An information-theoretic approach to Kneser-Poulsen conjecture in discrete geometry

Dongbin Li
(joint work with Gautam Aishwarya, Irfan Alam, Sergii Myroshnychenko, and Oscar Zatarain-Vera)

University of Delaware

December 13, 2022

Contents of the talk

- Background
- Our information-theoretic approach
- Some main results and sketch of proofs
- Open problems

Background

Conjecture (Poulsen 1954, Kneser 1955)

Let $K=\left\{x_{1}, \ldots, x_{k}\right\}$ and $L=\left\{y_{1}, \cdots, y_{k}\right\}$ be two subsets in \mathbb{R}^{d} such that $\left\|x_{i}-x_{j}\right\|_{2} \geq\left\|y_{i}-y_{j}\right\|_{2}$, then the Kneser-Poulsen conjecture asserts that, for any $r>0$,

$$
\operatorname{Vol}_{d}\left(\bigcup_{i=1}^{k} \mathcal{B}\left(x_{i}, r\right)\right) \geq \operatorname{Vol}_{d}\left(\bigcup_{i=1}^{k} \mathcal{B}\left(y_{i}, r\right)\right) .
$$

Conjecture (Gromov 1978, Klee-Wagon 1991)
Under the same assumptions,

$$
\operatorname{Vol}_{d}\left(\bigcap_{i=1}^{k} \mathcal{B}\left(x_{i}, r\right)\right) \leq \operatorname{Vol}_{d}\left(\bigcap_{i=1}^{k} \mathcal{B}\left(y_{i}, r\right)\right) .
$$

Some Developments

(1) The union conjecture holds for continuous contractions. Csikós(1998)

$$
P(t)=\left\{p_{1}(t), \ldots, p_{k}(t)\right\}, 0 \leq t \leq 1
$$

such that

$$
P(0)=K, P(1)=L
$$

$$
\begin{aligned}
& K=\left\{x_{1} \ldots, x_{k}\right\} \subseteq R^{d} \\
& L=\left\{y_{1}, \ldots, y_{k}\right\} \subseteq R^{d}
\end{aligned}
$$

and for all $1 \leq i<j \leq k$,

$$
\left\|p_{i}(t)-p_{j}(t)\right\|_{2} \text { monotone decreasing in } t
$$

(2) The union and intersection conjectures are true for $d=2$, Bezdek-Connelly(2001).
(3) Strong contractions and Uniform contractions, Bezdek-Naszódi(2018). Survey paper: Four classic problems, Fejes Tóth-Kuperberg (2022).

Rephrase the Kneser-Poulsen Conjecture

$T: K \rightarrow \mathbb{R}^{d}$,

$$
T\left(x_{i}\right)=y_{i}, i=1, \ldots, k .
$$

Then T is 1-Lip. (Recall $\left\|y_{i}-y_{j}\right\|_{2} \leq\left\|x_{i}-x_{j}\right\|_{2}$)

Definition (Minkowski sum)

$$
A+B:=\{a+b: a \in A, b \in B\}
$$

\mathcal{B} unit ball,

$$
\begin{gathered}
\bigcup_{i=1}^{k} \mathcal{B}\left(x_{i}, r\right)=K+r \mathcal{B} \\
\bigcup_{i=1}^{k} \mathcal{B}\left(y_{i}, r\right)=T(K)+r \mathcal{B} .
\end{gathered}
$$

1-Lip $T: K \rightarrow \mathbb{R}^{d} \xlongequal{\text { Kirszbraun's extension theorem }} 1$-Lip $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$

Conjecture

$L i p(T) \leqslant 1$

For every contraction T of \mathbb{R}^{d} and every compact set $K \subseteq \mathbb{R}^{d}, r>0$, we have

$$
\operatorname{Vol}_{d}(T[K]+r \mathcal{B}) \leq \operatorname{Vol}_{d}(K+r \mathcal{B}) .
$$

Remark: It is unknown even for convex body K.
$B M I$

$$
\begin{array}{r}
\operatorname{vol}_{d}(\lambda A+(1-\lambda) B) \geqslant\left.\operatorname{vor}_{d}^{\lambda}(A) \operatorname{V}_{0}\right|_{d} ^{H \lambda}(B) \\
\lambda \in[0,1, A, B \text { compact }
\end{array}
$$

