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Geometric inequalities

Isoperimetric inequality in the plane

Of all planar regions of a given area, the disc has the smallest perimeter.

Related inequalities

Discrete Isoperimetric inequalities, Brunn-Minkowski, Prékopa-Leindler,
Borell-Brascamp–Lieb, etc.
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Stability of Geometric inequalities

Isoperimetric inequality in the plane

If R is a region with area π, then R has perimeter at least 2π. Equality
happens if and only if R is a disc of radius 1.

Stability principle

If we are close to equality in isoperimetric inequality, then R is close to
being a disc.

R
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Stability of the isoperimetric inequality

Bonnesen, 1924

If R is a region with area π and perimeter at most 2π + δ, then R is
sandwiched between two concentric discs with radii 1− O(

√
δ) and

1 + O(
√
δ), respectively.

1 +
√
δ

1
1+

√
δ

Figure: Ellipse with major and minor axes 1 +
√
δ and 1

1+
√
δ
. Area π and

perimeter 2π + O(δ). Inner and outer circles with radii ≈ 1−
√
δ and 1 +

√
δ.
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Proof of stability

First step: find the center

We want to show R is sandwiched between two discs of radii 1± O(
√
δ).

Where is the center?

R
π

2π + δ
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Proof of stability

First step: find the center

Find a line segment xy that divides both the perimeter and area in half
and let o be the midpoint of xy .

R
π/2

π/2

π + δ/2

π + δ/2 x

y

o
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Proof of stability

Second step: reduce to the case when R is symmetric

From R construct two regions by erasing one half and reflecting the other
half in o. Crucially, R,R ′ and R ′′ all have the area π and perimeter 2π+ δ.

R is sandwiched between two discs centered at o if and only if R ′ and R ′′

are sandwiched between the same two discs.

R

x

o

y

R ′′

x

o

y

R ′

x

o

y
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Proof of stability

Third step: resolve the case when R is symmetric in o

We assume R to be symmetric in o and show that R is sandwiched
between two discs centered at the origin with radii 1± O(

√
δ). This is

equivalent to showing that for any segment pq through o, we have
2 + O(

√
δ) ≥ pq ≥ 2− O(

√
δ).

op q

π/2

π/2

π + δ/2

π + δ/2
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Proof of stability

Third step: resolve the case when R is symmetric in o

The top half has area π/2 and red perimeter π + δ/2. Consider a sector of
a disc with chord pq that has area π/2. We claim that this has red
perimeter at most π + δ/2.

op q

π/2

π + δ/2

op q

π/2

≤ π + δ/2
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Third step: resolve the case when R is symmetric in o

Indeed, we can add the complementary sector of a disc to both figures and
apply the isoperimetric inequality. Hence, the left figure has larger (red)
perimeter than the right figure.

ox y

π/2

x y
o
π/2

π + δ/2

p q
o

c
p q

o
π/2

≤ π + δ/2

p q
o

c
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Third step: resolve the case when R is symmetric in o

A simple trigonometric computation in the disc allows us to express pq in
terms of the area of the green sector and the red perimeter, giving the
desired bound for pq.

p q
o
π/2

≤ π + δ/2

p q
o

c
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Sumsets

Minkowski sum

For A,B ⊂ Rd ,
A+ B = {x + y : x ∈ A, y ∈ B}.

Example

If A is any set and B is a ball of radius r centered at origin, then,

A+ B =
{
z ∈ Rd : dist(z ,A) ≤ r

}
.

A+ B(r)

r

A
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Brunn-Minkowski inequality

Minkowski average

For A,B ⊂ Rd ,

A+ B

2
=

{
x + y

2
: x ∈ A, y ∈ B

}
.

Brunn 1887, Minkowski 1896

If 0 < t < 1 and A,B ⊂ Rd have the same volume, then

|tA+ (1− t)B| ≥ |A|.

In particular, ∣∣∣∣A+ B

2

∣∣∣∣ ≥ |A|.
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Equality in Brunn-Minkowski inequality

Brunn 1887, Minkowski 1896

If A,B ⊂ Rd have the same volume, then∣∣∣∣A+ B

2

∣∣∣∣ ≥ |A|.

