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Overview

▶ Blaschke–Santaló inequality and Mahler conjecture for volume products:
supK |K||K◦|, infK |K||K◦|.

▶ Smoothing property: For s > 0 (time) and f : Rn → [0,∞) (initial data),

Psf(x) :=

∫
Rn

f(e−sx+
√

1− e−2sy) dγ(y),

where dγ(y) = (2π)−
n
2 e−

1
2
|y|2 dy. Then ∂su = ∆u− ⟨x,∇u⟩ with

u := Psf .
∥Psf∥Lq(γ) ≤ or ≥ ∥f∥Lp(γ)

for q, p ∈ R.

▶ Our observation: A specific smoothing property yields Blaschke–Santaló
inequality / Mahler conjecture.

▶ Volume products are embedded into the Brascamp–Lieb inequality, which
leads to the Kolesnikov–Werner conjecture (Blaschke–Santaló type
inequality for many convex bodies).
⇝ Shohei Nakamura (Osaka) will give a talk bout this topic at Online
AGA seminar on November 16.
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Volume product

▶ Let K ⊂ Rn be a convex body (i.e., compact and convex set with
intK ̸= ∅) with 0 ∈ intK.

▶ Polar body of K:

K◦ := {x ∈ Rn | ⟨x, y⟩ ≤ 1,∀y ∈ K}.

c.f. (Bnp )
◦ = Bnp′ with p−1 + (p′)−1 = 1 where

Bnp := {x = (x1, . . . , xn) ∈ Rn | (
n∑
i=1

|xi|p)
1
p ≤ 1}, 1 ≤ p ≤ ∞.

▶ Volume product of K:
v(K) := |K||K◦|.

v is linear invariant, i.e., v(TK) = v(K) for any linear isomorphism T on
Rn.
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Blaschke–Santaló inequality and Mahler conjecture

Theorem 1 (Blaschke 1917, Santaló 1949, Petty 1985)

For any convex body K ⊂ Rn with bK := 1
|K|

∫
K
x dx = 0, it holds that

v(K) ≤ v(Bn2 ).

Equality holds iff K is a symmetric ellipsoid.

Mahler conjecture

▶ Non-symmetric case : For any convex body K ⊂ Rn with bK = 0,

v(K) ≥ v(∆n
0 ),

where ∆n
0 is an n-dimensional simplex with b∆n

0
= 0.

▶ Symmetric case : For any symmetric convex body K ⊂ Rn (i.e.,
K = −K),

v(K) ≥ v(Bn∞) = v(Bn1 ).
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Known results

▶ Mahler (1938): symmetric and non-symmetric cases for n = 2.

▶ Iriyeh–Shibata (2020): symmetric case for n = 3. A short proof by
Fradelizi–Hubard–Meyer–Roldán-Pensado–Zvavitch (2022).

Partial answers.

▶ unconditional convex bodies: Saint-Raymond (1980), Meyer (1986).

▶ zonoid: Reisner (1986), Gordon–Meyer–Reisner (1988).

▶ symmetric polytopes in Rn with 2n+ 2 vertices: Lopez and Reisner
(1998), Karasev (2021).

▶ polytopes with not more than n+ 3 vertices in Rn: Meyer–Reisner (2006).

▶ some bodies with many symmetries: Barthe–Fradelizi (2013),
Iriyeh–Shibata (2022).

▶ Asymptotic estimate: Bourgain–Milman (1986), Kuperberg (2008).
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Functional BS and Mahler conjecture

▶ Functional volume product: For e−ψ ∈ L1(dx),∫
Rn

e−ψ dx

∫
Rn

e−ψ
∗
dx,

where ψ∗ is the Legendre transform of ψ, i.e.,

ψ∗(x) = sup
y∈Rn

[⟨x, y⟩ − ψ(y)].

▶ Set ∥x∥K := inf{λ > 0 | x ∈ λK} for a convex body K ⊂ Rn, then∫
Rn

e−
1
2
∥x∥2K dx = 2

n
2 Γ(

n

2
+ 1)|K|

and

(
1

2
∥x∥2K)∗ =

1

2
∥x∥2K◦ .

⇝ ∫
Rn

e−
1
2
∥x∥2K dx

∫
Rn

e−
1
2
∥x∥2

K◦ dx = 2nΓ(
n

2
+ 1)2v(K).
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Functional BS and Mahler conjecture

Theorem 2 (Ball 1986, Artstein-Avidan–Klartag–Milman 2004, Lehec
2009)

For any e−ψ ∈ L1(dx) with
∫
Rn xe

−ψ dx = 0,∫
Rn

e−ψ dx

∫
Rn

e−ψ
∗
dx ≤ (2π)n.