Reverse Young
(Gardner: The BMI '02)
(Dembo-Cover-Thomas:
Information theoretic inequaloties, 1991)

$$
\begin{gathered}
\|f * g\|_{r} \geqslant c^{n}\|f\|_{p}\|g\|_{q} \\
\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r} \\
0<p, q, r \leqslant 1
\end{gathered}
$$

(Young, 1912)
(Leindler, 1972)
(Beckner, 197s)

Definition (Rényi entropies)

For a discrete r.v. X, the Rényi entropy of order $\alpha \in(0,1) \cup(1, \infty)$ is defined as

$$
H_{\alpha}(X)=\frac{1}{1-\alpha} \log \left(\sum_{i} p_{i}^{\alpha}\right)=\frac{\alpha}{1-\alpha} \log \|p\|_{\alpha}
$$

For a \mathbb{R}^{d}-valued r.v. $X \sim f$, the Rényi entropy of order α is defined as

$$
h_{\alpha}(f)=h_{\alpha}(X):=\frac{1}{1-\alpha} \log \int_{\mathbb{R}^{d}} f^{\alpha}(x) \mathrm{d} x .
$$

Definition (Rényi entropies)

For a discrete r.v. X, the Rényi entropy of order $\alpha \in(0,1) \cup(1, \infty)$ is defined as

$$
H_{\alpha}(X)=\frac{1}{1-\alpha} \log \left(\sum_{i} p_{i}^{\alpha}\right)
$$

For a \mathbb{R}^{d}-valued r.v. $X \sim f$, the Rényi entropy of order α is defined as

$$
h_{\alpha}(f)=h_{\alpha}(X):=\frac{1}{1-\alpha} \log \int_{\mathbb{R}^{d}} f^{\alpha}(x) \mathrm{d} x .
$$

The Rényi entropies of order $\alpha=0,1, \infty$ are obtained by taking limits. In particular, let $\alpha \searrow 0$, we have

$$
h_{0}(X)=\log \operatorname{Vol}_{d}(\operatorname{supp}(f))
$$

Useful fact: $h_{\alpha}(T(X))=h_{\alpha}(X), T$ linear, $|\operatorname{det}(T)|=1$.

Our information-theoretic approach

X, W, independent, $W \sim \operatorname{Uniform}(\mathcal{B})$

$$
\left\{\begin{array} { l }
{ \operatorname { S u p p } (X) = K } \\
{ \operatorname { S u p p } (W) = \mathcal { B } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\operatorname{Supp}(X+W)=K+\mathcal{B} \\
\operatorname{Supp}(T(X)+W)=T(K)+\mathcal{B}
\end{array}\right.\right.
$$

Our information-theoretic approach

X, W, independent, $W \sim \operatorname{Uniform}(\mathcal{B})$

$$
\left\{\begin{array} { l }
{ \operatorname { S u p p } (X) = K } \\
{ \operatorname { S u p p } (W) = \mathcal { B } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\operatorname{Supp}(X+W)=K+\mathcal{B} \\
\operatorname{Supp}(T(X)+W)=T(K)+\mathcal{B}
\end{array}\right.\right.
$$

For any fixed $\epsilon>0, \forall \alpha \in(0, \epsilon)$

$$
\begin{gathered}
h_{\alpha}(T[X]+W) \leq h_{\alpha}(X+W) \\
\Downarrow \\
\operatorname{Vol}_{d}(T[K]+\mathcal{B}) \leq \operatorname{Vol}_{d}(K+\mathcal{B})
\end{gathered}
$$

Question (A broad information-theoretic question)

Let X and W be two independent \mathbb{R}^{d}-valued random variables. Further assume that W is log-concave and satisfies some symmetry property, say, radial symmetry. For a contraction $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, and $\alpha \in[0, \infty]$, under what additional assumptions do we have

$$
h_{\alpha}(T(X)+W) \leq h_{\alpha}(X+W) ?
$$

Remark: An affirmative answer to this question at $\alpha=0$ for any X supported on a finite set will prove the Kneser-Poulsen Conjecture.

What we have done

- Use of majorization to obtain Rényi entropic inequalities for all orders under convexity conditions of various flavors.

$$
\lambda \text { (Liu, Liu, Poor, Shamai io) }
$$

- Exploiting a vector generalization of Costa's entropy power inequality (EPI) and variance comparisons to obtain results in a stronger form in some cases when W is Gaussian and $\alpha=1$.
- Use of metric distortion of entropy to give a clear proof for $\alpha=2$ in full generality.

