A new connection between the volume product and regularization of heat flow

Hiroshi Tsuji
Osaka University
This talk is based on a joint work with Shohei Nakamura (Osaka University). arXiv:2212.02866.
Online Asymptotic Geometric Analysis Seminar

September 7, 2023

Overview

- Blaschke-Santaló inequality and Mahler conjecture for volume products: $\sup _{K}|K|\left|K^{\circ}\right|, \inf _{K}|K|\left|K^{\circ}\right|$.
- Smoothing property: For $s>0$ (time) and $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ (initial data),

$$
P_{s} f(x):=\int_{\mathbb{R}^{n}} f\left(e^{-s} x+\sqrt{1-e^{-2 s}} y\right) d \gamma(y)
$$

where $d \gamma(y)=(2 \pi)^{-\frac{n}{2}} e^{-\frac{1}{2}|y|^{2}} d y$. Then $\partial_{s} u=\Delta u-\langle x, \nabla u\rangle$ with $u:=P_{s} f$.

$$
\left\|P_{S} f\right\|_{L^{q}(\gamma)} \leq \text { or } \geq\|f\|_{L^{p}(\gamma)}
$$

for $q, p \in \mathbb{R}$.

- Our observation: A specific smoothing property yields Blaschke-Santaló inequality / Mahler conjecture.
- Volume products are embedded into the Brascamp-Lieb inequality, which leads to the Kolesnikov-Werner conjecture (Blaschke-Santaló type inequality for many convex bodies).
\rightsquigarrow Shohei Nakamura (Osaka) will give a talk bout this topic at Online AGA seminar on November 16.

Volume product

- Let $K \subset \mathbb{R}^{n}$ be a convex body (i.e., compact and convex set with $\operatorname{int} K \neq \emptyset$) with $0 \in \operatorname{int} K$.
- Polar body of K :

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n} \mid\langle x, y\rangle \leq 1, \forall y \in K\right\} .
$$

c.f. $\left(\mathrm{B}_{p}^{n}\right)^{\circ}=\mathrm{B}_{p^{\prime}}^{n}$ with $p^{-1}+\left(p^{\prime}\right)^{-1}=1$ where

$$
\mathrm{B}_{p}^{n}:=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \left\lvert\,\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \leq 1\right.\right\}, \quad 1 \leq p \leq \infty .
$$

- Volume product of K :

$$
v(K):=|K|\left|K^{\circ}\right| .
$$

v is linear invariant, i.e., $v(T K)=v(K)$ for any linear isomorphism T on \mathbb{R}^{n}.

Blaschke-Santaló inequality and Mahler conjecture

Theorem 1 (Blaschke 1917, Santaló 1949, Petty 1985)

For any convex body $K \subset \mathbb{R}^{n}$ with $b_{K}:=\frac{1}{|K|} \int_{K} x d x=0$, it holds that

$$
v(K) \leq v\left(\mathrm{~B}_{2}^{n}\right)
$$

Equality holds iff K is a symmetric ellipsoid.

Mahler conjecture

- Non-symmetric case : For any convex body $K \subset \mathbb{R}^{n}$ with $b_{K}=0$,

$$
v(K) \geq v\left(\Delta_{0}^{n}\right)
$$

where Δ_{0}^{n} is an n-dimensional simplex with $b_{\Delta_{0}^{n}}=0$.

- Symmetric case : For any symmetric convex body $K \subset \mathbb{R}^{n}$ (i.e., $K=-K$),

$$
v(K) \geq v\left(\mathrm{~B}_{\infty}^{n}\right)=v\left(\mathrm{~B}_{1}^{n}\right)
$$

Known results

- Mahler (1938): symmetric and non-symmetric cases for $n=2$.
- Iriyeh-Shibata (2020): symmetric case for $n=3$. A short proof by Fradelizi-Hubard-Meyer-Roldán-Pensado-Zvavitch (2022).

Partial answers.

- unconditional convex bodies: Saint-Raymond (1980), Meyer (1986).
- zonoid: Reisner (1986), Gordon-Meyer-Reisner (1988).
- symmetric polytopes in \mathbb{R}^{n} with $2 n+2$ vertices: Lopez and Reisner (1998), Karasev (2021).
- polytopes with not more than $n+3$ vertices in \mathbb{R}^{n} : Meyer-Reisner (2006).
- some bodies with many symmetries: Barthe-Fradelizi (2013), Iriyeh-Shibata (2022).
- Asymptotic estimate: Bourgain-Milman (1986), Kuperberg (2008).