Equality holds iff ψ(x) = ⟨Ax, x⟩+ a for some A ∈ Sym+(Rn) and a ∈ R.

Functional Mahler conjecture (Fradelizi–Meyer 2008)

▶ Non-symmetric case: For any convex function ψ : Rn → R with
0 <

∫
Rn e

−ψ dx < +∞,∫
Rn

e−ψ dx

∫
Rn

e−ψ
∗
dx ≥ en.

▶ Symmetric case: For any symmetric convex function ψ : Rn → R with
0 <

∫
Rn e

−ψ dx < +∞,∫
Rn

e−ψ dx

∫
Rn

e−ψ
∗
dx ≥ 4n.
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Known results

▶ Fradelizi–Meyer (2008, 2010): symmetric and non-symmetric cases for
n = 1.

▶ Fradelizi–Nakhle (2022): symmetric case for n = 2.

Partial answers.

▶ Unconditional convex function: Fradelizi–Meyer (2008).

▶ Asymptotic estimate: Klartag–Milman (2005), Fradelizi–Meyer (2008).
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Hypercontractivity

▶ For s > 0 (time) and f : Rn → [0,∞) (initial data), the
Ornstein–Uhlenbeck semigroup is given by

Psf(x) :=

∫
Rn

f(e−sx+
√

1− e−2sy) dγ(y),

which is a solution of ∂su = ∆u− ⟨x,∇u⟩ with u(s, x) = Psf(x).

▶ Mass-preservation: ∥Psf∥L1(γ) = ∥f∥L1(γ) and lims→∞ Psf ≡ const.

▶ Contraction: ∥Psf∥Lp(γ) ≤ ∥f∥Lp(γ) for p ≥ 1 and
∥Psf∥Lp(γ) ≥ ∥f∥Lp(γ) for −∞ < p ≤ 1. In particular,

1 ≤ q ≤ p ⇒ ∥Psf∥Lq(γ) ≤ ∥Psf∥Lp(γ) ≤ ∥f∥Lp(γ),

−∞ < p ≤ q ≤ 1 ⇒ ∥Psf∥Lq(γ) ≥ ∥Psf∥Lp(γ) ≥ ∥f∥Lp(γ).

Question. Can we exceed 1 ≤ q ≤ p or −∞ ≤ p ≤ q ≤ 1?

1 ≤ p ≤ q ⇒ ∥Psf∥Lq(γ) ≤ ∥f∥Lp(γ),

−∞ < q ≤ p ≤ 1 ⇒ ∥Psf∥Lq(γ) ≥ ∥f∥Lp(γ).

⇝ Yes! This is Hypercontractiviy.
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Hypercontractivity

Theorem 3 (Nelson’s forward / Borell’s reverse HC)

Suppose s > 0 and p, q ∈ R \ {0}. Then

1 < p, q with
q − 1

p− 1
≤ e2s ⇒ ∥Psf∥Lq(γ) ≤ ∥f∥Lp(γ).

Moreover

1 < p, q with
q − 1

p− 1
> e2s ⇒ sup

0≤f∈Lp(γ)

∥Psf∥Lq(γ)

∥f∥Lp(γ)

= +∞.

Similarly,

−∞ < p, q < 1 with
q − 1

p− 1
≤ e2s ⇒ ∥Psf∥Lq(γ) ≥ ∥f∥Lp(γ).

Moreover

−∞ < p, q < 1 with
q − 1

p− 1
> e2s ⇒ inf

0≤f∈Lp(γ)

∥Psf∥Lq(γ)

∥f∥Lp(γ)

= 0.

▶ p, q satisfy Nelson’s time if q−1
p−1

≤ e2s.

▶ In below, we reformulate HC as ∥Ps[f
1
p ]∥Lq(γ) ≤ or ≥ (

∫
Rn f dγ)

1
p .
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HC with improved Nelson’s time ⇒ volume product

Proposition 1 (Nakamura–T.)

Suppose that for small s > 0, there exists some qs = −2s+ o(s) < 0,
ps = 2s+ o(s) > 0 and CBS(s) > 0 such that

∥Ps[f
1
ps ]∥Lqs (γ) ≥ CBS(s)

1
ps (

∫
Rn

f dγ)
1
ps

for all nonnegative symmetric function f . Then∫
Rn

e−ψ dx

∫
Rn

e−ψ
∗
dx ≤ (2π)n lim inf

s↓0
(CBS(s)

−1)

for all symmetric function ψ.
Similarly, suppose that for small s > 0, there exists some qs = −2s+ o(s) < 0,
ps = 2s+ o(s) > 0 and CIS(s) > 0 such that

∥Ps[f
1
ps ]∥Lqs (γ) ≤ CIS(s)

1
ps (

∫
Rn

f dγ)
1
ps

for all nonnegative log-concave function f . Then∫
Rn

e−ψ dx

∫
Rn

e−ψ
∗
dx ≥ (2π)n lim sup

s↓0
(CIS(s)

−1)

for all convex function ψ.
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HC with improved Nelson’s time ⇒ volume product

▶ This link is motivated by Bobkov–Gentil–Ledoux’s argument (2001): HC
for heat flow yields HC for Hamilton–Jacobi semigroups as s ↓ 0.

