z) = \sup_{z=\frac{x+y}{2}} \sqrt{f(x)g(y)}$. Then $\int h \ge 1$.

Equality

Equality holds if and only if there exists $a \in \mathbb{R}^d$ such that f(x) = g(x + a) is log-concave i.e. $f(tx + (1 - t)y) \ge f^t(x)f^{1-t}(y) \ \forall t \in (0, 1), x, y \in \mathbb{R}^d$.

Conjecture (Borőczky, Figalli and Ramos)

If $\int h \leq 1 + \delta$, then, up to replacing g(x) := g(x + a) for some $a \in \mathbb{R}^d$, there exists a log-concave function $\ell : \mathbb{R}^d \to \mathbb{R}_+$ such that $\int |f - \ell| + |g - \ell| \leq O_d(\sqrt{\delta}).$

Discrete setting higher dimensions

Degenerate sets

Sets in \mathbb{Z}^d can look like sets in \mathbb{Z} e.g. the set $I = \{(0,0), (1,0), \dots, (n,0)\}$ has $I + I = \{(0,0), \dots, (2n,0)\}$ so |I + I| = 2|I| - 1.

Green-Tao theorem

Given $d \in \mathbb{N}, \epsilon > 0$ there exists $n \in \mathbb{N}$ such that if $A \subset \mathbb{Z}^d$ is not covered by *n* parallel hyperplanes, then $|A + A| \ge (2^d - \epsilon)|A|$

van Hintum, Spink, Tiba 2020

If $d \in \mathbb{N}, \delta > 0$ there exists $n \in \mathbb{N}$ such that if $A \subset \mathbb{Z}^d$ is not covered by n parallel hyperplanes and if $|A + A| \leq (2^d + \delta)|A|$, then A is contained inside a convex progression P i.e. convex set intersected a sub-lattice of \mathbb{Z}^d with size $|P| \leq (1 + O(\delta))|A|$.

Discrete setting higher dimensions

van Hintum, Keevash, Tiba 2023

Given $d \in \mathbb{N}, \epsilon > 0$ there exists $n \in \mathbb{N}$ such that if $A, B \subset \mathbb{Z}^d$ have the same size and B is not covered by n parallel hyperplanes, then $|A + B| \ge (2^d - \varepsilon)|A|$. $n = O_d(\varepsilon^{-1})$ is optimal.

Campos, van Hintum, Keevash, Tiba 2023

If $d \in \mathbb{N}, \delta > 0$ there exists $n \in \mathbb{N}$ such that the following holds. Assume $A, B \subset \mathbb{Z}^d$ have the same size, are not covered by n parallel hyperplanes and $|A + B| \leq (2^d + \delta)|A|$. Then, up to translation, both A and B are contained inside a convex progression P i.e. convex set intersected a sub-lattice of \mathbb{Z}^d with size $|P| \leq (1 + O(\sqrt{\delta}))|A|$.