Definition (Log-concavity)

A function $f: \mathbb{R}^{d} \mapsto[0, \infty)$ is log-concave if f can be written as $f(x)=e^{-U(x)}$, where $U: \mathbb{R}^{d} \mapsto(-\infty,+\infty]$ is a convex function. We call a \mathbb{R}^{d} valued random variable X log-concave if its density is log-concave.

Examples:

$$
f(x)=\frac{1}{(2 \pi)^{n / 2}} e^{-\frac{\|x\|_{2}^{2}}{2}}, \quad f(x)=\frac{\mathbb{1}_{K}(x)}{|K|}, K \text { convex body } .
$$

Theorem (Prékopa)

If f and g are two nonnegative integrable log-concave functions on \mathbb{R}^{d}, then $f \star g$ is also log-concave.

Strategy

Example:
$K=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}, X_{1}, X_{2}$ two random variables.

$$
\begin{gathered}
X_{1}: \mathbb{P}\left\{X=x_{i}\right\}=1 \text { for some } i, \\
X_{2}: X_{2} \sim \text { Uniform }(K)
\end{gathered}
$$

For $\forall \alpha \in[0, \infty]$,

$$
H_{\alpha}\left(X_{1}\right)=0, \quad H_{\alpha}\left(X_{2}\right)=\log n .
$$

More "peaked" distribution \Longrightarrow Smaller Rényi entropies.

$$
\Delta_{n}=\left\{p \in \mathbb{R}^{n}: \sum_{i=1}^{n} p_{i}=1, p_{i} \geq 0, i=1, \ldots, n .\right\}
$$

For $p \in \Delta_{n}$,
\tilde{p}, same components, but sorted in descending order.
For $p, q \in \Delta_{n}, p$ is said to be majorized by q, written as $p \prec q$, iff

$$
\sum_{i=1}^{k} \tilde{p}_{i} \leq \sum_{i=1}^{k} \tilde{q}_{i}, k=1, \ldots, n
$$

And

$$
p \prec q \Rightarrow H_{\alpha}(p) \geq H_{\alpha}(q), \forall \alpha \in[0, \infty] .
$$

Definition (Symmetric Decreasing Rearrangement)

Let A be a measurable set of finite volume in \mathbb{R}^{d}. Its symmetric rearrangement A^{*} is the open ball centered at the origin whose volume agrees with A. Define the SDR of the indicator function as follows:

$$
\mathbb{1}_{A}^{*}(x)=\mathbb{1}_{A^{*}}(x) .
$$

Let f be a non-negative integrable function. The symmetric decreasing rearrangement f^{*} of f is defined as,

$$
f^{*}(x)=\int_{0}^{\infty} \mathbb{1}_{\{f>t\}}^{*}(x) d t
$$

Compare with:

$$
f(x)=\int_{0}^{\infty} \mathbb{1}_{\{f>t\}}(x) d t
$$

Some properties of SDR

(1) $f^{*}(x)$ is radially symmetric decreasing.
(2)

$$
\|f\|_{p}=\left\|f^{*}\right\|_{p}, \forall p>0
$$

As a consequence, f, a density,

$$
h_{\alpha}(f)=h_{\alpha}\left(f^{*}\right), \quad \forall \alpha \in(0, \infty)
$$

For more properties and applications,
"Analysis", Lieb and Loss.
"A short course on rearrangement inequalities", Almut Burchard.

Measure the "peakedness" of distributions

Definition

For two probability densities f and g on \mathbb{R}^{d}, we say that f is majorized by g, written as $f \prec g$, if

$$
\int_{\mathcal{B}(0, r)} f^{*}(x) \mathrm{d} x \leq \int_{\mathcal{B}(0, r)} g^{*}(x) \mathrm{d} x
$$

for all $r>0$.

Measure the "peakedness" of distributions

Definition

For two probability densities f and g on \mathbb{R}^{d}, we say that f is majorized by g, written as $f \prec g$, if

$$
\int_{\mathcal{B}(0, r)} f^{*}(x) \mathrm{d} x \leq \int_{\mathcal{B}(0, r)} g^{*}(x) \mathrm{d} x
$$

for all $r>0$.