▶ If qs = −2s+ o(s) < 0 and ps = 2s+ o(s) > 0, then

qs − 1

ps − 1
= 1 + 4s+ o(s) > e2s.

Thus ps, qs do NOT satisfy Nelson’s time! (Recall that we cannot exceed
Nelson’s time in general.)

Question 1. Can we exceed Nelson’s time for specific functions f?

−∞ < q < p < 1 with
q − 1

p− 1
> e2s ⇒ ∥Ps[f

1
p ]∥Lq(γ) ≥ (

∫
Rn

f dγ)
1
p .

⇝ Yes! if f is symmetric (or more generally, its barycenter is 0).

Question 2. Does forward HC hold for −∞ < p, q < 1?.

−∞ < q < p < 1 ⇒ ∥Ps[f
1
p ]∥Lq(γ) ≤ (

∫
Rn

f dγ)
1
p .

⇝ Yes! if f has a strong log-concavity and convexity under Nelson’s time.
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Answer to Question 1: Improved reverse HC

Theorem 4 (Nakamura–T.)

Let s > 0, p, q < 1 satisfy 0 < p ≤ 1− e−2s and −p ≤ q < 0. Then for any
nonnegative function f ∈ L1(γ) with

∫
Rn xf dγ = 0, it holds that

∥Ps[f
1
p ]∥Lq(γ) ≥ (

∫
Rn

f dγ)
1
p .

▶ For example,

p = 1− e−2s, q = −p ⇒ q − 1

p− 1
> e2s.

▶ The proof is accomplished by combing the Prékopa–Leindler ineq., Wang’s
Harnack ineq. and Yao–Yao partition (Lehec’s approach to BS).

▶ Furthermore, we can recently exceed the time relation above (in
preparation):

0 < p ≤ 1− e−2s, 1− e2s ≤ q < 0 ⇒ inf
0≤f∈L1(γ),
sym. log-concave

∥Ps[f
1
p ]∥Lq(γ)

(
∫
Rn f dγ)

1
p

= 1.

This relation is optimal. The proof is accomplished by the flow
monotonicity of the Fokker–Planck flow.
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Sketch of the proof for Question 1
Suppose that p = 1− e−2s, q = −p and that f is unconditional, i.e.,
f(ε1x1, . . . , εnxn) = f(x1, . . . , xn) for ε1, . . . , εn ∈ {±1}. Then it suffices to
show (

2n
∫
Rn
+

Psfdγ

) 1
2
(
2n
∫
Rn
+

Ps[f
1/p]−pdγ

) 1
2

≤ 1.

STEP 1. Use the multiplicative Prékopa–Leindler inequality, i.e., given Borel
measurable functions F,G : Rn+ → R+,(∫

Rn
+

F dx

) 1
2
(∫

Rn
+

Gdx

) 1
2

≤
∫
Rn
+

sup
zi=

√
xiyi

x,y∈Rn
+

F (x)
1
2G(y)

1
2 dz.

Using this, (∫
Rn
+

Psfdγ

) 1
2
(∫

Rn
+

Ps[f
1/p]−pdγ

) 1
2

≤
∫
Rn
+

sup
zi=

√
xiyi

x,y∈Rn
+

(Psf(x)γ(x))
1
2 (Ps[f

1/p]−p(y)γ(y))
1
2 dz.
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Sketch of the proof for Question 1

STEP 2. Use Wang’s Harnack inequality, i.e., given α > 1 and h : Rn → R+,

(Psh(x))
α ≤ Ps[h

α](y) exp

(
α|x− y|2

2(α− 1)(e2s − 1)

)
, ∀x, y ∈ Rn.

Using this as α = 1
p
> 1,

Psf(x)
1
p ≤ Ps[f

1/p](y) exp

(
1
p
|x− y|2

2( 1
p
− 1)(e2s − 1)

)
= Ps[f

1/p](y)e
1
2p

|x−y|2
.