Functional BS and Mahler conjecture

- Functional volume product: For $e^{-\psi} \in L^{1}(d x)$,

$$
\int_{\mathbb{R}^{n}} e^{-\psi} d x \int_{\mathbb{R}^{n}} e^{-\psi^{*}} d x
$$

where ψ^{*} is the Legendre transform of ψ, i.e.,

$$
\psi^{*}(x)=\sup _{y \in \mathbb{R}^{n}}[\langle x, y\rangle-\psi(y)] .
$$

- Set $\|x\|_{K}:=\inf \{\lambda>0 \mid x \in \lambda K\}$ for a convex body $K \subset \mathbb{R}^{n}$, then

$$
\int_{\mathbb{R}^{n}} e^{-\frac{1}{2}\|x\|_{K}^{2}} d x=2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}+1\right)|K|
$$

and

$$
\left(\frac{1}{2}\|x\|_{K}^{2}\right)^{*}=\frac{1}{2}\|x\|_{K^{\circ}}^{2}
$$

\rightsquigarrow

$$
\int_{\mathbb{R}^{n}} e^{-\frac{1}{2}\|x\|_{K}^{2}} d x \int_{\mathbb{R}^{n}} e^{-\frac{1}{2}\|x\|_{K^{\circ}}^{2}} d x=2^{n} \Gamma\left(\frac{n}{2}+1\right)^{2} v(K) .
$$

Functional BS and Mahler conjecture

Theorem 2 (Ball 1986, Artstein-Avidan-Klartag-Milman 2004, Lehec 2009)

For any $e^{-\psi} \in L^{1}(d x)$ with $\int_{\mathbb{R}^{n}} x e^{-\psi} d x=0$,

$$
\int_{\mathbb{R}^{n}} e^{-\psi} d x \int_{\mathbb{R}^{n}} e^{-\psi^{*}} d x \leq(2 \pi)^{n} .
$$

Equality holds iff $\psi(x)=\langle A x, x\rangle+a$ for some $A \in \operatorname{Sym}^{+}\left(\mathbb{R}^{n}\right)$ and $a \in \mathbb{R}$.

Functional Mahler conjecture (Fradelizi-Meyer 2008)

- Non-symmetric case: For any convex function $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with

$$
\begin{aligned}
& 0<\int_{\mathbb{R}^{n}} e^{-\psi} d x<+\infty \\
& \qquad \int_{\mathbb{R}^{n}} e^{-\psi} d x \int_{\mathbb{R}^{n}} e^{-\psi^{*}} d x \geq e^{n} .
\end{aligned}
$$

- Symmetric case: For any symmetric convex function $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $0<\int_{\mathbb{R}^{n}} e^{-\psi} d x<+\infty$,

$$
\int_{\mathbb{R}^{n}} e^{-\psi} d x \int_{\mathbb{R}^{n}} e^{-\psi^{*}} d x \geq 4^{n}
$$

Known results

- Fradelizi-Meyer $(2008,2010)$: symmetric and non-symmetric cases for $n=1$.
- Fradelizi-Nakhle (2022): symmetric case for $n=2$.

Partial answers.

- Unconditional convex function: Fradelizi-Meyer (2008).
- Asymptotic estimate: Klartag-Milman (2005), Fradelizi-Meyer (2008).

Hypercontractivity

- For $s>0$ (time) and $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ (initial data), the Ornstein-Uhlenbeck semigroup is given by

$$
P_{s} f(x):=\int_{\mathbb{R}^{n}} f\left(e^{-s} x+\sqrt{1-e^{-2 s}} y\right) d \gamma(y)
$$

which is a solution of $\partial_{s} u=\Delta u-\langle x, \nabla u\rangle$ with $u(s, x)=P_{s} f(x)$.

- Mass-preservation: $\left\|P_{s} f\right\|_{L^{1}(\gamma)}=\|f\|_{L^{1}(\gamma)}$ and $\lim _{s \rightarrow \infty} P_{s} f \equiv$ const.
- Contraction: $\left\|P_{s} f\right\|_{L^{p}(\gamma)} \leq\|f\|_{L^{p}(\gamma)}$ for $p \geq 1$ and $\left\|P_{s} f\right\|_{L^{p}(\gamma)} \geq\|f\|_{L^{p}(\gamma)}$ for $-\infty<p \leq 1$. In particular,

$$
\begin{aligned}
1 \leq q \leq p & \Rightarrow \quad\left\|P_{s} f\right\|_{L^{q}(\gamma)} \leq\left\|P_{s} f\right\|_{L^{p}(\gamma)} \leq\|f\|_{L^{p}(\gamma)} \\
-\infty<p \leq q \leq 1 \quad & \Rightarrow \quad\left\|P_{s} f\right\|_{L^{q}(\gamma)} \geq\left\|P_{s} f\right\|_{L^{p}(\gamma)} \geq\|f\|_{L^{p}(\gamma)}
\end{aligned}
$$

