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Overview

» Blaschke—Santalé inequality and Mahler conjecture for volume products:
supy |K||K°|, infx |K||K°|.

> Smoothing property: For s > 0 (time) and f: R™ — [0, 00) (initial data),
P, f(x) = fle™Pz+ V1 —e25y)dy(y),
Rﬂ,

where dvy(y) = (27‘(‘)7%67%‘@”2 dy. Then dsu = Au — (z, Vu) with
u = Psf.
[1Psfllacy < or 2| fllzry)

for ¢,p € R.

» Qur observation: A specific smoothing property yields Blaschke—Santalé
inequality / Mahler conjecture.

» Volume products are embedded into the Brascamp—Lieb inequality, which
leads to the Kolesnikov—Werner conjecture (Blaschke—Santalé type
inequality for many convex bodies).
~+ Shohei Nakamura (Osaka) will give a talk bout this topic at Online
AGA seminar on November 16.
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Volume product

> Let K C R™ be a convex body (i.e., compact and convex set with
intK # 0) with 0 € intK.

» Polar body of K:
K°={zeR"|(z,y) <1,Vye K}.
cf. (Bp)° =Bl withp~' + (p) ! =1 where
By = {z = (z1,....2) R | (M |wsl")? <1}, 1<p<oc.
i1

» Volume product of K:
v(K) = |K||K°|.

v is linear invariant, i.e., v(TK) = v(K) for any linear isomorphism 7" on
R"™.

3/20



Blaschke—Santalé inequality and Mahler conjecture

Theorem 1 (Blaschke 1917, Santalé 1949, Petty 1985)
For any convex body K C R™ with bx = ﬁ fK xdx = 0, it holds that

v(K) < v(BE).

Equality holds iff K is a symmetric ellipsoid.

Mabhler conjecture
» Non-symmetric case : For any convex body K C R™ with bx =0,
v(K) > v(Ag),

where Ay is an n-dimensional simplex with bap = 0.

» Symmetric case : For any symmetric convex body K C R" (i.e.,
K=-K),
v(K) > v(B%) = v(BT).
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Known results

v

Mahler (1938): symmetric and non-symmetric cases for n = 2.

Iriyeh—Shibata (2020): symmetric case for n = 3. A short proof by
Fradelizi-Hubard—Meyer—Roldan-Pensado—Zvavitch (2022).

Partial answers.

unconditional convex bodies: Saint-Raymond (1980), Meyer (1986).
zonoid: Reisner (1986), Gordon—Meyer—Reisner (1988).

symmetric polytopes in R™ with 2n + 2 vertices: Lopez and Reisner
(1998), Karasev (2021).

polytopes with not more than n + 3 vertices in R™: Meyer—Reisner (2006).

some bodies with many symmetries: Barthe—Fradelizi (2013),
Iriyeh—Shibata (2022).
Asymptotic estimate: Bourgain—-Milman (1986), Kuperberg (2008).
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Functional BS and Mabhler conjecture

» Functional volume product: For e™% € L'(dzx),

/ e ¥ dm/ e V" dx,

where 1™ is the Legendre transform of 1, i.e.,

¢"(z) = sup [(z,y) — p(y)].
yeRn
» Set ||z||k == inf{\ > 0| z € AK} for a convex body K C R", then
/ e 2l#lk gy = 280(5 + K|

and

1 L1
(5llzlF)" = Sllalle.

/ e~ 3ll=lk dm/ e~ 2llelko gy = QTT(g + 1)2v(K).
Rn n
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Functional BS and Mabhler conjecture
Theorem 2 (Ball 1986, Artstein-Avidan—Klartag-Milman 2004, Lehec

2009)
For any e=% € L'(dx) with [, ze”¥ dz =0,

/ e dm/ e dax < (2m)".
Rn R'Vl

Equality holds iff 1)(x) = (Az,x) + a for some A € Sym™ (R") and a € R.

Functional Mahler conjecture (Fradelizi-Meyer 2008)

» Non-symmetric case: For any convex function ¢: R"™ — R with
0< fRn e ¥ dx < +oo,

/ e ¥ d:c/ e dr > e,
R R

» Symmetric case: For any symmetric convex function 1: R™ — R with
0< fR" e ¥ dx < +oo,

/ e ¥ dx/ e ¥ dr > 4",
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Known results

» Fradelizi-Meyer (2008, 2010): symmetric and non-symmetric cases for
n =1
» Fradelizi-Nakhle (2022): symmetric case for n = 2.

Partial answers.
» Unconditional convex function: Fradelizi-Meyer (2008).
> Asymptotic estimate: Klartag—Milman (2005), Fradelizi-Meyer (2008).