Equality iff A and B are convex and equal up to translation.

Convex set

R is convex if for any points x , y ∈ R the segment xy between them is
contained in R.

Convex Set

x y

x y

Non-Convex Set
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Brunn-Minkowski inequality

Brunn 1887, Minkowski 1896

If A,B ⊂ Rd have the same volume, then∣∣∣∣A+ B

2

∣∣∣∣ ≥ |A|,

with equality iff A and B are convex and equal up to translation.

If A = B is convex then A+B
2 = A

x

y

z = x+y
2
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Brunn-Minkowski inequality

Brunn 1887, Minkowski 1896

If A,B ⊂ Rd have the same volume, then∣∣∣∣A+ B

2

∣∣∣∣ ≥ |A|,

with equality iff A and B are convex and equal up to translation.

A B
A+B
2

x

y

z = x+y
2
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Brunn-Minkowski inequality

Brunn 1887, Minkowski 1896

If A,B ⊂ Rd have the same volume, then∣∣∣∣A+ B

2

∣∣∣∣ ≥ |A|,

with equality iff A and B are convex and equal up to translation.

o

x

y

z = x+y
2

A=B is an annulus

o

A+B
2 is the outer disc
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Brunn-Minkowski inequality

Brunn 1887, Minkowski 1896

If A,B ⊂ Rd have the same volume, then∣∣∣∣A+ B

2

∣∣∣∣ ≥ |A|,

with equality iff A and B are convex and equal up to translation.

o

(1 + δ, 1− δ)

(1− δ, 1 + δ)

o

(1, 1)

A+B
2A

B

p

q

z = p+q
2

Figure: A ̸= B are convex. |A| = |B| = 1− δ2; |A+B
2 | = 1.
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Stability of Brunn-Minkowski inequality

Brunn 1887, Minkowski 1896

If A,B ⊂ Rd have the same volume, then∣∣∣∣A+ B

2

∣∣∣∣ ≥ |A|,

with equality iff A and B are convex and equal up to translation.

Stability principle

If we are close to equality, then A and B are close to being convex and
equal up to translation.
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Stability of Brunn-Minkowski inequality

First Folklore Conjecture

If A,B ⊂ Rd have the same volume and∣∣∣∣A+ B

2

∣∣∣∣ ≤ (1 + δ)|A|, where δ ≪ 1,

then, up to translation, |A△B| ≤ O(
√
δ)|A|.

A
√
δ − δ

o

(1 +
√
δ, 1−

√
δ)

(1−
√
δ, 1 +

√
δ)

B
o

(1, 1)

A+B
2

Figure: |A| = |B| = 1− δ, |A+B
2 | = 1; |A△B| = 2

√
δ − 2δ.
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Stability of Brunn-Minkowski inequality

Second Folklore conjecture

If A,B ⊂ Rd have the same volume and |A+B
2 | ≤ (1 + δ)|A|, where δ ≪ 1,

then |co(A) \ A|, |co(B) \ B| ≤ O(δ)|A|.

co(X ) is the smallest convex set containing X .

o

A=B is an annulus

1

δ

o

A+B
2 is the outer disc

1 + δ

Figure: |A| = |B| = 1, |A+B
2 | = 1 + δ, |co(A) \ A| = δ where co(A) is outer disc.
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When one of the sets is convex

Folklore conjectures

If A,B ⊂ Rd have the same volume and |A+B
2 | ≤ (1 + δ)|A|, then, up to

translation, |A△B| ≤ O(
√
δ)|A|. Also, |co(A) \ A|, |co(B) \ B| ≤ O(δ)|A|.

Figalli, Maggi, Pratelli 2009

Resolved the first conjecture when A and B are convex.

Figalli, Maggi, Mooney 2016

Resolved the first conjecture when A is a ball and B is arbitrary.

Barchiesi, Julin 2017

Resolved the first conjecture when A is a convex and B is arbitrary.
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When both sets are arbitrary

Folklore conjectures

If A,B ⊂ Rd have the same volume and |A+B
2 | ≤ (1 + δ)|A|, then, up to

translation, |A△B| ≤ O(
√
δ)|A| and |co(A) \ A|, |co(B) \ B| ≤ O(δ)|A|.

