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Let X ~ 1 be a measure on RY and let G ~ ~ stand for the

standard Gaussian.
If © is such that ¢(G) 2% X, we call @ a transport map.

The existence and properties of such maps are useful for:

e Generative models and sampling algorithms.

e Understanding analytic properties of u.
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Optimal transport

Definition (Wasserstein distance between p and 7)

Wil ) = inf {Bx llx = yIP) }

where 7 ranges over all possible couplings of 1 and ~.

Brenier 87': There exists a transport map ¢°Pt : RY — RY:

E [|l4°P'(G) — G|I?] = W3(u,7).

Caffarelli 00': If 1 is more log-concave than 74, ¥°P* is 1-Lipschitz.

(strong log-concavity: —V? log (Z—’;(X)) = 1d.)
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Poincaré inequalities

Gaussian Poincaré inequality: For any test function f,

Var(f(G)) <E [ VF(G)IIF] .

In general, X ~ p satisfies a Poincaré inequality with constant
Co(p) > 0, if,

Var(f(X)) < G(L)E [IVF(X)]?].
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An inequality of Brascamp and Lieb

Theorem (Brascamp-Lieb 76’)

If (v is more log-concave than vy, then Cy(1) < 1.

Proof (Cordero-Erausquin 02’).

Var,(f) = Var,,(f o ¢y°?") <E,, IV (fo YoP) Hz}
< By, (VPP VF(9°P)]1?] = E, [IIVFI?] -




Bounded log-concave

If 1 is log-concave, but compactly supported on a ball of diameter
R, then Cp(1) < R?. Several proofs exists:

e Localization (Payne-Weinberger)
e Refined Brascamp-Lieb (Kolesnikov-Milman)

e Moment Maps (Klartag)



Bounded log-concave

If 1 is log-concave, but compactly supported on a ball of diameter
R, then Cp(1) < R?. Several proofs exists:

e Localization (Payne-Weinberger)
e Refined Brascamp-Lieb (Kolesnikov-Milman)

e Moment Maps (Klartag)

For such 1 is it necessarily true that there exists an R-Lipschitz ¢

with 0, vg = u?
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A positive answer will not only recover known result but will also

imply:

1.

Dimension-free ®-Sobolev inequalities (generalizing both
Poincaré and log-Sobolev).

Bounds for higher eigenvalues of the weighted Laplacian.

. Isoperimetric inequalities.

. Improved rates of convergence for the CLT.
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We call 4 = v4 = v a Gaussian mixture. |t was recently proved by
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Gaussian mixtures

We call 4 = v4 = v a Gaussian mixture. |t was recently proved by

Bardet, Gozlan, Malrieu and Zitt that if diam(supp(v)) < R, then

Later, Chen,Chewi and Niles-Weed extended the result to the
log-Sobolev inequality.

Suppose that ;1 = 74 * v and diam(supp(v)) < R. Is there an
eRz—Lipschitz @ with @, vg = p?
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KLS

Let 1 be log-concave and isotropic,
/Xd,u(x) =0 /X ® xdu(x) = 1d.
Rd Rd

A famous conjecture of Kannan-Lovasz-Simonovits postulates,
Go(n) < C.

Current best bound, due to Klartag and Lehec (building upon
Chen): G,(n) < polylog(d).

It seems natural to ask whether we can find a Lipschitz map ¢
with @ vg = p?
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e In general, one cannot find a Lipschitz transport map from ~4

to u.
e The existence of such map implies sub-Gaussian tails of p,
which is not true for all isotropic log-concave measures.

e However, E. Milman showed that for KLS, it is enough to
have map which is "Lipschitz on average'.

If 11 is log concave and isotropic, does there exists a map ¢ with

©«Y = M, such that

E, [[|De|*] < polylog(d)?
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Infinite-dimensions

By slightly altering our perspective, we give a positive answer to

the previous questions.

Let Q := C([0, 1], RY) stand for the Wiener space with the Wiener
measure 7. We will let (B:);c[o,1] denote a Brownian motion.
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Infinite-dimensions

By slightly altering our perspective, we give a positive answer to

the previous questions.

Let Q := C([0, 1], RY) stand for the Wiener space with the Wiener

measure 7. We will let (B:);c[o,1] denote a Brownian motion.