Lemma

Let f and g be two probability densities, with $f \prec g$, then

$$
h_{\alpha}(f) \geq h_{\alpha}(g), \quad \forall \alpha \in(0, \infty)
$$

Want:

$$
h_{\alpha}(T(X)+W) \leq h_{\alpha}(X+W)
$$

$X \sim f_{X}, T(X) \sim f_{T(X)}$, it is straightforward to check that

$$
f_{X} \prec f_{T(X)} .
$$

Question:
Will convolution with a "nice" random variable W preserve majorization

$$
f_{X+W} \prec f_{T(X)+W} ?
$$

A sample result: W radially symmetric log-concave, T any linear contraction, X log-concave

Theorem (AALMZ '22)

Let W be a radially symmetric, log-concave, \mathbb{R}^{d}-valued random variable. Then for any log-concave \mathbb{R}^{d}-valued random variable X that is independent of W, any linear contraction T, and $\alpha \in(0, \infty)$, we have

$$
f_{X+W} \prec f_{T(X)+W} .
$$

As a consequence,

$$
h_{\alpha}(T(X)+W) \leq h_{\alpha}(X+W)
$$

Corollary

Let $K \subset \mathbb{R}^{d}$ be a convex body. Then for any linear contaction T, one has

$$
\operatorname{Vol}_{d}(T(K)+\mathcal{B}) \leq \operatorname{Vol}_{d}(K+\mathcal{B}) .
$$

Remark: Steiner's formula + Intrinsic volumes decrease under linear contractions[Grigoris Paouris, Peter Pivovarov, 2012].

$$
V_{i}(T(K)) \leq V_{i}(K), \quad i=1, \cdots, d
$$

A representation lemma

Lemma (Almut Burchard's notes)

Let $f: \mathbb{R}^{d} \rightarrow[0, \infty)$ be an integrable non-negative function. Then,

$$
\int_{\mathcal{B}(0, r)} f^{*}(x) \mathrm{d} x=\sup _{\{C: \operatorname{Vol}(C)=\operatorname{Vol}(\mathcal{B}(0, r))\}} \int_{C} f(x) \mathrm{d} x .
$$

Moreover, the supremum in the RHS is attained by the super-level set $\{f>t\}$ having same volume as $\mathcal{B}(0, r)$.

Sketch the proof of $f_{X+W} \prec f_{T(X)+W}$

$$
X \sim f(x), W \sim g(x) \text { and } T(X) \sim f_{T}(x) .
$$

Goal:

$$
f \star g \prec\left(f_{T}\right) \star g
$$

Note that

$$
\{f \star g>t\}, \text { bounded, convex }
$$

Suffice to show that for any bounded convex set $K \subset \mathbb{R}^{d}, \exists K^{\prime}$, having same volume as K, s.t.

$$
\int_{K}(f \star g)(x) \mathrm{d} x \leq \int_{K^{\prime}}\left(\left(f_{T}\right) \star g\right)(x) \mathrm{d} x .
$$

- 1 dimensional case. $T(x)=\lambda x$ for some $\lambda \in[0,1]$. suffice to prove

$$
\int_{K} g(x-y) \mathrm{d} x \leq \int_{K^{\prime}} g(x-\lambda y) \mathrm{d} x
$$

Define

$$
I(y):=\int_{K} g(x-y) \mathrm{d} x=\int_{K} g(y-x) \mathrm{d} x=\int_{K-y} g(x) \mathrm{d} x
$$

$I(y)$ attains its maximum at y_{0}, the midpoint of K, and

$$
I\left((1-\lambda) y_{0}+\lambda y\right) \geq I(y), \forall y \in \mathbb{R}
$$

This reads as

$$
\int_{K-(1-\lambda) y_{0}} g(x-\lambda y) \mathrm{d} x \geq \int_{K} g(x-y) \mathrm{d} x
$$

Set $K^{\prime}=K-(1-\lambda) y_{0}$.

- Higher dimensional case.

One may assume that T is diagonal, entries being $\lambda_{1}, \ldots, \lambda_{d} \in[0,1]$. Goal: For a bounded convex set $K \subset \mathbb{R}^{d}$, find K^{\prime}, having same volume as K, s.t.

$$
\int_{K} g(x-y) \mathrm{d} x \leq \int_{K^{\prime}} g(x-T(y)) \mathrm{d} x .
$$