Figalli, Jerison 2014

Established sub-optimal bounds for both conjectures of the form

|A△B|, |co(A) \ A| ≤ δexp
− exp(d) |A|.
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Results

Folklore conjectures

If A,B ⊂ Rd have the same volume and |A+B
2 | ≤ (1 + δ)|A|, then, up to

translation, |A△B| ≤ O(
√
δ)|A|. Also, |co(A) \ A|, |co(B) \ B| ≤ O(δ)|A|.

van Hintum, Spink, Tiba 2019

Resolved both conjectures in the plane.

Figalli, van Hintum, Tiba 2023

Resolved both conjectures in all dimensions.

van Hintum, Spink, Tiba 2019

Determined the optimal constant when A = B in dimension ≤ 4 and the
asymptotic constant in all dimensions.
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Results

Theorem Figalli, van Hintum, Tiba (2023)

If A,B ⊂ Rd have the same volume and

|tA+ (1− t)B| ≤ (1 + δ)|A|, where δ ≪d ,t 1,

then, up to translation, |A△B| ≤ Od(
√

δ/t)|A|.

A
√
δ − δ

o

(1 +
√
δ, 1−

√
δ)

(1−
√
δ, 1 +

√
δ)

o

(1, 1)

A+B
2

B

Figure: |A| = |B| = 1− δ, |A+B
2 | = 1; |A△B| = 2

√
δ − 2δ.
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1

δ
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Brunn 1887, Minkowski 1896

If A,B ⊂ Rd have the same volume then |(A+ B)/2| ≥ |A|.

Proof

1. Do parallel hyperplane cuts to partition A = ⊔Ai and B = ⊔Bi s.t.
|Ai | = |Bi | and (Ai + Bi )/2 are disjoint.

2. Prove BM inequality for Ai and Bi i.e. |(Ai + Bi )/2| ≥ |Ai |.

Conclude |(A+ B)/2| ≥
∑

i |(Ai + Bi )/2| ≥
∑

i |Ai | = |A|.

A B
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∑
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A+

A−

B+

B−
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If A,B ⊂ Rd have the same volume then |(A+ B)/2| ≥ |A|.
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1. Do parallel hyperplane cuts to partition A = ⊔Ai and B = ⊔Bi s.t.
|Ai | = |Bi | and (Ai + Bi )/2 are disjoint.

2. Prove BM inequality for Ai and Bi i.e. |(Ai + Bi )/2| ≥ |Ai |.

Conclude |(A+ B)/2| ≥
∑

i |(Ai + Bi )/2| ≥
∑

i |Ai | = |A|.

A+

A−y = y1

B+

B−

y = y2
y = y1+y2

2
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Theorem (Figalli, van Hintum, Tiba)

If A,B ⊂ Rd have the same volume and |A+B
2 | ≤ (1 + δ)|A| where δ ≪ 1

then, up to translation, |A△B| ≤ O(
√
δ)|A|.

Proof

1. Do parallel hyperplane cuts to partition A = ⊔Ai and B = ⊔Bi as before
|Ai | = |Bi |, (Ai + Bi )/2 disjoint. Say |(Ai + Bi )/2| = (1 + δi )|Ai |.

Claim: (1 + δ)|A| ≥ |(A+ B)/2| ≥
∑

i |(Ai + Bi )/2| =
∑

i (1 + δi )|Ai |.

2. Prove BM stability for Ai and Bi : ∃ z s.t. |Ai△(z + Bi )| ≤ O(
√
δi )|Ai |.

Conclude |A△(z +B)| ≤
∑

i |Ai△(z +Bi )| ≤
∑

i O(
√
δi )|Ai | ≤ O(

√
δ)|A|.

A1

A2

A4 A3

B1 B2

B4
B3
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Theorem (Figalli, van Hintum, Tiba)

If A,B ⊂ Rd have the same volume and |A+B
2 | ≤ (1 + δ)|A| where δ ≪ 1

then, up to translation, |A△B| ≤ O(
√
δ)|A|.