We consider Lipschitz mappings ® : Q@ — R? with D® bounded

almost surely.
Derivatives are taken in the Malliavin sense.
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Infinite-dimensions

Theorem (M.-Shenfeld)

Let ;v be a measure on RY. There exists map ¢ : Q — R, with

.y = p and

1. If u is log-concave with diam(supp(u)) < R,
|Do| <R

2. If p =4 v and diam(supp(v)) < R,
| Do < R

3. If i is log-concave and isotropic,

E, [[|D®]2] < 4247 polylog(d).
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Malliavin calculus 101

Recall the Cameron-Martin space
t
H:={heQlh = /hsds}.
0

It is also characterized by the fact that B; + g is absolutely
continuous with respect to v, iff g € H.
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Malliavin calculus 101

Recall the Cameron-Martin space
t
H:={heQlh = /hsds}.
0

It is also characterized by the fact that B; + g is absolutely
continuous with respect to v, iff g € H.

Heuristically, for a a random variable F we define the Malliavin

derivative DF, as the Gateaux derivative in the H directions.
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Malliavin calculus 101

H has a natural inner product, (h, i)y

1

[ heh,dt. Observe that
0
DF : Q2 — H and we denote by DF;, by D:F.
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Malliavin calculus 101

1

H has a natural inner product, (h, i')y := [ h:h,dt. Observe that
0
DF : Q2 — H and we denote by DF;, by D:F.

We say that a map F is R-Lipschitz (in the H directions), if
|DF || < R almost surely. This definition is justified, since

Var,(F) < E, [||DF||3] -
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First attempt

We can mimic Caffareli's Euclidean optimal transport result. Two
main issues to address:

e Need to define a Wasserstein metric on €2.

e Need to embed p in €.
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First attempt

We can mimic Caffareli's Euclidean optimal transport result. Two
main issues to address:

e Need to define a Wasserstein metric on €2.

e Need to embed p in €.

First, define a metric, which is compatible with H:

w—w ifw—w e H
() = 17 |
00 otherwise
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First attempt

Define a measure i on €2 by

dii _dp
W) = 7 w)
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First attempt

Define a measure i on €2 by

dii _dp
W) = 7 w)

and consider,

Equivalently,

1
where By + [ updt ~ p.
0
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First attempt

. t i
Define v;*" := argmin E
ut

1
Ofut|2dt].
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First attempt

. t i
Define v;*" := argmin E
ut

1
Ofut|2dt].

Then, v;P"(w) = °P*(wy1) — wy, and ®PHw) = w + [ v, dt
satisfies,

° CDOpt = |d.
o (¢77)y =4
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First attempt

1
Ofut|2dt].
Then, v;P"(w) = °P*(wy1) — wy, and ®PHw) = w + [ v, dt

satisfies,

. t i
Define v;*" := argmin E
ut

° Cb(iptfy = |d.
o (¢77)y =4

This is unsatisfactory.
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Second attempt

We consider an optimization problem adapted to the filtration of
B;.
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Second attempt

We consider an optimization problem adapted to the filtration of
B;.

Define v :=arg min E
us adapated

1
J Ut2dt] and dX; = dB; + v;dt.
0
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Second attempt

We consider an optimization problem adapted to the filtration of
B;.

Define v; :=arg min
us adapated

f”t2dt] and dX; = dB; + v;dt.

Facts:

e Xi ~ p (this is the transport map).

o Ent (ully) = QfEmthZ]dt

e v; is a martingale, with v4(X;) = Vn (Pl—t (j—(Xt)>>
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The Follmer Drift - (Some) History

e Analogous problems were already considered by in the 30's, by
Schrodinger.

e The process itself was first studied by Follmer, in 85", who

used it to derive a variational expression for entropy.

e |t appeared implicitly in the works of Feyel and Ustiinel, from
2004, in their study of infinite dimensional transportation
problems.

e In the context of functional inequalities, the use of the
Follmer process was pioneered by Lehec in 2012.

e Lassalle identified the process as the solution to a causal
transportation problem in 2013.
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The Brownian transport map

Recall that X; = B; + fvm <P1 . (Xt)> dt. It can be shown

that

d
DX, —Id+/V2|n (Pl - (X5)> DX.ds.
d7d
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The Brownian transport map