8/20



Hypercontractivity

» For s > 0 (time) and f: R™ — [0, c0) (initial data), the
Ornstein—Uhlenbeck semigroup is given by

P, f(z) = flePz+ 1 —e25y)dvy(y),

R"L
which is a solution of dsu = Au — (z, Vu) with u(s,z) = Ps f(z).

> Mass-preservation: ||Psfl|p1(y) = || fllL1(y) and lims_,o Psf = const.

» Contraction: || Psf|zr(y) < ||fllLp(y) for p > 1 and
|Psflle vy = | flloe(y) for —oo < p < 1. In particular,

1<q<p = |Psfllraty) < NPsflleeyy < NFllLeys
—00<p<q<1l = |Psfllraty) 2 IPsflley 2 1 fllzey-
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9/20



Hypercontractivity
Theorem 3 (Nelson's forward / Borell's reverse HC)

Suppose s > 0 and p,q € R\ {0}. Then

2s

-1
1 < p,q with 71 <e” = |Psfllraq S Nflleey-

Moreover
| Ps £l La )

= 400
0<feELP(v) Hf”LT”(’Y)

. -1 o
1<p,qw11“hqi>e2 =
p—1
Similarly,
-1
—00 < p,q <1 with 71 <& = |1Psfllzacyy = I1fllze ey

Moreover

|1Psfllzacyy

. q — 1 2s
—00 < p,g<1with=——=>¢* = NFlleecn
Py q p—1 o<ferr(y) || fllzeey

» p, g satisfy Nelson's time |f 1 < e,

1
> In below, we reformulate HC as ||PS[ 7’]||Lq(,y) < or > (fpu fdy)7.

=
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HC with improved Nelson’s time = volume product
Proposition 1 (Nakamura—T.)

Suppose that for small s > 0, there exists some qs = —2s + o(s) < 0,
ps =25+ o(s) > 0 and Cgs(s) > 0 such that

E 1 1
I1P.0£5 zar iy = Cls(s)P ([ £ a3
RTL
for all nonnegative symmetric function f. Then
/ e " dw/ e dz < (27)" lim inf(Cps(s) 1)
R™ Rn sl0
for all symmetric function .

Similarly, suppose that for small s > 0, there exists some qs = —2s + o(s) < 0,
ps = 25+ o(s) > 0 and Cis(s) > 0 such that

1P oy < Cis (@) ([ )

for all nonnegative log-concave function f. Then
/ eV dm/ e da > (2m)" lim sup(Cis(s) ")
n n sl0

for all convex function ). )20



HC with improved Nelson’s time = volume product

» This link is motivated by Bobkov—Gentil-Ledoux’s argument (2001): HC
for heat flow yields HC for Hamilton—Jacobi semigroups as s | 0.

> If gs = =25+ 0o(s) < 0 and ps = 2s 4 o(s) > 0, then

s_1 S
2571=1+4s+0(5)>62.

Thus ps, s do NOT satisfy Nelson’s time! (Recall that we cannot exceed
Nelson's time in general.)
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~ Yes! if f is symmetric (or more generally, its barycenter is 0).

Question 2. Does forward HC hold for —co < p,q < 17.

1 1
—o<g<p<l = HPs[fPHILwS(/ fay)t.
]Rn

~ Yes! if f has a strong log-concavity and convexity under Nelson’s time.
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Answer to Question 1: Improved reverse HC
Theorem 4 (Nakamura—T.)

Let s > 0,p,q < 1satisfy0 <p<1—e “° and —p < q < 0. Then for any
nonnegative function f € L*(v) with Jgn xf dy =0, it holds that

2s

1Py 2 ([ £t

» For example,

—2s q— 1 2s
=1l-¢%, g=—p = 1= .
P e, g=-p s 17
» The proof is accomplished by combing the Prékopa—Leindler ineq., Wang's
Harnack ineq. and Yao—Yao partition (Lehec’s approach to BS).
» Furthermore, we can recently exceed the time relation above (in

preparation):

1
P[f?
0<p§17672s,1*628§q<0 = inf M:
OSFEL' (. (fo, fdy)?

sym. log-concave

This relation is optimal. The proof is accomplished by the flow
monotonicity of the Fokker—Planck flow.
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Sketch of the proof for Question 1

Suppose that p =1 — e~ 2%, ¢ = —p and that f is unconditional, i.e.,

flerz, ... enzn) = f(z1,...,2n) forer,...,en € {£1}. Then it suffices to

show
1 1
2 2
2" [ P.fdy " [ PJFYP Ay | <1
R7 RY
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Suppose that p =1 — e~ 2%, ¢ = —p and that f is unconditional, i.e.,

flerz, ... enzn) = f(z1,...,2n) forer,...,en € {£1}. Then it suffices to

show
1 1
2 2
2" [ P.fdy " [ PJFYP Ay | <1
Ri IRi

STEP 1. Use the multiplicative Prékopa—Leindler inequality, i.e., given Borel
measurable functions F, G : R — R,

1 1
3 3
/ Fdx / Gdz| < / sup F(x)%G(y)% dz.
R7 R7 RY 2i=/Zi¥;
z,y€RY

Using this,
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Sketch of the proof for Question 1
STEP 2. Use Wang's Harnack inequality, i.e., given @« > 1 and h: R" — Ry,

alz —y|?

