
Higher-Order Affine Isoperimetric Inequalities

Dylan Langharst1

Kent State University

Online Asymptotic Geometric Analysis Seminar
13 April 2023

1Joint work with J. Haddad, E. Putterman, M. Roysdon, and D. Ye



All of the sets we will consider will be convex (i.e. K is convex if
x ,y ∈ K implies (1 − λ)x + λy ∈ K for every λ ∈ [0,1].)

We will usually deal with convex bodies: i.e. convex, compact
sets with non-empty interior.

We will denote by Voln(K ) - volume of K ⊂ Rn, we sometimes
write simply |K | .
We will often use notion of Minkowski sum:
K + L = {x + y : x ∈ K and y ∈ L}.

We all know that Voln(λK ) = λnVoln(K ) for λ ≥ 0, i.e. volume is
a homogeneous measure of degree of homogeneity n. But there
is much more!!!
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Main Definitions: Mixed Volume

K and L convex bodies in Rn and t ≥ 0
Then Voln(K + tL) is a homogeneous polynomial (in t) of degree n
and

Voln(K + tL) =
n

∑
i=0

t i
(

n
i

)
V (K [n − i ],L[i ]).

The coefficients V (K [n − i ],L[i ]) are called the mixed volumes of K
(n − i) times and L [i ] times. When i = 1, we write V (K [n − 1],L)

V (K [n − i ],K [i ]) = |K |.
Mixed volume is translation invariant:
V (K [n − 1],L + a) = V (K [n − 1],L), for a ∈ Rn.
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How symmetric is a convex body?
K is said to be centrally symmetric if K = −K , and to be
symmetric if a translate is centrally symmetric.
A possible candidate for a “symmetric” version of K is

DK := K + (−K ).

K is thus symmetric if DK is a translate of 2K .

Brunn-Minkowski inequality: |K + L|1/n ≥ |K |1/n + |L|1/n, with
equality if, and only if, K is homothetic to L.
Implies →

2n ≤ Voln(DK )

Voln(K )
,

with equality if, and only if, K is symmetric.
The Rogers-Shephard inequality shows the reverse direction:

Voln(DK )

Voln(K )
≤
(

2n
n

)
,

with equality if, and only if, K is a n-dimensional simplex.
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Enter Rolf Schneider
The covariogram of K is

gK (x) = Voln(K ∩ (K + x)).

Amazing fact: the support of gK is DK .
Define the mth order covariogram of K as

gK ,m(x̄) = Voln

(
K ∩

m⋂
i=1

(K + xi )

)
,

where x̄ = (x1, . . . ,xm) ∈ (Rn)m ∼= Rnm.
The difference body of order m of K , Dm(K ), is a convex body in
Rnm defined as the support of gK ,m.

Voln(K )−mVolnm (Dm(K )) ≤
(

nm + n
n

)
,

with equality if, and only if, K is a n-dimensional simplex.
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Operator Hopping

Goal: Extend the concept of higher-order to other "symmetric"
version of convex bodies

Given a compact, star shaped set L its radial function is
ρL(y) = sup{λ > 0 : λy ∈ L}.
Fix θ ∈ Sn−1, the unit sphere. Then, Matheron tells us

d
dr

gK (rθ)
∣∣
r=0+ = −Voln−1(Pθ⊥K ),

where Pθ⊥K is the orthogonal projection of K onto the
hyperplane through the origin orthogonal to θ.
Minkowski tells us that Voln−1(Pθ⊥K ) = nV (K [n − 1], [o,θ])

Aleksandrov tell us that V (K [n − 1], [o,θ]) is convex function in θ.
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The Polar Projection Body

The polar projection body of K , Π◦K , is the centrally symmetric
convex body whose radial function is given by

ρ−1
Π◦K (θ) = nV (K [n − 1], [o,θ]).

Why centrally symmetric? Translation invariance!

ρ−1
Π◦K (θ) = nV (K [n−1], [o,θ]) = nV (K [n−1], [o,−θ]) = ρ−1

Π◦K (−θ)

Also, the fact that

ρ−1
Π◦(−K )

(θ) = nV (−K [n−1], [o,θ]) = nV (K [n−1], [o,−θ]) = ρ−1
Π◦K (−θ)

shows
Π◦(−K ) = Π◦K .