Recall that X; = By + fvm (Pl i3 (Xt)> dt. It can be shown

that

DX, = Ty + /v2 In (Pl L (X5)> DX.ds.
d7d

We write Vv; := V?In (Pl g (Xt)) and for h € H, we
calculate,

t t

fu(t) := (DX¢, hyy = //7st+ /Vw(DXs, h)yds.
0 0
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The Brownian transport map

Recall that X; = By + fvm (Pl i3 (Xt)> dt. It can be shown

that

d
DX, —Id+/V2|n (Pl - (X5)> DX.ds.
d7d

We write Vv; := V?In (Pl g (Xt)) and for h € H, we

calculate,
t t
fr(t) := (DX¢, hyy = /hsds—l— /Vvt(DXs, h)yds.
0 0
In particular,

d .
afh( ) = ht — vvtfh(t).
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The Brownian transport map

Solving this differential equation, we get, for every h € H,

; vasds .
fh(l):/ef - h(t)dt.
0
So,
}Vv ds
DtX]_ = et .
and

1 1
2 | Vvsds
1DXq |2 = /e J dt.

0
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The Brownian transport map

Direct calculations show,

du Cov(pst) 1
.= V? (X)) = — I
VVT_- V |n (Pl tdfy( t)> (1 — t)2 1 _ ; ds

where ,
—(x—=Xt)
% X ﬁ(x)e 2(1—tt) .
dx d’yd
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The Brownian transport map

Direct calculations show,

d C 1
Vv; i= VZIn (Plt_lu(Xt)> — ov(fit) B Ia,

d~y (1—1¢t)> 1-—t
where y d ,
dHe o OH (e TS
o oy (x)e .

If diam(supp(u)) < R, clearly,

R? 1
< — .
VS AT T 1o
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The Brownian transport map

Direct calculations show,

du Cov(pst) 1
2
Vvt V n( 1 tdfy( t)> (]_—t)2 1—td7
where y d ,
ape ap o\
o oy (x)e .

If diam(supp(u)) < R, clearly,

R? 1
< — .
VS AT T 1o

Moreover, by Brascamp-Lieb, if 1 is log-concave,

1
Vvt S —.
t
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We apply the two inequalities to ||DX1||%,

1
[e
0

Theorem (M.- Shenfeld)

Consider X1 as a map from Q = C([0, 1], R?) to RY.

1. If p is log-concave with diam(supp(p)) < R,
|DX1|| < R.
2. If u =4 *v and diam(supp(v)) < R,

DXy < eF°.
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1
2 [ Vvsds
t

1
We apply the two inequalities to ||DX1]|2, = [ e dt
0

Theorem (M.- Shenfeld)

Consider X1 as a map from Q = C([0, 1], R?) to RY.

1. If u is log-concave with diam(supp(u)) < R,
|DX1|| < R.
2. If u =4 *v and diam(supp(v)) < R,

DXy < eF°.

e The second result follows by showing Vv; < R?.

e Can be extended to semi-log concave measures.
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Further thoughts

We have demonstrated a Lipschitz map Xj : Q — RY.

It seems natural to ask whether X : 2 — Q is Lipschitz as well?
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Further thoughts

We have demonstrated a Lipschitz map Xj : Q — RY.
It seems natural to ask whether X : 2 — Q is Lipschitz as well?

It turns out that there exist strongly log-concave measures, for
which X is not Lipschitz, for any constant. This is contrast to the
optimal transport map WPt which is provably 1-Lipschitz.
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Future directions

e Can the results be extended to larger classes of measures?

e \What about similar, but different, constructions on the

Wiener space?

e Can similar results be proved for maps between finite

dimensional spaces?

e In particular, can the results be recovered for the Brenier map?
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Thank You



The KLS connection

Instead of applying point-wise bounds, we could estimate

1
1 2 [Vvs(Xs)ds
E[|D% ]3] < | e
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The KLS connection

Instead of applying point-wise bounds, we could estimate

1
1 2 [Vvs(Xs)ds
E[ID%[[3] =E | [e

For isotropic u, define 7 = 3 A inf{t|Vv(X;) > 2}.

1 1
1
0

T

So,
1
E [|DX1]|7] < 'E [ﬁ] .
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The KLS connection

With the recent result of Yuansi Chen about the KLS constant, we

prove:

Let ;v be an isotropic log-concave vector in RY. Then,

E [||DX1])3] = d°W.
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