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Transport maps

Let X ⇠ µ be a measure on Rd and let G ⇠ � stand for the

standard Gaussian.

If ' is such that '(G )
law
= X , we call ' a transport map.

The existence and properties of such maps are useful for:

Generative models and sampling algorithms.

Understanding analytic properties of µ.
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Optimal transport

Definition (Wasserstein distance between µ and �)

W2(µ, �) := inf
⇡

n
E⇡

⇥
||x � y ||2

⇤ o1/2

where ⇡ ranges over all possible couplings of µ and �.

Brenier 87’: There exists a transport map  opt : Rd ! Rd :

E
⇥
k opt(G )� Gk2

⇤
= W2

2 (µ, �).

Ca↵arelli 00’: If µ is more log-concave than �d ,  opt is 1-Lipschitz.

(strong log-concavity: �r2 log
⇣

dµ
dx
(x)

⌘
⌫ Id.)
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Poincaré inequalities

Gaussian Poincaré inequality: For any test function f ,

Var(f (G ))  E
⇥
krf (G )k2

⇤
.

In general, X ⇠ µ satisfies a Poincaré inequality with constant

Cp(µ) > 0, if,

Var(f (X ))  Cp(µ)E
⇥
krf (X )k2

⇤
.
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Cp(µ) > 0, if,

Var(f (X ))  Cp(µ)E
⇥
krf (X )k2

⇤
.

4



An inequality of Brascamp and Lieb

Theorem (Brascamp-Lieb 76’)

If µ is more log-concave than �d , then Cp(µ)  1.

Proof (Cordero-Erausquin 02’).

Varµ(f ) = Var�d (f �  
opt)  E�d

⇥
kr

�
f �  opt

�
k2
⇤

 E�d

⇥
kr optk2krf ( opt)k2

⇤
= Eµ

⇥
krf k2

⇤
.
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Bounded log-concave

If µ is log-concave, but compactly supported on a ball of diameter

R , then Cp(µ) . R
2. Several proofs exists:

Localization (Payne-Weinberger)

Refined Brascamp-Lieb (Kolesnikov-Milman)

Moment Maps (Klartag)

Question

For such µ is it necessarily true that there exists an R-Lipschitz '

with '⇤�d = µ?
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Motivation

A positive answer will not only recover known result but will also

imply:

1. Dimension-free �-Sobolev inequalities (generalizing both

Poincaré and log-Sobolev).

2. Bounds for higher eigenvalues of the weighted Laplacian.

3. Isoperimetric inequalities.

4. Improved rates of convergence for the CLT.
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Gaussian mixtures

We call µ = �d ? ⌫ a Gaussian mixture. It was recently proved by

Bardet, Gozlan, Malrieu and Zitt that if diam(supp(⌫))  R , then

Cp(µ) . e
R

2
.

Later, Chen,Chewi and Niles-Weed extended the result to the

log-Sobolev inequality.

Question

Suppose that µ = �d ? ⌫ and diam(supp(⌫))  R . Is there an

e
R

2
-Lipschitz ' with '⇤�d = µ?
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KLS

Let µ be log-concave and isotropic,
Z

Rd

xdµ(x) = 0

Z

Rd

x ⌦ xdµ(x) = Id.

A famous conjecture of Kannan-Lovász-Simonovits postulates,

Cp(µ)  C .

Current best bound, due to Klartag and Lehec (building upon

Chen): Cp(µ)  polylog(d).

It seems natural to ask whether we can find a Lipschitz map '

with '⇤�d = µ?

9



KLS

Let µ be log-concave and isotropic,
Z

Rd

xdµ(x) = 0

Z

Rd

x ⌦ xdµ(x) = Id.

A famous conjecture of Kannan-Lovász-Simonovits postulates,

Cp(µ)  C .

Current best bound, due to Klartag and Lehec (building upon

Chen): Cp(µ)  polylog(d).

It seems natural to ask whether we can find a Lipschitz map '

with '⇤�d = µ?

9



KLS

Let µ be log-concave and isotropic,
Z

Rd

xdµ(x) = 0

Z

Rd

x ⌦ xdµ(x) = Id.

A famous conjecture of Kannan-Lovász-Simonovits postulates,

Cp(µ)  C .

Current best bound, due to Klartag and Lehec (building upon

Chen): Cp(µ)  polylog(d).