The Higher-order Polar Projection Body
Theorem
Let K be a convex body in Rn and m ∈ N. For every direction
θ̄ = (θ1, . . . ,θm) ∈ Snm−1, let C−θ̄ = conv0≤i≤m[o,−θi ]. Then:

d
dr

gK ,m(r θ̄)

∣∣∣∣
r=0+

= −nV (K [n − 1],C−θ̄).

We define the mth order polar projection body of K as the convex
body in Rnm whose radial function is given by

ρ−1
Π◦,mK (θ̄) = nV (K [n − 1],C−θ̄)

Π◦,mK contains the origin as an interior point
For u ∈ Sn−1, let uj = (o, . . . ,o,u,o, . . . ,o) ∈ Snm−1.

ρΠ◦,mK (uj )
−1 = nV (K [n − 1], [o,−u]) = ρΠ◦K (u)−1.

For m ≥ 2, Π◦,mK is centrally symmetric if, and only if, K is
symmetric (−Π◦,mK = Π◦,m(−K ))
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The Mellin Transform
Let ψ : [0,∞)→ [0,∞) be an integrable function that is right
continuous and differentiable at 0. Then, the map given by

Mψ : p 7→
{∫ ∞

0 tp−1(ψ(t)− ψ(0))dt , p ∈ (−1,0),∫ ∞
0 tp−1ψ(t)dt , p > 0 such that tp−1ψ(t) ∈ L1(R+),

is piece-wise continuous. This map is known as the Mellin transform.

Definition
For θ ∈ Sn−1 and a convex body K , the radial pth mean body of K is
the compact, symmetric, star shaped set whose radial function is
given by

ρRpK (θ) :=
(

pM gK (rθ)

Voln(K )

(p)
) 1

p
.

Note: gK is (1/n)-concave. Thus, it is log-concave. Keith Ball tells us
that this means RpK is a convex body when p ≥ 0 (0 follows by
continuity).
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Gardner and Zhang’s Radial Mean Bodies

Jensen’s inequality tells us, for −1 < p ≤ q ≤ ∞

{o} = R−1K ⊂ RpK ⊂ RqK ⊂ DK .

However, by adjusting for asymptotics, we obtain

Voln(K )Π◦K = lim
p→−1

(1+p)
1
p RpK ⊂ (1+p)

1
p RpK ⊂ (1+q)

1
q RqK ⊂DK .

Berwald’s inequality lets us reverse the above inclusions for
−1 < p ≤ q ≤ ∞:

DK ⊆
(

n + q
n

) 1
q
RqK ⊆

(
n + p

n

) 1
p
RpK ⊆ nVoln(K )Π◦K ,

if equality if, and only if, K is a n-dimensional simplex.
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−1 < p ≤ q ≤ ∞:
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Zhang’s inequality
It turns out that Voln(RnK ) = Voln(K ). Thus, the previous result
implies

Voln(DK ) ≤
(

2n
n

)
Voln(K ) ≤ nnVoln(K )nVoln(Π◦K ).

The first inequality is the Rogers-Shephard inequality again. The
second inequality is known as Zhang’s inequality, usually
written as

1
nn

(
2n
n

)
≤ Voln(K )n−1Voln(Π◦K ),

with equality if, and only if, K is a n-dimensional simplex.

Definition
For m ∈ N and p > −1, we define the (m,p) radial mean bodies
Rm

p K , to be the star bodies (convex if p ≥ 0) in Rnm whose radial
functions are given by, for θ̄ ∈ Snm−1:

ρRm
p K (θ̄) =

(
pM gK ,m(r θ̄)

Voln(K )

(p)

) 1
p

(1)

for p ̸= 0. The case p = 0 follows from continuity of the pth average.
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Two Cool Technical Lemmas
Mellin-Berwald inequality by Fradelizi, Madiman and Li
For every non-increasing, s-concave, s > 0, function ψ, the function

Gψ(p) :=
(Mψ(p)
Mψs (p)

)1/p

=

(
p
(

p + 1
s

p

)
Mψ(p)

)1/p

is decreasing on (−1,∞) (here, ψs(t) = (1 − t)1/s). Additionally, if
there is equality for any two p,q ∈ (−1,∞), then Gψ(p) is constant.
Furthermore, Gψ(p) is constant if, and only if, ψs is affine on its
support.
(note: version for s ≤ 0 also exists)