Hypercontractivity

- For $s>0$ (time) and $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ (initial data), the Ornstein-Uhlenbeck semigroup is given by

$$
P_{s} f(x):=\int_{\mathbb{R}^{n}} f\left(e^{-s} x+\sqrt{1-e^{-2 s}} y\right) d \gamma(y)
$$

which is a solution of $\partial_{s} u=\Delta u-\langle x, \nabla u\rangle$ with $u(s, x)=P_{s} f(x)$.

- Mass-preservation: $\left\|P_{s} f\right\|_{L^{1}(\gamma)}=\|f\|_{L^{1}(\gamma)}$ and $\lim _{s \rightarrow \infty} P_{s} f \equiv$ const.
- Contraction: $\left\|P_{s} f\right\|_{L^{p}(\gamma)} \leq\|f\|_{L^{p}(\gamma)}$ for $p \geq 1$ and $\left\|P_{s} f\right\|_{L^{p}(\gamma)} \geq\|f\|_{L^{p}(\gamma)}$ for $-\infty<p \leq 1$. In particular,

$$
\begin{aligned}
1 \leq q \leq p & \Rightarrow \quad\left\|P_{s} f\right\|_{L^{q}(\gamma)} \leq\left\|P_{s} f\right\|_{L^{p}(\gamma)} \leq\|f\|_{L^{p}(\gamma)} \\
-\infty<p \leq q \leq 1 \quad & \Rightarrow \quad\left\|P_{s} f\right\|_{L^{q}(\gamma)} \geq\left\|P_{s} f\right\|_{L^{p}(\gamma)} \geq\|f\|_{L^{p}(\gamma)}
\end{aligned}
$$

Question. Can we exceed $1 \leq q \leq p$ or $-\infty \leq p \leq q \leq 1$?

$$
\begin{aligned}
1 \leq p \leq q & \Rightarrow \quad\left\|P_{s} f\right\|_{L^{q}(\gamma)} \leq\|f\|_{L^{p}(\gamma)} \\
-\infty<q \leq p \leq 1 \quad & \Rightarrow \quad\left\|P_{s} f\right\|_{L^{q}(\gamma)} \geq\|f\|_{L^{p}(\gamma)}
\end{aligned}
$$

Hypercontractivity

- For $s>0$ (time) and $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ (initial data), the Ornstein-Uhlenbeck semigroup is given by

$$
P_{s} f(x):=\int_{\mathbb{R}^{n}} f\left(e^{-s} x+\sqrt{1-e^{-2 s}} y\right) d \gamma(y)
$$

which is a solution of $\partial_{s} u=\Delta u-\langle x, \nabla u\rangle$ with $u(s, x)=P_{s} f(x)$.

- Mass-preservation: $\left\|P_{s} f\right\|_{L^{1}(\gamma)}=\|f\|_{L^{1}(\gamma)}$ and $\lim _{s \rightarrow \infty} P_{s} f \equiv$ const.
- Contraction: $\left\|P_{s} f\right\|_{L^{p}(\gamma)} \leq\|f\|_{L^{p}(\gamma)}$ for $p \geq 1$ and $\left\|P_{s} f\right\|_{L^{p}(\gamma)} \geq\|f\|_{L^{p}(\gamma)}$ for $-\infty<p \leq 1$. In particular,

$$
\begin{aligned}
1 \leq q \leq p & \Rightarrow \quad\left\|P_{s} f\right\|_{L^{q}(\gamma)} \leq\left\|P_{s} f\right\|_{L^{p}(\gamma)} \leq\|f\|_{L^{p}(\gamma)} \\
-\infty<p \leq q \leq 1 \quad & \Rightarrow \quad\left\|P_{s} f\right\|_{L^{q}(\gamma)} \geq\left\|P_{s} f\right\|_{L^{p}(\gamma)} \geq\|f\|_{L^{p}(\gamma)}
\end{aligned}
$$

Question. Can we exceed $1 \leq q \leq p$ or $-\infty \leq p \leq q \leq 1$?

$$
\begin{aligned}
1 \leq p \leq q & \Rightarrow \quad\left\|P_{s} f\right\|_{L^{q}(\gamma)} \leq\|f\|_{L^{p}(\gamma)} \\
-\infty<q \leq p \leq 1 \quad & \Rightarrow \quad\left\|P_{s} f\right\|_{L^{q}(\gamma)} \geq\|f\|_{L^{p}(\gamma)}
\end{aligned}
$$

\rightsquigarrow Yes! This is Hypercontractiviy.