It seems natural to ask whether we can find a Lipschitz map '

with '⇤�d = µ?

9



KLS

In general, one cannot find a Lipschitz transport map from �d
to µ.

The existence of such map implies sub-Gaussian tails of µ,

which is not true for all isotropic log-concave measures.

However, E. Milman showed that for KLS, it is enough to

have map which is ’Lipschitz on average’.

Question

If µ is log concave and isotropic, does there exists a map ' with

'⇤� = µ, such that

E�
⇥
kD'k2

⇤
 polylog(d)?
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Infinite-dimensions

By slightly altering our perspective, we give a positive answer to

the previous questions.

Let ⌦ := C ([0, 1],Rd) stand for the Wiener space with the Wiener

measure �. We will let (Bt)t2[0,1] denote a Brownian motion.

We consider Lipschitz mappings � : ⌦! Rd with D� bounded

almost surely.

Derivatives are taken in the Malliavin sense.
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Infinite-dimensions

Theorem (M.-Shenfeld)

Let µ be a measure on Rd
. There exists map � : ⌦! Rd

, with

�⇤� = µ and

1. If µ is log-concave with diam(supp(µ))  R ,

kD�k  R .

2. If µ = �d ? ⌫ and diam(supp(⌫))  R ,

kD�k  e
R

2
.

3. If µ is log-concave and isotropic,

E�
⇥
kD�k2

⇤
���

d
o(1) polylog(d).
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Malliavin calculus 101

Recall the Cameron-Martin space

H := {h 2 ⌦|ht =
tZ

0

ḣsds}.

It is also characterized by the fact that Bt + g is absolutely

continuous with respect to �, i↵ g 2 H.

Heuristically, for a a random variable F we define the Malliavin

derivative DF , as the Gateaux derivative in the H directions.
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Malliavin calculus 101

H has a natural inner product, hh, h0iH :=
1R

0
ḣt ḣ

0
tdt. Observe that

DF : ⌦! H and we denote by DFt , by DtF .

We say that a map F is R-Lipschitz (in the H directions), if

kDFkH  R almost surely. This definition is justified, since

Var�(F )  E�
⇥
kDFk2

H

⇤
.
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First attempt

We can mimic Ca↵areli’s Euclidean optimal transport result. Two

main issues to address:

Need to define a Wasserstein metric on ⌦.

Need to embed µ in ⌦.

First, define a metric, which is compatible with H:

dH(!,!
0) =

8
<

:
k! � !0kH if ! � !0 2 H

1 otherwise
.
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First attempt

Define a measure µ̃ on ⌦ by

d µ̃

d�
(!) =

dµ

d�d
(!1),

and consider,

min
 ⇤�=µ̃

E
h
dH ( (B·),B·)

2
i
.

Equivalently,

min
ut

E

2

4
1Z

0

kutk2dt

3

5 ,

where B1 +
1R

0
utdt ⇠ µ.
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First attempt

Define v
opt
t := argmin

ut

E
"

1R

0
kutk2dt

#
.

Then, voptt (!) =  opt(!1)� !1, and �opt(!) = ! +
R
vtdt

satisfies,

�opt
⇤ � = µ̃.

(�opt
1 )⇤� = µ.

This is unsatisfactory.
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Second attempt

We consider an optimization problem adapted to the filtration of

Bt .

Define vt := arg min
ut adapated

E
"

1R

0
kutk2dt

#
and dXt = dBt + vtdt.

Facts:

X1 ⇠ µ (this is the transport map).

Ent (µ||�) = 1
2

1R

0
E[||vt ||2]dt.

vt is a martingale, with vt(Xt) = r ln
⇣
P1�t

⇣
dµ
d�d

(Xt)
⌘⌘

.
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The Föllmer Drift - (Some) History

Analogous problems were already considered by in the 30’s, by

Schrödinger.

The process itself was first studied by Föllmer, in 85’, who

used it to derive a variational expression for entropy.

It appeared implicitly in the works of Feyel and Üstünel, from

2004, in their study of infinite dimensional transportation

problems.

In the context of functional inequalities, the use of the

Föllmer process was pioneered by Lehec in 2012.

Lassalle identified the process as the solution to a causal

transportation problem in 2013.
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The Brownian transport map

Recall that X1 = B1 +
1R

0
r ln

⇣
P1�t

dµ
d�d

(Xt)
⌘
dt. It can be shown

that

DXt = Id +

tZ

0

r2 ln

✓
P1�s

dµ

d�d
(Xs)

◆
DXsds.