Proof

1. Do parallel hyperplane cuts to partition A = ⊔Ai and B = ⊔Bi as before
|Ai | = |Bi |, (Ai + Bi )/2 disjoint. Say |(Ai + Bi )/2| = (1 + δi )|Ai |.

Claim: (1 + δ)|A| ≥ |(A+ B)/2| ≥
∑

i |(Ai + Bi )/2| =
∑

i (1 + δi )|Ai |.

2. Prove BM stability for Ai and Bi : ∃ zi s.t. |Ai△(zi +Bi )| ≤ O(
√
δi )|Ai |

! The translates zi are not the same !
Conclude |A△(z +B)| ≤

∑
i |Ai△(z +Bi )| ≤

∑
i O(

√
δi )|Ai | ≤ O(

√
δ)|A|.

A1

A2

A4 A3

B1 B2

B4
B3
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Cone like sets

Cone

C ∈ Rd is a cone with vertex at origin o if C = H+
1 ∩ · · · ∩ H+

n , where
H1, . . . ,Hn are hyperplanes passing through the origin o.

Cone-like set

X ⊂ C is 100-C-like if C ∩ B(o, 1/100) ⊂ X ⊂ C ∩ B(o, 100)

o

C

o

C

B(o, 1
100) B(o, 100)

X
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Cone like sets

Lemma

Say C is a cone and X ,Y ⊂ C are 100-C-like sets. Assume that
|X | = |Y |, |(X + Y )/2| ≤ (1 + δ)|X | and ∃z s.t |X△(Y + z)| = O(

√
δ)|X

Then, |X△Y | = O(
√
δ)|X | i.e. up to constants the optimal translate is 0.

o

C

z
C + z

X
Y + z o

C

X ,Y
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Cone like sets

Lemma

Say C is a cone and X ,Y ⊂ C are 100-C-like sets. Assume that
|X | = |Y |, |(X + Y )/2| ≤ (1 + δ)|X | and ∃z s.t |X△(Y + z)| = O(

√
δ)|X

Then, |X△Y | = O(
√
δ)|X | i.e. up to constants the optimal translate is 0.

Proof. Affine transform so ∠α = 30◦, which implies |X | = |Y | = c .

Claim |z | ≤ c
√
δ. Enough hi ≤ c

√
δ. Note R ⊂ X△(Y + z) so

|R| ≤ c
√
δ, but |R| ≥ ch1. Dream |X△Y | = |X△(Y + z)|+ c |z | ≤ c

√
δ.

True if X ,Y are (nearly) convex. Other Main Thm |co(X ) \ X | ≤ O(δ)|X |

o

CB(o, 1
100)

z
C + z

B(o, 100)

h2

h1

X
Y + z
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Cone like sets

Lemma
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|X | = |Y |, |(X + Y )/2| ≤ (1 + δ)|X | and ∃z s.t |X△(Y + z)| = O(

√
δ)|X

Then, |X△Y | = O(
√
δ)|X | i.e. up to constants the optimal translate is 0.

Proof. Affine transform so ∠α = 30◦, which implies |X | = |Y | = c .

Claim |z | ≤ c
√
δ. Enough hi ≤ c

√
δ. Note R ⊂ X△(Y + z) so

|R| ≤ c
√
δ, but |R| ≥ ch1. Dream |X△Y | = |X△(Y + z)|+ c |z | ≤ c

√
δ.

True if X ,Y are (nearly) convex. Other Main Thm |co(X ) \ X | ≤ O(δ)|X |

o

CB(o, 1
100)

z
C + z

B(o, 1
100)

R = C ∩ B(o, 1
100) \ (C + z)

R ⊂ X△(Y + z) h2

h1B(o, 100)
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Theorem (Figalli, van Hintum, Tiba)

If A,B ⊂ Rd have the same volume and |A+B
2 | ≤ (1 + δ)|A| where δ ≪ 1

then, up to translation, |A△B| ≤ O(
√
δ)|A|.