Hypercontractivity

Theorem 3 (Nelson's forward / Borell's reverse HC)

Suppose $s>0$ and $p, q \in \mathbb{R} \backslash\{0\}$. Then

$$
1<p, q \text { with } \frac{q-1}{p-1} \leq e^{2 s} \Rightarrow\left\|P_{s} f\right\|_{L^{q}(\gamma)} \leq\|f\|_{L^{p}(\gamma)}
$$

Moreover

$$
1<p, q \text { with } \frac{q-1}{p-1}>e^{2 s} \Rightarrow \sup _{0 \leq f \in L^{p}(\gamma)} \frac{\left\|P_{s} f\right\|_{L^{q}(\gamma)}}{\|f\|_{L^{p}(\gamma)}}=+\infty .
$$

Similarly,

$$
-\infty<p, q<1 \text { with } \frac{q-1}{p-1} \leq e^{2 s} \Rightarrow\left\|P_{s} f\right\|_{L^{q}(\gamma)} \geq\|f\|_{L^{p}(\gamma)}
$$

Moreover

$$
-\infty<p, q<1 \text { with } \frac{q-1}{p-1}>e^{2 s} \Rightarrow \inf _{0 \leq f \in L^{p}(\gamma)} \frac{\left\|P_{s} f\right\|_{L^{q}(\gamma)}}{\|f\|_{L^{p}(\gamma)}}=0
$$

- p, q satisfy Nelson's time if $\frac{q-1}{p-1} \leq e^{2 s}$.
- In below, we reformulate HC as $\left\|P_{s}\left[f^{\frac{1}{p}}\right]\right\|_{L^{q}(\gamma)} \leq$ or $\geq\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p}}$.

HC with improved Nelson's time \Rightarrow volume product

Proposition 1 (Nakamura-T.)

Suppose that for small $s>0$, there exists some $q_{s}=-2 s+o(s)<0$, $p_{s}=2 s+o(s)>0$ and $C_{\mathrm{BS}}(s)>0$ such that

$$
\left\|P_{s}\left[f^{\frac{1}{p_{s}}}\right]\right\|_{L^{q_{s}}(\gamma)} \geq C_{\mathrm{BS}}(s)^{\frac{1}{p_{s}}}\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p_{s}}}
$$

for all nonnegative symmetric function f. Then

$$
\int_{\mathbb{R}^{n}} e^{-\psi} d x \int_{\mathbb{R}^{n}} e^{-\psi^{*}} d x \leq(2 \pi)^{n} \liminf _{s \downarrow 0}\left(C_{\mathrm{BS}}(s)^{-1}\right)
$$

for all symmetric function ψ.
Similarly, suppose that for small $s>0$, there exists some $q_{s}=-2 s+o(s)<0$, $p_{s}=2 s+o(s)>0$ and $C_{\mathrm{IS}}(s)>0$ such that

$$
\left\|P_{s}\left[f^{\frac{1}{p_{s}}}\right]\right\|_{L^{q_{s}}(\gamma)} \leq C_{\mathrm{IS}}(s)^{\frac{1}{p_{s}}}\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p_{s}}}
$$

for all nonnegative log-concave function f. Then

$$
\int_{\mathbb{R}^{n}} e^{-\psi} d x \int_{\mathbb{R}^{n}} e^{-\psi^{*}} d x \geq(2 \pi)^{n} \limsup _{s \downarrow 0}\left(C_{\mathrm{IS}}(s)^{-1}\right)
$$

for all convex function ψ.

HC with improved Nelson's time \Rightarrow volume product

- This link is motivated by Bobkov-Gentil-Ledoux's argument (2001): HC for heat flow yields HC for Hamilton-Jacobi semigroups as $s \downarrow 0$.
- If $q_{s}=-2 s+o(s)<0$ and $p_{s}=2 s+o(s)>0$, then

$$
\frac{q_{s}-1}{p_{s}-1}=1+4 s+o(s)>e^{2 s}
$$

Thus p_{s}, q_{s} do NOT satisfy Nelson's time! (Recall that we cannot exceed Nelson's time in general.)

HC with improved Nelson's time \Rightarrow volume product

- This link is motivated by Bobkov-Gentil-Ledoux's argument (2001): HC for heat flow yields HC for Hamilton-Jacobi semigroups as $s \downarrow 0$.
- If $q_{s}=-2 s+o(s)<0$ and $p_{s}=2 s+o(s)>0$, then

$$
\frac{q_{s}-1}{p_{s}-1}=1+4 s+o(s)>e^{2 s}
$$

Thus p_{s}, q_{s} do NOT satisfy Nelson's time! (Recall that we cannot exceed Nelson's time in general.)

