Higher-Order Affine Isoperimetric Inequalities

Dylan Langharst ${ }^{1}$
Kent State University

Online Asymptotic Geometric Analysis Seminar
13 April 2023
${ }^{1}$ Joint work with J. Haddad, E. Putterman, M. Roysdon, and D. Ye

- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.

- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.

- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by $\operatorname{Vol}_{n}(K)$ - volume of $K \subset \mathbb{R}^{n}$, we sometimes write simply $|K|$.
- We will often use notion of Minkowski sum:
$K+L=\{x+y: x \in K$ and $y \in L\}$.
- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by $\operatorname{Vol}_{n}(K)$ - volume of $K \subset \mathbb{R}^{n}$, we sometimes write simply $|K|$.
- We will often use notion of Minkowski sum:
$K+L=\{x+y: x \in K$ and $y \in L\}$.

- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by $\operatorname{Vol}_{n}(K)$ - volume of $K \subset \mathbb{R}^{n}$, we sometimes write simply $|K|$.
- We will often use notion of Minkowski sum:
$K+L=\{x+y: x \in K$ and $y \in L\}$.

- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by $\operatorname{Vol}_{n}(K)$ - volume of $K \subset \mathbb{R}^{n}$, we sometimes write simply $|K|$.
- We will often use notion of Minkowski sum:
$K+L=\{x+y: x \in K$ and $y \in L\}$.

- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by $\operatorname{Vol}_{n}(K)$ - volume of $K \subset \mathbb{R}^{n}$, we sometimes write simply $|K|$.
- We will often use notion of Minkowski sum:
$K+L=\{x+y: x \in K$ and $y \in L\}$.
- We all know that $\operatorname{Vol}_{n}(\lambda K)=\lambda^{n} \operatorname{Vol}_{n}(K)$ for $\lambda \geq 0$, i.e. volume is a homogeneous measure of degree of homogeneity n. But there is much more!!!

Main Definitions: Mixed Volume

K and L convex bodies in \mathbb{R}^{n} and $t \geq 0$
Then $\operatorname{Vol}_{n}(K+t L)$ is a homogeneous polynomial (in t) of degree n and

$$
\operatorname{Vol}_{n}(K+t L)=\sum_{i=0}^{n} t^{i}\binom{n}{i} V(K[n-i], L[i]) .
$$

The coefficients $V(K[n-i], L[i])$ are called the mixed volumes of K $(n-i)$ times and $L[i]$ times. When $i=1$, we write $V(K[n-1], L)$

Main Definitions: Mixed Volume

K and L convex bodies in \mathbb{R}^{n} and $t \geq 0$
Then $\operatorname{Vol}_{n}(K+t L)$ is a homogeneous polynomial (in t) of degree n and

$$
\operatorname{Vol}_{n}(K+t L)=\sum_{i=0}^{n} t^{i}\binom{n}{i} V(K[n-i], L[i]) .
$$

The coefficients $V(K[n-i], L[i])$ are called the mixed volumes of K $(n-i)$ times and $L[i]$ times. When $i=1$, we write $V(K[n-1], L)$

- $V(K[n-i], K[i])=|K|$.

Main Definitions: Mixed Volume

K and L convex bodies in \mathbb{R}^{n} and $t \geq 0$
Then $\operatorname{Vol}_{n}(K+t L)$ is a homogeneous polynomial (in t) of degree n and

$$
\operatorname{Vol}_{n}(K+t L)=\sum_{i=0}^{n} t^{i}\binom{n}{i} V(K[n-i], L[i]) .
$$

The coefficients $V(K[n-i], L[i])$ are called the mixed volumes of K $(n-i)$ times and $L[i]$ times. When $i=1$, we write $V(K[n-1], L)$

- $V(K[n-i], K[i])=|K|$.
- Mixed volume is translation invariant:

$$
V(K[n-1], L+a)=V(K[n-1], L), \text { for } a \in \mathbb{R}^{n} .
$$

Main Definitions: Mixed Volume

K and L convex bodies in \mathbb{R}^{n} and $t \geq 0$
Then $\operatorname{Vol}_{n}(K+t L)$ is a homogeneous polynomial (in t) of degree n and

$$
\operatorname{Vol}_{n}(K+t L)=\sum_{i=0}^{n} t^{i}\binom{n}{i} V(K[n-i], L[i])
$$