Proof Revised

1. Do hyperplane cuts to partition Rd = ⊔Ci , where Ci are arbitrary
narrow cones at origin s.t. 1. Ai ,Bi ⊂ Ci are 100-Ci -like and 2. |Ai | = |Bi |

2. Prove BM stability for Ai and Bi : ∃ zi s.t. |Ai△(zi +Bi )| ≤ O(
√
δi )|Ai |

! Optimal translates zi = 0 coincide !
Conclude |A△(z +B)| ≤

∑
i |Ai△(z +Bi )| ≤

∑
i O(

√
δi )|Ai | ≤ O(

√
δ)|A|.

o o

Ci

Ai

Ci

Bi
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Theorem (Figalli, van Hintum, Tiba)

If A and B have the same volume and |A+B
2 | ≤ (1 + δ)|A| where δ ≪ 1,

then, up to translation, |A△B| ≤ O(
√
δ)|A|.

Proof Revised

1. Do hyperplane cuts to partition Rd = ⊔Ci , where Ci are arbitrary
narrow cones at origin s.t. 1. Ai ,Bi ⊂ Ci are 100-Ci -like and 2. |Ai | = |Bi |
! 1 is always satisfied; 2 is interesting !
2. Prove BM stability for Ai and Bi : ∃ z s.t. |Ai△(z + Bi )| ≤ O(

√
δi )|Ai |.

! Optimal translates zi = 0 coincide !
Conclude |A△(z +B)| ≤

∑
i |Ai△(z +Bi )| ≤

∑
i O(

√
δi )|Ai | ≤ O(

√
δ)|A|.

o o
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Refining move in R3

Lemma

Let Ci be a cone such that inside Ci we have |Ai | = |Bi |. Let ℓ be a line
through the origin o. There exists a plane H through ℓ which partitions
Ci = C+

i ⊔ C−
i such that |A+

i | = |B+
i | and |A−

i | = |B−
i |.

o

Ci

ℓ

H
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Refining the partition of R3 into narrow cones

Game

At each stage we choose a cone Ci , we choose a line ℓ through o and then
the enemy chooses a plane H through ℓ dividing the cone Ci into two
smaller cones.

Hope

Can we play the game to produce a partition into arbitrarily narrow cones?
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Refining the partition of R3 into narrow cones

Theorem (Figalli, van Hintum, Tiba)

We can play the game to produce a partition R3 = C1 ⊔ · · · ⊔ Cn where
each cone Ci falls into one of two categories:

1. Ci has O(1) faces and is arbitrarily narrow.

2. Ci is trapezoidal and is arbitrarily narrow in the direction of the base.

o

small

diameter

o

small
base

long
side

small
base
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Refining the partition of R3 into narrow cones

Theorem (Figalli, van Hintum, Tiba)

In both cases, the sets Ai (and Bi ) inside Ci are simple:

1.Every section parallel to a given plane is entirely in Ai or disjoint from Ai

2.Every fiber parallel to the basis is entirely in Ai or disjoint from Ai

Theorem (Figalli, van Hintum, Tiba)

For simple sets Ai and Bi with the same volume, if |Ai+Bi
2 | ≤ (1 + δ)|Ai |

where δ ≪ 1, then, up to translation, |Ai△Bi | ≤ O(
√
δ)|Ai |.

o

small

diameter

o

small
base

long
side

small
base
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First Main Result

Theorem (Figalli, van Hintum, Tiba)

If A,B ⊂ Rd have the same volume and

|tA+ (1− t)B| ≤ (1 + δ)|A|, where δ ≪d ,t 1,

then, up to translation, |A△B| ≤ Od(
√

δ/t)|A|.

A
√
δ − δ

o

(1 +
√
δ, 1−

√
δ)

(1−
√
δ, 1 +

√
δ)

o

(1, 1)

A+B
2

B

Figure: |A| = |B| = 1− δ, |A+B
2 | = 1; |A△B| = 2

√
δ − 2δ.