Question 1. Can we exceed Nelson's time for specific functions f ?

$$
-\infty<q<p<1 \text { with } \frac{q-1}{p-1}>e^{2 s} \Rightarrow\left\|P_{s}\left[f^{\frac{1}{p}}\right]\right\|_{L^{q}(\gamma)} \geq\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p}}
$$

HC with improved Nelson's time \Rightarrow volume product

- This link is motivated by Bobkov-Gentil-Ledoux's argument (2001): HC for heat flow yields HC for Hamilton-Jacobi semigroups as $s \downarrow 0$.
- If $q_{s}=-2 s+o(s)<0$ and $p_{s}=2 s+o(s)>0$, then

$$
\frac{q_{s}-1}{p_{s}-1}=1+4 s+o(s)>e^{2 s} .
$$

Thus p_{s}, q_{s} do NOT satisfy Nelson's time! (Recall that we cannot exceed Nelson's time in general.)

Question 1. Can we exceed Nelson's time for specific functions f ?

$$
-\infty<q<p<1 \text { with } \frac{q-1}{p-1}>e^{2 s} \Rightarrow\left\|P_{s}\left[f^{\frac{1}{p}}\right]\right\|_{L^{q}(\gamma)} \geq\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p}}
$$

\rightsquigarrow Yes! if f is symmetric (or more generally, its barycenter is 0).

HC with improved Nelson's time \Rightarrow volume product

- This link is motivated by Bobkov-Gentil-Ledoux's argument (2001): HC for heat flow yields HC for Hamilton-Jacobi semigroups as $s \downarrow 0$.
- If $q_{s}=-2 s+o(s)<0$ and $p_{s}=2 s+o(s)>0$, then

$$
\frac{q_{s}-1}{p_{s}-1}=1+4 s+o(s)>e^{2 s}
$$

Thus p_{s}, q_{s} do NOT satisfy Nelson's time! (Recall that we cannot exceed Nelson's time in general.)

Question 1. Can we exceed Nelson's time for specific functions f ?

$$
-\infty<q<p<1 \text { with } \frac{q-1}{p-1}>e^{2 s} \Rightarrow\left\|P_{s}\left[f^{\frac{1}{p}}\right]\right\|_{L^{q}(\gamma)} \geq\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p}}
$$

\rightsquigarrow Yes! if f is symmetric (or more generally, its barycenter is 0).
Question 2. Does forward HC hold for $-\infty<p, q<1$?

$$
-\infty<q<p<1 \quad \Rightarrow \quad\left\|P_{s}\left[f^{\frac{1}{p}}\right]\right\|_{L^{q}(\gamma)} \leq\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p}}
$$

HC with improved Nelson's time \Rightarrow volume product

- This link is motivated by Bobkov-Gentil-Ledoux's argument (2001): HC for heat flow yields HC for Hamilton-Jacobi semigroups as $s \downarrow 0$.
- If $q_{s}=-2 s+o(s)<0$ and $p_{s}=2 s+o(s)>0$, then

$$
\frac{q_{s}-1}{p_{s}-1}=1+4 s+o(s)>e^{2 s}
$$

Thus p_{s}, q_{s} do NOT satisfy Nelson's time! (Recall that we cannot exceed Nelson's time in general.)

Question 1. Can we exceed Nelson's time for specific functions f ?

$$
-\infty<q<p<1 \text { with } \frac{q-1}{p-1}>e^{2 s} \Rightarrow\left\|P_{s}\left[f^{\frac{1}{p}}\right]\right\|_{L^{q}(\gamma)} \geq\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p}}
$$

\rightsquigarrow Yes! if f is symmetric (or more generally, its barycenter is 0).
Question 2. Does forward HC hold for $-\infty<p, q<1$?

$$
-\infty<q<p<1 \quad \Rightarrow \quad\left\|P_{s}\left[f^{\frac{1}{p}}\right]\right\|_{L^{q}(\gamma)} \leq\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p}}
$$

\rightsquigarrow Yes! if f has a strong log-concavity and convexity under Nelson's time.

Answer to Question 1: Improved reverse HC

Theorem 4 (Nakamura-T.)