By Fubini's theorem,

$$
\begin{gathered}
\int_{K} g(x-y) \mathrm{d} x=\int_{\left.K\right|_{e_{1}^{\perp}}}\left(\int_{L\left(x_{2}, \ldots, x_{n}\right)} g\left(x_{1}-y_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}\right) \mathrm{d} x_{1}\right) \\
\leq \int_{S_{e_{1}}^{\lambda_{1}}(K)} g\left(x_{1}-\lambda_{1} y_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}\right) \mathrm{d} x .
\end{gathered}
$$

where,

$$
S_{e_{1}}^{\lambda_{1}}(K)=\left\{y+\alpha e_{1}:\left.y \in K\right|_{e_{1}^{\perp}}, \alpha \in[g(y), f(y)]-\left(1-\lambda_{1}\right) \frac{f(y)+g(y)}{2}\right\}
$$

Theorem (Anderson 1955)

Let K be an origin symmetric convex body in \mathbb{R}^{d} and let g be a nonnegative, symmetric, unimodal, and integral function on \mathbb{R}^{d}. Then

$$
\int_{K} g(x+c y) \mathrm{d} x \geq \int_{K} g(x+y) \mathrm{d} x,
$$

for all $0 \leq c \leq 1$ and $y \in \mathbb{R}^{d}$.

Theorem (AALMZ '22)

For any convex body K in \mathbb{R}^{d}, any diagonal matrix T with diagonal entries in $[0,1], g$ radially symmetric log-concave, there exists a convex body $S(K)$ having same volume as K, such that

$$
\int_{S(K)} g(x+T(y)) \mathrm{d} x \geq \int_{K} g(x+y) \mathrm{d} x
$$

for all $y \in \mathbb{R}^{d}$.

A different proof of $V_{i}(T(K)) \leq V_{i}(K)$

$$
K=\left\{y+\alpha e_{1}:\left.y \in K\right|_{e_{1}^{\perp}}, g(y) \leq \alpha \leq f(y)\right\},
$$

$$
S_{e_{1}}^{\lambda_{1}}(K)=\left\{y+\alpha e_{1}:\left.y \in K\right|_{e_{1}^{+}}, \alpha \in \theta_{\lambda_{1}}[g(y), f(y)]+\left(1-\theta_{\lambda_{1}}\right)[-f(y),-g(y)]\right\}
$$

where $\theta_{\lambda_{1}}=\frac{1+\lambda_{1}}{2} \in[0,1]$.

$$
\begin{array}{ll}
& \lambda_{1} I_{y} \subseteq \theta_{\lambda_{1}} I_{y}+\left(1-\theta_{\lambda_{1}}\right)\left(-I_{y}\right) \\
\Rightarrow \quad T(k) \subseteq S_{e_{1}}^{\lambda_{1}}(k) \quad & \left.\quad \begin{array}{l}
\text { shadow systems of } \\
\text { convex sets, } \\
\text { shepherd } 64
\end{array}\right) \\
V_{i}\left(S_{e_{1}}^{\lambda_{1}}(k)\right) \text { is convex. }
\end{array}
$$

$\lambda_{1} \in[-1,1], \quad V_{i}\left(S_{e_{1}}^{\lambda_{1}}(k)\right)$ is convex.

$$
V_{i}(T(k)) \leq V_{i}\left(S_{e_{1}}^{\lambda_{1}}(k)\right) \leq V_{i}(k)
$$

$\alpha=2, W$ radially symmetric log-concave, T any contraction, X arbitrary

Theorem (AALMZ '22)
Let X be an \mathbb{R}^{d}-valued random variable, and W be an independent \mathbb{R}^{d}-valued radially-symmetric log-concave random variable. Then, for any contraction $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, we have

$$
h_{2}(T(X)+W) \leq h_{2}(X+W) .
$$

Metric distortion of Rényi entropies

$X=\left\{x_{1}, \cdots, x_{n}\right\}$, equipped with metric δ, for $\alpha \in[0,1) \cup(1, \infty), p \in \Delta_{n}$, define:

$$
D_{\alpha}^{\delta}(p)=\left(\sum_{i=1}^{n}\left(\sum_{j=1}^{n} e^{-\delta\left(x_{i}, x_{j}\right)} p_{j}\right)^{\alpha-1} p_{i}\right)^{1 /(1-\alpha)} \lim _{t \rightarrow \infty} D_{\alpha}^{t \delta}(P)
$$

Diversities, introduced by Cobbold-Leinster ('12), developed further by Leinster-Meckes('15), Leinster-Roff ('19) , Aishwarya-Li-Madiman-Meckes ('22+).