Marius Tiba (U. of Oxford) Combinatorial Perspective on Geometric Ineq February 8th, 2024 44 / 51



Second Main Result

Theorem (Figalli, van Hintum, Tiba)

If A,B ⊂ Rd have the same volume and

|tA+ (1− t)B| ≤ (1 + δ)|A|, where δ ≪d ,t 1,

then |co(A) \ A|, |co(B) \ B| ≤ Od ,t(δ)|A|.
co(X ) is the smallest convex set containing X

o

A=B is an annulus

1

δ

o

A+B
2 is the outer disc

1 + δ

Figure: |A| = |B| = 1, |A+B
2 | = 1 + δ, |co(A) \ A| = δ where co(A) is outer disc.
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Optimal dependency on t in linear BM stability

Conjecture

If A,B ⊂ Rd have the same volume and

|tA+ (1− t)B| ≤ (1 + δ)|A|, where δ ≪d ,t 1,

then

|co(A) \ A| ≤ Od(t
−1δ)|A| and |co(B) \ B| ≤ Od(t

−d+1δ)|A|.

A B
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Higher values of δ in linear BM stability

Conjecture

If A ⊂ Rd and ∣∣∣∣A+ A

2

∣∣∣∣ ≤ (1 + δ)|A|, where δ ≪d ,t 1,

then |co(A) \ A| ≤ (2
d

d + o(1))δ|A|.
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Higher values of δ in linear BM stability

Conjecture

If A ⊂ Rd and ∣∣∣∣A+ A

2

∣∣∣∣ ≤ 1.99|A|,

then there is a convex set K with |K | = |A| such that |K ∩ A| ≥ Ω(1)|A|.

A

(A+ A)/2
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Stability of Prékopa-Leindler

Prékopa-Leindler

Let f , g : Rd → R+ be continuous with bounded support and∫
f =

∫
g = 1. Define h(z) = supz= x+y

2

√
f (x)g(y). Then

∫
h ≥ 1.

Equality

Equality holds if and only if there exists a ∈ Rd such that f (x) = g(x + a)
is log-concave i.e. f (tx + (1− t)y) ≥ f t(x)f 1−t(y) ∀t ∈ (0, 1), x , y ∈ Rd .

Conjecture (Borőczky, Figalli and Ramos)

If
∫
h ≤ 1 + δ, then, up to replacing g(x) := g(x + a) for some a ∈ Rd ,

there exists a log-concave function ℓ : Rd → R+ such that∫
|f − ℓ|+ |g − ℓ| ≤ Od(

√
δ).
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Discrete setting higher dimensions

Degenerate sets

Sets in Zd can look like sets in Z e.g. the set I = {(0, 0), (1, 0), . . . , (n, 0)}
has I + I = {(0, 0), . . . , (2n, 0)} so |I + I | = 2|I | − 1.

Green-Tao theorem

Given d ∈ N, ϵ > 0 there exists n ∈ N such that if A ⊂ Zd is not covered
by n parallel hyperplanes, then |A+ A| ≥ (2d − ϵ)|A|

van Hintum, Spink, Tiba 2020

If d ∈ N, δ > 0 there exists n ∈ N such that if A ⊂ Zd is not covered by n
parallel hyperplanes and if |A+ A| ≤ (2d + δ)|A|, then A is contained
inside a convex progression P i.e. convex set intersected a sub-lattice of
Zd with size |P| ≤ (1 + O(δ))|A|.
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Discrete setting higher dimensions

van Hintum, Keevash, Tiba 2023

Given d ∈ N, ϵ > 0 there exists n ∈ N such that if A,B ⊂ Zd have the
same size and B is not covered by n parallel hyperplanes, then
|A+ B| ≥ (2d − ε)|A|. n = Od(ε

−1) is optimal.

Campos, van Hintum, Keevash, Tiba 2023

If d ∈ N, δ > 0 there exists n ∈ N such that the following holds. Assume
A,B ⊂ Zd have the same size, are not covered by n parallel hyperplanes
and |A+ B| ≤ (2d + δ)|A|. Then, up to translation, both A and B are
contained inside a convex progression P i.e. convex set intersected a
sub-lattice of Zd with size |P| ≤ (1 + O(

√
δ))|A|.
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