Let $s>0, p, q<1$ satisfy $0<p \leq 1-e^{-2 s}$ and $-p \leq q<0$. Then for any nonnegative function $f \in L^{1}(\gamma)$ with $\int_{\mathbb{R}^{n}} x f d \gamma=0$, it holds that

$$
\left\|P_{s}\left[f^{\frac{1}{p}}\right]\right\|_{L^{q}(\gamma)} \geq\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p}}
$$

- For example,

$$
p=1-e^{-2 s}, q=-p \Rightarrow \frac{q-1}{p-1}>e^{2 s}
$$

- The proof is accomplished by combing the Prékopa-Leindler ineq., Wang's Harnack ineq. and Yao-Yao partition (Lehec's approach to BS).
- Furthermore, we can recently exceed the time relation above (in preparation):

$$
0<p \leq 1-e^{-2 s}, 1-e^{2 s} \leq q<0 \Rightarrow \inf _{\substack{0 \leq f \in L^{1}(\gamma), \\ \text { sym. log-concave }}} \frac{\left\|P_{s}\left[f^{\frac{1}{p}}\right]\right\|_{L^{q}(\gamma)}}{\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p}}}=1
$$

This relation is optimal. The proof is accomplished by the flow monotonicity of the Fokker-Planck flow.

Sketch of the proof for Question 1

Suppose that $p=1-e^{-2 s}, q=-p$ and that f is unconditional, i.e., $f\left(\varepsilon_{1} x_{1}, \ldots, \varepsilon_{n} x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)$ for $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{ \pm 1\}$. Then it suffices to show

$$
\left(2^{n} \int_{\mathbb{R}_{+}^{n}} P_{s} f d \gamma\right)^{\frac{1}{2}}\left(2^{n} \int_{\mathbb{R}_{+}^{n}} P_{s}\left[f^{1 / p}\right]^{-p} d \gamma\right)^{\frac{1}{2}} \leq 1 .
$$

Sketch of the proof for Question 1

Suppose that $p=1-e^{-2 s}, q=-p$ and that f is unconditional, i.e., $f\left(\varepsilon_{1} x_{1}, \ldots, \varepsilon_{n} x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)$ for $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{ \pm 1\}$. Then it suffices to show

$$
\left(2^{n} \int_{\mathbb{R}_{+}^{n}} P_{s} f d \gamma\right)^{\frac{1}{2}}\left(2^{n} \int_{\mathbb{R}_{+}^{n}} P_{s}\left[f^{1 / p}\right]^{-p} d \gamma\right)^{\frac{1}{2}} \leq 1 .
$$

STEP 1. Use the multiplicative Prékopa-Leindler inequality, i.e., given Borel measurable functions $F, G: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$,

$$
\left(\int_{\mathbb{R}_{+}^{n}} F d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}_{+}^{n}} G d x\right)^{\frac{1}{2}} \leq \int_{\mathbb{R}_{+}^{n} z_{i}=\sqrt{x_{x} y_{i}}}^{x, y \in \mathbb{R}_{+}^{n}} \substack{ }(x)^{\frac{1}{2}} G(y)^{\frac{1}{2}} d z
$$

Using this,

$$
\begin{aligned}
& \left(\int_{\mathbb{R}_{+}^{n}} P_{s} f d \gamma\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}_{+}^{n}} P_{s}\left[f^{1 / p}\right]^{-p} d \gamma\right)^{\frac{1}{2}} \\
& \leq \int_{\substack{\mathbb{R}_{+}^{n} \\
z_{i}=\sqrt{x_{i} y_{i}} \\
x, y \in \mathbb{R}_{+}^{n}}}\left(P_{s} f(x) \gamma(x)\right)^{\frac{1}{2}}\left(P_{s}\left[f^{1 / p}\right]^{-p}(y) \gamma(y)\right)^{\frac{1}{2}} d z .
\end{aligned}
$$

Sketch of the proof for Question 1

STEP 2. Use Wang's Harnack inequality, i.e., given $\alpha>1$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$,

$$
\left(P_{s} h(x)\right)^{\alpha} \leq P_{s}\left[h^{\alpha}\right](y) \exp \left(\frac{\alpha|x-y|^{2}}{2(\alpha-1)\left(e^{2 s}-1\right)}\right), \quad \forall x, y \in \mathbb{R}^{n} .
$$

Using this as $\alpha=\frac{1}{p}>1$,

$$
P_{s} f(x)^{\frac{1}{p}} \leq P_{s}\left[f^{1 / p}\right](y) \exp \left(\frac{\frac{1}{p}|x-y|^{2}}{2\left(\frac{1}{p}-1\right)\left(e^{2 s}-1\right)}\right)=P_{s}\left[f^{1 / p}\right](y) e^{\frac{1}{2 p}|x-y|^{2}} .
$$