Fractional Derivative result by Haddad and Ludwig
If φ : [0,∞)→ [0,∞) is a measurable function with limt→0+ φ(t) =
φ(0) and such that

∫ ∞
0 t−s0 φ(t)dt < ∞ for some s0 ∈ (0,1), then

lim
s→1−

(1 − s)
∫ ∞

0
t−s φ(t)dt = φ(0).
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Higher-Order Zhang’s inequality
Theorem
Let K be a convex body in Rn and m ∈ N. Then, for −1 < p ≤ q < ∞,
one has

Dm(K ) ⊆
(

q + n
n

) 1
q
Rm

q K ⊆
(

p + n
n

) 1
p
Rm

p K ⊆ nVoln(K )Π◦,mK .

Equality occurs in any set inclusion if, and only if, K is a
n-dimensional simplex.

It turns out that Volnm(Rm
nmK ) = Voln(K )m.

This fact and the above theorem yields a new proof of the
higher-order Rogers-Shephard inequality.

Zhang’s inequality for higher-order projection bodies
Fix m ∈ N and K be a convex body in Rn. Then, one has

Voln(K )nm−mVolnm (Π◦,mK ) ≥ 1
nnm

(
nm + n

n

)
,

with equality if, and only if, K is a n-dimensional simplex.
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The Inequalities of Petty

There are two more well-known inequalities associated with Π◦K .
Petty’s projection inequality:

Voln(K )n−1Voln(Π◦K ) ≤
(

Voln(Bn
2)

Voln(Bn−1
2 )

)n

,

with equality if, and only if, K is an ellipsoid. (Note: one possible
method of proof is with Steiner symmetrization)

Petty’s isoperimetric inequality:

Voln(Π◦K )Voln−1(∂K )n ≥ Voln(Bn
2)

(
Voln(Bn

2)

Voln(Bn−1
2 )

)n

,

with equality if, and only if, K is a dilate of Bn
2 . (Note: follows from

Jensen’s inequality and Aleksandrov’s formula for mixed volume)
Combining the two yields the classical isoperimetric inequality
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Higher-order Petty’s inequalities
Theorem (Petty’s projection inequality for higher-order
projection bodies)
Let m ∈ N be fixed. Then, for every convex body K in Rn, one has

Voln(K )nm−mVolnm(Π◦,mK ) ≤ Voln(Bn
2)

nm−mVolnm(Π◦,mBn
2),

with equality if, and only if, K is an ellipsoid.

Theorem (Petty’s isoperimetric inequality for higher-order
projection bodies)
Let K be a convex body in Rn and m ∈ N. Then, one has the
following inequality:

Volnm(Π◦,mK )Voln−1(∂K )nm ≥ Volnm(Π◦,mBn
2)Voln−1(S

n−1)nm,

with equality if, and only if, K is an Euclidean ball.
Combining both inequalities yields the isoperimetric inequality for
every choice of m.
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n−1)nm,

with equality if, and only if, K is an Euclidean ball.
The proof uses Jensen’s inequality applied at the level of the
orthogonal group.

Combining both inequalities yields the
isoperimetric inequality for every choice of m.
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The Centroid Body
Lutwak introduced the dual Mixed volume for star bodies K and
L:

Ṽi (K [n − i ],L[i ]) =
1
n

∫
Sn−1

ρK (θ)
n−i ρL(θ)

idθ.

When i = −1 we write Ṽ (K [n + 1],L).

Given a star body L in Rn, its centroid body ΓL is the unique
centrally symmetric convex body that satisfies the following
duality: for every convex body K in Rn, one has

Ṽ−1(L[n + 1],Π◦K ) =
n + 1

2
Voln(L)V (K [n − 1],ΓL).

By setting K = ΓL and using the so-called Dual Minkowski’s
inequality + Petty’s projection inequality, one obtains the
Busemann-Petty centroid inequality, which says

Voln(ΓL)Voln(L)−1

is minimized when L is a centered ellipsoid.
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The Higher-Order Centroid Body

Given a star body L in Rnm, its higher-order centroid body ΓmL is
the unique convex body in Rn that satisfies the following duality:
for every convex body K in Rn, one has

Ṽ−1(L[nm + 1],Π◦,mK ) = Volnm(L)
nm + 1

m
V (K [n − 1],ΓmL).