The coefficients $V(K[n-i], L[i])$ are called the mixed volumes of K $(n-i)$ times and $L[i]$ times. When $i=1$, we write $V(K[n-1], L)$

- $V(K[n-i], K[i])=|K|$.
- Mixed volume is translation invariant: $V(K[n-1], L+a)=V(K[n-1], L)$, for $a \in \mathbb{R}^{n}$.
- For $T \in G L_{n}\left(\mathbb{R}^{n}\right): V(T K[n-i], T L[i])=|\operatorname{det} T| V(K[n-i], L[i])$. In particular: $V(K[n-1], L)=V(-K[n-1],-L)$.

Main Definitions: Mixed Volume

K and L convex bodies in \mathbb{R}^{n} and $t \geq 0$
Then $\operatorname{Vol}_{n}(K+t L$) is a homogeneous polynomial (in t) of degree n and

$$
\operatorname{Vol}_{n}(K+t L)=\sum_{i=0}^{n} t^{i}\binom{n}{i} V(K[n-i], L[i]) .
$$

The coefficients $V(K[n-i], L[i])$ are called the mixed volumes of K $(n-i)$ times and $L[i]$ times. When $i=1$, we write $V(K[n-1], L)$

- $V(K[n-i], K[i])=|K|$.
- Mixed volume is translation invariant:

$$
V(K[n-1], L+a)=V(K[n-1], L), \text { for } a \in \mathbb{R}^{n} .
$$

- Let B_{2}^{n} be the unit Euclidean ball in \mathbb{R}^{n}. Then: the mean width of K is given by

$$
w_{n}(K)=\frac{1}{\operatorname{Vol}_{n}\left(B_{2}^{n}\right)} V\left(B_{2}^{n}[n-1], K\right)
$$

How symmetric is a convex body?

- K is said to be centrally symmetric if $K=-K$, and to be symmetric if a translate is centrally symmetric.
- A possible candidate for a "symmetric" version of K is

$$
D K:=K+(-K)
$$

K is thus symmetric if $D K$ is a translate of $2 K$.

How symmetric is a convex body?

- K is said to be centrally symmetric if $K=-K$, and to be symmetric if a translate is centrally symmetric.
- A possible candidate for a "symmetric" version of K is

$$
D K:=K+(-K) .
$$

K is thus symmetric if $D K$ is a translate of $2 K$.

- Brunn-Minkowski inequality: $|K+L|^{1 / n} \geq|K|^{1 / n}+|L|^{1 / n}$, with equality if, and only if, K is homothetic to L.

How symmetric is a convex body?

- K is said to be centrally symmetric if $K=-K$, and to be symmetric if a translate is centrally symmetric.
- A possible candidate for a "symmetric" version of K is

$$
D K:=K+(-K) .
$$

K is thus symmetric if $D K$ is a translate of $2 K$.

- Brunn-Minkowski inequality: $|K+L|^{1 / n} \geq|K|^{1 / n}+|L|^{1 / n}$, with equality if, and only if, K is homothetic to L.
- Implies \rightarrow

$$
2^{n} \leq \frac{\operatorname{Vol}_{n}(D K)}{\operatorname{Vol}_{n}(K)}
$$

with equality if, and only if, K is symmetric.

How symmetric is a convex body?

- K is said to be centrally symmetric if $K=-K$, and to be symmetric if a translate is centrally symmetric.
- A possible candidate for a "symmetric" version of K is

$$
D K:=K+(-K)
$$

K is thus symmetric if $D K$ is a translate of $2 K$.

- Brunn-Minkowski inequality: $|K+L|^{1 / n} \geq|K|^{1 / n}+|L|^{1 / n}$, with equality if, and only if, K is homothetic to L.
- Implies \rightarrow

$$
2^{n} \leq \frac{\operatorname{Vol}_{n}(D K)}{\operatorname{Vol}_{n}(K)}
$$

with equality if, and only if, K is symmetric.