Sketch of the proof for Question 1

STEP 2. Use Wang's Harnack inequality, i.e., given $\alpha>1$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$,

$$
\left(P_{s} h(x)\right)^{\alpha} \leq P_{s}\left[h^{\alpha}\right](y) \exp \left(\frac{\alpha|x-y|^{2}}{2(\alpha-1)\left(e^{2 s}-1\right)}\right), \quad \forall x, y \in \mathbb{R}^{n}
$$

Using this as $\alpha=\frac{1}{p}>1$,

$$
P_{s} f(x)^{\frac{1}{p}} \leq P_{s}\left[f^{1 / p}\right](y) \exp \left(\frac{\frac{1}{p}|x-y|^{2}}{2\left(\frac{1}{p}-1\right)\left(e^{2 s}-1\right)}\right)=P_{s}\left[f^{1 / p}\right](y) e^{\frac{1}{2 p}|x-y|^{2}} .
$$

STEP 3. Combining above,

$$
\begin{aligned}
& \left(\int_{\mathbb{R}_{+}^{n}} P_{s} f d \gamma\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}_{+}^{n}} P_{s}\left[f^{1 / p}\right]^{-p} d \gamma\right)^{\frac{1}{2}} \\
& \leq \int_{\mathbb{R}_{+}^{n} z_{i}=\sqrt{x_{i} y_{i}}} e^{\frac{1}{4}|x-y|^{2}} \gamma(x)^{\frac{1}{2}} \gamma(y)^{\frac{1}{2}} d z \\
& =\int_{\mathbb{R}_{+}^{n}} d \gamma(z)=\frac{1}{2^{n}} .
\end{aligned}
$$

Answer to Question 2: Forward HC for $p, q<1$

Theorem 5 (Nakamura-T.)

Let $s>0,0<p<1, q \in(-\infty, 1) \backslash\{0\}$ satisfy $\frac{q-1}{p-1}=e^{2 s}$, and $\beta \geq 1$. Then for any $f: \mathbb{R}^{n} \rightarrow(0, \infty)$ satisfying

$$
0 \leq \nabla^{2} \log f \leq\left(1-\frac{1}{\beta}\right) \mathrm{id}_{\mathbb{R}^{n}}
$$

it holds that

$$
\left\|P_{t}\left[f^{\frac{1}{p}}\right]\right\|_{L^{q}(\gamma)} \leq\left\|P_{t}\left[\left(\frac{\gamma_{\beta}}{\gamma}\right)^{\frac{1}{p}}\right]\right\|_{L^{q}(\gamma)}\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p}}
$$

Here

$$
\gamma_{\beta}(x):=\frac{1}{(2 \pi \beta)^{\frac{n}{2}}} e^{-\frac{1}{2 \beta}|x|^{2}}
$$

- The proof is accomplished by the flow monotonicity of the Fokker-Planck flow combined with the Poincaré inequality.

New lower bound for specific volume products

Corollary 1 (Nakamura-T.)

Let $n \geq 2, \kappa \in(0,1]$ and $K \subset \mathbb{R}^{n}$ be a convex body with $0 \in \operatorname{int} K$. Suppose that $\|\cdot\|_{K}^{2}$ is C^{2} on $\mathbb{R}^{n} \backslash\{0\}$ and satisfies

$$
\nabla^{2}\left(\frac{1}{2}\|\cdot\|_{K}^{2}\right) \geq \kappa \Lambda^{-1}, \quad \nabla^{2}\left(\frac{1}{2}\|\cdot\|_{K^{\circ}}^{2}\right) \geq \kappa \Lambda
$$

for some positive definite symmetric matrix $\Lambda \in \mathbb{R}^{n \times n}$. Then it holds that

$$
v(K) \geq\left(\kappa^{2} e^{1-\kappa^{2}}\right)^{\frac{n}{2}} v\left(\mathrm{~B}_{2}^{n}\right)
$$

- Our assumptions imply that the principle curvatures on $\partial\left(\Lambda^{-\frac{1}{2}} K\right)$ and $\partial\left(\Lambda^{-\frac{1}{2}} K\right)^{\circ}$ are uniformly bounded from below by κ.
- Stancu (2009) and Reisner-Schütt-Werner (2012): The boundary of the local minimizer must be flat, i.e., if there exists a point in either ∂K or ∂K° at which the (generalized) Gauss curvature exists and is not 0 then $v(K)$ is not a local minimum.
- Mahler's conjecture is true for K satisfying our assumptions with κ close to 1, i.e.,

$$
\begin{gathered}
\left(\kappa^{2} e^{1-\kappa^{2}}\right)^{\frac{n}{2}} v\left(\mathrm{~B}_{2}^{n}\right) \geq v\left(\Delta_{0}^{n}\right) \quad \text { in non-symmetric case } \\
\left(\kappa^{2} e^{1-\kappa^{2}}\right)^{\frac{n}{2}} v\left(\mathrm{~B}_{2}^{n}\right) \geq v\left(\mathrm{~B}_{\infty}^{n}\right) \quad \text { in symmetric case }
\end{gathered}
$$