We write rvt := r2 ln
⇣
P1�t

dµ
d�d

(Xt)
⌘
and for h 2 H, we

calculate,

fh(t) := hDXt , hiH =

tZ

0

ḣsds +

tZ

0

rvthDXs , hiHds.

In particular,
d

dt
fh(t) = ḣt �rvt fh(t).
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The Brownian transport map

Solving this di↵erential equation, we get, for every h 2 H,

fh(1) =

1Z

0

e

1R

t

rvsds

· ḣ(t)dt.

So,

DtX1 = e

1R

t

rvsds

,

and

kDX1k2H =

1Z

0

e
2

1R

t

rvsds

dt.
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The Brownian transport map

Direct calculations show,

rvt := r2 ln

✓
P1�t

dµ

d�
(Xt)

◆
=

Cov(µt)

(1� t)2
� 1

1� t
Id ,

where
dµt

dx
/ dµ

d�d
(x)e

�(x�Xt )
2

2(1�t) .

If diam(supp(µ))  R , clearly,

rvt 
R
2

(1� t)2
� 1

1� t
.

Moreover, by Brascamp-Lieb, if µ is log-concave,

rvt 
1

t
.

22



The Brownian transport map

Direct calculations show,

rvt := r2 ln

✓
P1�t

dµ

d�
(Xt)

◆
=

Cov(µt)

(1� t)2
� 1

1� t
Id ,

where
dµt

dx
/ dµ

d�d
(x)e

�(x�Xt )
2

2(1�t) .

If diam(supp(µ))  R , clearly,

rvt 
R
2

(1� t)2
� 1

1� t
.

Moreover, by Brascamp-Lieb, if µ is log-concave,

rvt 
1

t
.

22



The Brownian transport map

Direct calculations show,

rvt := r2 ln

✓
P1�t

dµ

d�
(Xt)

◆
=

Cov(µt)

(1� t)2
� 1

1� t
Id ,

where
dµt

dx
/ dµ

d�d
(x)e

�(x�Xt )
2

2(1�t) .

If diam(supp(µ))  R , clearly,

rvt 
R
2

(1� t)2
� 1

1� t
.

Moreover, by Brascamp-Lieb, if µ is log-concave,

rvt 
1

t
.

22



We apply the two inequalities to kDX1k2H =
1R

0
e
2

1R

t

rvsds

dt

Theorem (M.- Shenfeld)

Consider X1 as a map from ⌦ = C ([0, 1],Rd) to Rd
.

1. If µ is log-concave with diam(supp(µ))  R ,

kDX1k  R .

2. If µ = �d ? ⌫ and diam(supp(⌫))  R ,

kDX1k  e
R

2
.

The second result follows by showing rvt  R
2.

Can be extended to semi-log concave measures.
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We apply the two inequalities to kDX1k2H =
1R

0
e
2

1R

t

rvsds

dt
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Further thoughts

We have demonstrated a Lipschitz map X1 : ⌦! Rd .

It seems natural to ask whether X· : ⌦! ⌦ is Lipschitz as well?

It turns out that there exist strongly log-concave measures, for

which X· is not Lipschitz, for any constant. This is contrast to the

optimal transport map  opt, which is provably 1-Lipschitz.
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Future directions

Can the results be extended to larger classes of measures?

What about similar, but di↵erent, constructions on the

Wiener space?

Can similar results be proved for maps between finite

dimensional spaces?

In particular, can the results be recovered for the Brenier map?
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Thank You
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The KLS connection

Instead of applying point-wise bounds, we could estimate

E
⇥
kDX1k2H

⇤
= E

2

4
1R

0
e
2

1R

t

rvs(Xs)ds

3

5.

For isotropic µ, define ⌧ = 1
2 ^ inf{t|rvt(Xt) � 2}.

1Z

0

rvt(Xt)  2 +

1Z

⌧

1

t
dt = 2 + log(⌧).

So,

E
⇥
kDX1k2H

⇤
 e

4E

1

⌧2

�
.
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The KLS connection

With the recent result of Yuansi Chen about the KLS constant, we

prove:

Theorem

Let µ be an isotropic log-concave vector in Rd
. Then,

E
⇥
kDX1k2H

⇤
= d

o(1).
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