STEP 3. Combining above,(∫
Rn
+

Psfdγ

) 1
2
(∫

Rn
+

Ps[f
1/p]−pdγ

) 1
2

≤
∫
Rn
+

sup
zi=

√
xiyi

x,y∈Rn
+

e
1
4
|x−y|2γ(x)

1
2 γ(y)

1
2 dz

=

∫
Rn
+

dγ(z) =
1

2n
.
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Answer to Question 2: Forward HC for p, q < 1

Theorem 5 (Nakamura–T.)

Let s > 0, 0 < p < 1, q ∈ (−∞, 1) \ {0} satisfy q−1
p−1

= e2s, and β ≥ 1. Then

for any f : Rn → (0,∞) satisfying

0 ≤ ∇2 log f ≤ (1− 1

β
)idRn ,

it holds that

∥Pt[f
1
p ]∥Lq(γ)≤∥Pt[(

γβ
γ
)
1
p ]∥Lq(γ)(

∫
Rn

f dγ)
1
p .

Here

γβ(x) :=
1

(2πβ)
n
2
e
− 1

2β
|x|2

.

▶ The proof is accomplished by the flow monotonicity of the Fokker–Planck
flow combined with the Poincaré inequality.
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New lower bound for specific volume products

Corollary 1 (Nakamura–T.)

Let n ≥ 2, κ ∈ (0, 1] and K ⊂ Rn be a convex body with 0 ∈ intK. Suppose
that ∥ · ∥2K is C2 on Rn \ {0} and satisfies

∇2(
1

2
∥ · ∥2K) ≥ κΛ−1, ∇2(

1

2
∥ · ∥2K◦) ≥ κΛ

for some positive definite symmetric matrix Λ ∈ Rn×n. Then it holds that

v(K) ≥ (κ2e1−κ
2

)
n
2 v(Bn2 ).

▶ Our assumptions imply that the principle curvatures on ∂(Λ− 1
2K) and

∂(Λ− 1
2K)◦ are uniformly bounded from below by κ.

▶ Stancu (2009) and Reisner–Schütt–Werner (2012): The boundary of the
local minimizer must be flat, i.e., if there exists a point in either ∂K or
∂K◦ at which the (generalized) Gauss curvature exists and is not 0 then
v(K) is not a local minimum.

▶ Mahler’s conjecture is true for K satisfying our assumptions with κ close
to 1, i.e.,

(κ2e1−κ
2

)
n
2 v(Bn2 ) ≥ v(∆n

0 ) in non-symmetric case,

(κ2e1−κ
2

)
n
2 v(Bn2 ) ≥ v(Bn∞) in symmetric case.

17 / 20



Sketch of the proof for Question 2
Let vt be a β-Fokker–Planck solution with v0 = fγ, i.e.,

∂tvt = L∗
βvt := β∆vt + div(xvt).

Consider
ṽt(x) := Ps[(

vt
γ
)
1
p ]q(x)γ(x), x ∈ Rn.

Theorem 6 (Nakamura–T.)

Let s > 0, 0 < p < 1− e−2s and q < 0 such that q−1
p−1

= e2s and β ≥ 1 satisfy

βs,p := 1 + (β − 1)
q

p
e−2s > 0.

If f satisfies 0 ≤ ∇2 log f ≤ (1− 1
β
)idRn , then ∂tṽt − L∗

βs,p ṽt ≤ 0.

Sketch of proof. Set

Q(t) :=

∫
Rn

ṽt dx.

Then

Q′(t) =

∫
Rn

∂tṽt dx ≤
∫
Rn

L∗
βs,p ṽt dx = 0.

Hence∫
Rn

Ps[f
1
p ]q dγ = Q(0) ≥ Q(∞) =

(∫
Rn

Ps[(
γβ
γ
)
1
p ]q dγ

)(∫
Rn

f dγ

) q
p

.
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Open question toward Mahler conjecture

Conjecture

Let s > 0, ps = 1− e−2s and qs = 1− e2s.
Non-symmetric case:

sup
0≤f∈L1(γ)
log-concave

∥Ps[f
1
ps ]∥Lqs (γ)

(
∫
Rn f dγ)

1
ps

=
∥Ps[f

1
ps
∗ ]∥Lqs (γ)

(
∫
Rn f∗ dγ)

1
ps

where f∗(x) := 1[−1,∞)ne
−(x1+···+xn)/γ(x).

Symmetric case:

sup
0≤f∈L1(γ)

sym. log-concave

∥Ps[f
1
ps ]∥Lqs (γ)

(
∫
Rn f dγ)

1
ps

=
∥Ps[f

1
ps
∗∗ ]∥Lqs (γ)

(
∫
Rn f∗∗ dγ)

1
ps

where f∗∗(x) := e−(|x1|+···+|xn|)/γ(x).

▶ f∗γ, f∗∗γ are conjectured as minimizers of functional Mahler conjecture.
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Thank you for your attention!
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