(Psh(z))™ < Ps[h™](y) exp (m

) , Vz,y € R™.
Using this as a = % > 1,

2z —y|?

P.f(z)? < Puf?)(y) exp (2(1_1)(62_1)

) _ Ps[fl/p}(y)e%h:—yb.
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Sketch of the proof for Question 1
STEP 2. Use Wang's Harnack inequality, i.e., given @« > 1 and h: R" — Ry,

alz —yl

—2(0_ 1)(e2s _1)), Va,y € R".

(Poh(x)) < P.[h%)(y) exp (

Using this as a = % > 1,

gﬂ@ég&W”MNw<ﬂfgmﬁ_D

STEP 3. Combining above,

= d%@Z%-
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Answer to Question 2: Forward HC for p,q < 1

Theorem 5 (Nakamura—T.)

Lets>0,0<p<1,q€ (—o0,1)\{0} satisfy =3 =€, and 3 > 1. Then
for any f: R™ — (0, 00) satisfying

0< Vlogs < (1 - )ider,
it holds that
1 1 1
||Pt[fp]||Lq(y)Sth[(%)"]lqu(w)(/R fdy)e.

Here

1 — [
Yo (x) = 21",

(2mB)

3

» The proof is accomplished by the flow monotonicity of the Fokker—Planck
flow combined with the Poincaré inequality.
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New lower bound for specific volume products
Corollary 1 (Nakamura-T.)

Letn > 2, k € (0,1] and K C R™ be a convex body with 0 € intK. Suppose
that || - ||% is C*® on R™\ {0} and satisfies

1

— 1
V(I 15 = mATY VRG] - llie) = kA

for some positive definite symmetric matrix A € R™*™. Then it holds that

n

v(K) > (H,Qel_ﬂz) 2 9(B3).

» Our assumptions imply that the principle curvatures on (()(AféK) and

O(A’%K)O are uniformly bounded from below by x.

» Stancu (2009) and Reisner=Schiitt—-Werner (2012): The boundary of the
local minimizer must be flat, i.e., if there exists a point in either 0K or
OK?® at which the (generalized) Gauss curvature exists and is not 0 then
v(K) is not a local minimum.

» Mabhler's conjecture is true for K satisfying our assumptions with « close
tol,i.e.,

2. n
(k%" )20(B%) > v(A§) in non-symmetric case,

(mzel_'iQ)%v(Bg) > v(B%,) in symmetric case. 120



Sketch of the proof for Question 2
Let v+ be a B-Fokker—Planck solution with vy = f~, i.e.,

Ove = Lpve = BAv; + div(zvy).
Consider v 1
Uy (x) = Ps[(;t)ﬂq(l’)v(fv% z €R™
Theorem 6 (Nakamura—T.)

Lets>0,0<p<1l—e 2 andq<05uchthatZ—j=ezs and 3 > 1 satisfy

Bap =1+ (8 — 1)%(25 > 0.

If f satisfies 0 < Vlog f < (1 — %)ian, then 8;0; — L, U < 0.

Sketch of proof. Set
Q) = / % da.
R’!‘L

Then
Ql(t) = 875575 dl‘ S / [:?;S’p"l\llt dIL’ = 0
R"n,

RTL
Hence

Pistpa=ao 2 aeo = ([ Paira) ([ sa)"
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Open question toward Mahler conjecture

Let s > 0, ps =1—¢2% and qs =1-—¢e*.
Non-symmetric case:

1 1
| Ps[fPs llLas vy I Ps[£° Ml Las ()
1 — 1
osfeL’ () (Jgn fdv)Ps (Jgn fedy)?s

log-concave

where f.(z) = 1[71,oo)n6_(11-‘—‘“4—1")/7(@-
Symmetric case:

1 1
wp WP _ P e
1 - 1
OSfELl('Y) (f]Rn fd’Y) Ps (f]Rn f** d’Y) Ps

sym. log-concave

where fu.(x) = e_(m““""““‘"')/fy(x).

» f., f«+7y are conjectured as minimizers of functional Mahler conjecture.
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Thank you for your attention!
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