By setting K = ΓmL and using the so-called Dual Minkowski’s
inequality + the higher-order Petty’s projection inequality, one
obtains the Busemann-Petty centroid inequality, which says

Voln(ΓmL)Volnm(L)−
1
m

is minimized when L = Π◦,mE for an ellipsoid E .
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The Random Simplex inequality

We denote the expected volume of CX̄ = conv1≤i≤m[o,Xi ], a
random simplex of K , by

EK n (Voln(CX̄ )) :=Voln(K )−n
∫

K
· · ·
∫

K
Voln (conv1≤i≤n[o,xi ])dx1 . . .dxn.

Thus, the Busemann-Petty centroid inequality is equivalent to the
Busemann random simplex inequality:

EK n (Voln(CX̄ ))Voln(K )−1 ≥
(

Voln−1(Bn−1
2 )

(n + 1)Voln(Bn
2)

)n

,

with equality if, and only if, K is a centered ellipsoid.
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∫
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By an observation of Petty, the right-hand side equals
2−nVoln(ΓK ).
Thus, the Busemann-Petty centroid inequality is equivalent to the
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The Higher order Random Simplex inequality

Fix a convex body K in Rn and a star body L in Rnm. Let
X̄ = (X1, . . . ,Xm) ∈ Rnm be a random vector uniformly distributed
inside L, (no independence of the Xi is required).

We denote the
expected mixed volume of K and CX̄ by

EL(V (K [n − 1],CX̄ ) :=
1

Volnm(L)

∫
L

V (K [n − 1],Cx̄ )dx̄ .

Theorem
Let Kn be the class of convex bodies in Rn and Snm the class of star
bodies in Rnm. Then, the functional

(K ,L) ∈ Kn × Snm 7→ Volnm(L)−
1

nm Voln(K )−
n−1

n EL(V (K [n − 1],CX̄ ))

is uniquely minimized when K is an ellipsoid and L = λΠ◦,mK for
some λ > 0.
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ρΠ◦,mBn
2
(x̄)−1 = nVoln(Bn

2)wn(Cx̄ ).
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nm

∫
L

wn(Cx̄ )dx̄

is minimized for L = Π◦,mBn
2 over Snm.
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coefficients of the polynomial |t1K1 + · · ·+ tr Kr |.



The Higher order Random Simplex inequality
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Theorem
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1

nm Voln(K )−
n−1

n EL(V (K [n − 1],CX̄ ))

is uniquely minimized when K is an ellipsoid and L = λΠ◦,mK for
some λ > 0.
In general, by using that Voln(Γm(−L)) = ELm (V (CX̄1

, · · · ,CX̄n
)) we

obtain from the higher-order Busemann-Petty centroid inequality that
the functional

L ∈ Snm 7→ Volnm(L)−
1
m ELm (V (CX̄1

, · · · ,CX̄n
))

is minimized exactly when L = Π◦,mE , where E is an ellipsoid.



BONUS: affine Sobolev’s Inequality
Recall that a function f is said to be in W 1,1(Rn) if there exists a
vector field ∇f satisfying∫

Rn
f (x)divψ(x)dx = −

∫
Rn

⟨∇f ,ψ(x)⟩dx

for every smooth vector field ψ.

Theorem
Fix m,n ∈ N. Consider a compactly supported, non-identically zero
function f ∈ W 1,1(Rn). Then, by setting

dn,m :=
(
nmVolnm(Π◦,mBn

2)
) 1

nm Voln(Bn
2)

n−1
n , one has

(∫
Snm−1

(∫
Rn

max
1≤i≤m

⟨∇f (z),θi ⟩−dz
)−nm

d θ̄

)− 1
nm

dn,m ≥ ∥f∥ n
n−1

.

This inequality can be extended to functions of bounded variation.
There is equality if, and only if, there exists A > 0, and an ellipsoid
E ∈ Kn such that f (x) = AχE (x).
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The case m = 1 is known as Zhang’s affine Sobolev inequality



BONUS: affine Sobolev’s Inequality
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This inequality can be extended to functions of bounded variation.
There is equality if, and only if, there exists A > 0, and an ellipsoid
E ∈ Kn such that f (x) = AχE (x).

Extends our higher-order Petty projection inequality to sets of
finite perimeter
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Implies the classical Sobolev inequality for every choice of m.