Sketch of the proof for Question 2

Let v_{t} be a β-Fokker-Planck solution with $v_{0}=f \gamma$, i.e.,

$$
\partial_{t} v_{t}=\mathcal{L}_{\beta}^{*} v_{t}:=\beta \Delta v_{t}+\operatorname{div}\left(x v_{t}\right)
$$

Consider

$$
\widetilde{v}_{t}(x):=P_{s}\left[\left(\frac{v_{t}}{\gamma}\right)^{\frac{1}{p}}\right]^{q}(x) \gamma(x), \quad x \in \mathbb{R}^{n} .
$$

Theorem 6 (Nakamura-T.)

Let $s>0,0<p<1-e^{-2 s}$ and $q<0$ such that $\frac{q-1}{p-1}=e^{2 s}$ and $\beta \geq 1$ satisfy

$$
\beta_{s, p}:=1+(\beta-1) \frac{q}{p} e^{-2 s}>0
$$

If f satisfies $0 \leq \nabla^{2} \log f \leq\left(1-\frac{1}{\beta}\right) \operatorname{id}_{\mathbb{R}^{n}}$, then $\partial_{t} \widetilde{v}_{t}-\mathcal{L}_{\beta_{s, p}}^{*} \widetilde{v}_{t} \leq 0$.
Sketch of proof. Set

$$
Q(t):=\int_{\mathbb{R}^{n}} \widetilde{v}_{t} d x
$$

Then

$$
Q^{\prime}(t)=\int_{\mathbb{R}^{n}} \partial_{t} \widetilde{v}_{t} d x \leq \int_{\mathbb{R}^{n}} \mathcal{L}_{\beta_{s, p}}^{*} \widetilde{v}_{t} d x=0
$$

Hence

$$
\int_{\mathbb{R}^{n}} P_{s}\left[f^{\frac{1}{p}}\right]^{q} d \gamma=Q(0) \geq Q(\infty)=\left(\int_{\mathbb{R}^{n}} P_{s}\left[\left(\frac{\gamma_{\beta}}{\gamma}\right)^{\frac{1}{p}}\right]^{q} d \gamma\right)\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{q}{p}}
$$

Open question toward Mahler conjecture

Conjecture

Let $s>0, p_{s}=1-e^{-2 s}$ and $q_{s}=1-e^{2 s}$.
Non-symmetric case:

$$
\sup _{\substack{0 \leq f \in L^{1}(\gamma) \\ \text { log-concave }}} \frac{\left\|P_{s}\left[f^{\frac{1}{p_{s}}}\right]\right\|_{L^{q_{s}}}(\gamma)}{\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p_{s}}}}=\frac{\left\|P_{s}\left[f_{*}^{\frac{1}{p_{s}}}\right]\right\|_{L^{q_{s}}}(\gamma)}{\left(\int_{\mathbb{R}^{n}} f_{*} d \gamma\right)^{\frac{1}{p_{s}}}}
$$

where $f_{*}(x):=\mathbf{1}_{[-1, \infty)^{n}} e^{-\left(x_{1}+\cdots+x_{n}\right)} / \gamma(x)$.
Symmetric case:

$$
\sup _{\substack{0 \leq f \in L^{1}(\gamma) \\ \text { sym. log-concave }}} \frac{\left\|P_{s}\left[f^{\frac{1}{p_{s}}}\right]\right\|_{L^{q_{s}}}(\gamma)}{\left(\int_{\mathbb{R}^{n}} f d \gamma\right)^{\frac{1}{p_{s}}}}=\frac{\left\|P_{s}\left[f_{*_{*}}^{\frac{1}{p_{s}}}\right]\right\|_{L^{q_{s}}(\gamma)}}{\left(\int_{\mathbb{R}^{n}} f_{* *} d \gamma\right)^{\frac{1}{p_{s}}}}
$$

where $f_{* *}(x):=e^{-\left(\left|x_{1}\right|+\cdots+\left|x_{n}\right|\right)} / \gamma(x)$.

- $f_{*} \gamma, f_{* *} \gamma$ are conjectured as minimizers of functional Mahler conjecture.

Thank you for your attention!