Metric distortion of Rényi entropies

$X=\left\{x_{1}, \cdots, x_{n}\right\}$, equipped with metric δ, for $\alpha \in[0,1) \cup(1, \infty), p \in \Delta_{n}$, define:

$$
D_{\alpha}^{\delta}(p)=\left(\sum_{i=1}^{n}\left(\sum_{j=1}^{n} e^{-\delta\left(x_{i}, x_{j}\right)} p_{j}\right)^{\alpha-1} p_{i}\right)^{1 /(1-\alpha)}
$$

Diversities, introduced by Cobbold-Leinster ('12), developed further by Leinster-Meckes('15), Leinster-Roff ('19) , Aishwarya-Li-Madiman-Meckes ('22+).
$(X, \delta), \mu \in \mathcal{P}(X)$,

$$
D_{\alpha}^{\delta}(\mu)=\left(\int\left(\int e^{-\delta(x, y)} \mathrm{d} \mu(y)\right)^{\alpha-1} \mathrm{~d} \mu(x)\right)^{1 /(1-\alpha)}
$$

Recovery of Renyi entropies in \mathbb{R}^{d}

Proposition (Aishwarya-Li-Madiman-Meckes '22+)

Assume that \mathbb{R}^{d} is equipped with the Euclidean metric $\delta(x, y)=\|x-y\|_{2}$. Let $\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ with density $f(x)$, then

$$
e^{h_{2}(f)}=\lim _{t \rightarrow \infty} \frac{D_{2}^{t \delta}(\mu)}{c_{d} t^{d}}
$$

where c_{d} is a constant depending on the dimension.

Sketch the proof of $h_{2}(T(X)+W) \leq h_{2}(X+W)$

 Suffice to show that$$
\begin{gathered}
D_{2}^{t \delta}(X+W) \geq D_{2}^{t \delta}(T(X)+W) . \\
\left(D_{2}^{t \delta}(X+W)\right)^{-1}=\mathbb{E} e^{-t\left\|(X+W)-\left(X^{\prime}+W^{\prime}\right)\right\|_{2}} . \\
=\mathbb{E}_{X, X^{\prime}, \mathbb{E}_{W, W^{\prime}} e^{-t\left\|\left(X-X^{\prime}\right)-\left(W^{\prime}-W\right)\right\|_{2}}} .
\end{gathered}
$$

Suffice to prove that for fixed x, x^{\prime},

$$
\mathbb{E}_{W, W^{\prime}} e^{-t\left\|\left(x-x^{\prime}\right)-\left(W^{\prime}-W\right)\right\|_{2}} \leq \mathbb{E}_{W, W^{\prime}} e^{-t\left\|\left(T(x)-T\left(x^{\prime}\right)\right)-\left(W^{\prime}-W\right)\right\|_{2}}
$$

Read as

$$
\left(e^{-t\|\cdot\|_{2}} \star f_{\left(W^{\prime}-W\right)}\right)\left(x-x^{\prime}\right) \leq\left(e^{-t\|\cdot\|_{2}} \star f_{\left(W^{\prime}-W\right)}\right)\left(T(x)-T\left(x^{\prime}\right)\right)
$$

Recall that $\left\|T(x)-T\left(x^{\prime}\right)\right\|_{2} \leq\left\|x-x^{\prime}\right\|_{2}$.

More open problems

$T(x)=\lambda x, \lambda \in[0,1]$

recover costa's entropy power inequality
(1) $N(X)=e^{\frac{2 h_{1}(X)}{d}}, Z \sim \mathcal{N}\left(0, I_{d}\right), T$ be any contraction. Do we have

$$
N(X+Z) \geq N(T(X)+Z)+\left(1-(\operatorname{Lip}(T))^{2}\right) N(X) ?
$$

(2) Let X be an arbitrary \mathbb{R}^{d}-valued log-concave random variable, T be any contraction and $Z \sim \mathcal{N}\left(0, I_{d}\right)$ be the standard Gaussian random variable. Can one show that

$$
f_{X+\sqrt{t} Z} \prec f_{T(X)+\sqrt{t} Z}, \quad \forall t>0 ?
$$

Assume that the density of $T(X)$ exists, note that $f_{X} \prec f_{T(X)}$.

$$
f_{e^{-t} x+\sqrt{1-e^{-2 t} z}}<f_{-\frac{t}{e} T(x)+\sqrt{1-e^{-2 t}} Z}
$$

Any Questions?