- The Rogers-Shephard inequality shows the reverse direction:

$$
\frac{\operatorname{Vol}_{n}(D K)}{\operatorname{Vol}_{n}(K)} \leq\binom{ 2 n}{n}
$$

with equality if, and only if, K is a n-dimensional simplex.

Enter Rolf Schneider

- The covariogram of K is

$$
g_{K}(x)=\operatorname{Vol}_{n}(K \cap(K+x)) .
$$

Enter Rolf Schneider

- The covariogram of K is

$$
g_{K}(x)=\operatorname{Vol}_{n}(K \cap(K+x)) .
$$

- Amazing fact: the support of g_{K} is $D K$.

Enter Rolf Schneider

- The covariogram of K is

$$
g_{K}(x)=\operatorname{Vol}_{n}(K \cap(K+x)) .
$$

- Amazing fact: the support of g_{K} is $D K$.
- Define the m th order covariogram of K as

$$
g_{K, m}(\bar{x})=\operatorname{Vol}_{n}\left(K \cap \bigcap_{i=1}^{m}\left(K+x_{i}\right)\right),
$$

where $\bar{x}=\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{R}^{n}\right)^{m} \cong \mathbb{R}^{n m}$.

Enter Rolf Schneider

- The covariogram of K is

$$
g_{K}(x)=\operatorname{Vol}_{n}(K \cap(K+x)) .
$$

- Amazing fact: the support of g_{K} is $D K$.
- Define the m th order covariogram of K as

$$
g_{K, m}(\bar{x})=\operatorname{Vol}_{n}\left(K \cap \bigcap_{i=1}^{m}\left(K+x_{i}\right)\right),
$$

where $\bar{x}=\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{R}^{n}\right)^{m} \cong \mathbb{R}^{n m}$.

- The difference body of order m of $K, D^{m}(K)$, is a convex body in $\mathbb{R}^{n m}$ defined as the support of $g_{K, m}$.
-

$$
\operatorname{Vol}_{n}(K)^{-m} \operatorname{Vol}_{n m}\left(D^{m}(K)\right) \leq\binom{ n m+n}{n}
$$

with equality if, and only if, K is a n-dimensional simplex.

Operator Hopping

- Goal: Extend the concept of higher-order to other "symmetric" version of convex bodies

Operator Hopping

- Goal: Extend the concept of higher-order to other "symmetric" version of convex bodies
- Given a compact, star shaped set L its radial function is $\rho_{L}(y)=\sup \{\lambda>0: \lambda y \in L\}$.

Operator Hopping

- Goal: Extend the concept of higher-order to other "symmetric" version of convex bodies
- Given a compact, star shaped set L its radial function is $\rho_{L}(y)=\sup \{\lambda>0: \lambda y \in L\}$.
- Fix $\theta \in \mathbb{S}^{n-1}$, the unit sphere. Then, Matheron tells us

$$
\left.\frac{d}{d r} g_{K}(r \theta)\right|_{r=0^{+}}=-\operatorname{Vol}_{n-1}\left(P_{\theta^{\perp}} K\right),
$$

where $P_{\theta^{\perp}} K$ is the orthogonal projection of K onto the hyperplane through the origin orthogonal to θ.

Operator Hopping

- Goal: Extend the concept of higher-order to other "symmetric" version of convex bodies
- Given a compact, star shaped set L its radial function is $\rho_{L}(y)=\sup \{\lambda>0: \lambda y \in L\}$.
- Fix $\theta \in \mathbb{S}^{n-1}$, the unit sphere. Then, Matheron tells us

$$
\left.\frac{d}{d r} g_{K}(r \theta)\right|_{r=0^{+}}=-\operatorname{Vol}_{n-1}\left(P_{\theta^{\perp}} K\right),
$$

where $P_{\theta^{\perp}} K$ is the orthogonal projection of K onto the hyperplane through the origin orthogonal to θ.

- Minkowski tells us that $\operatorname{Vol}_{n-1}\left(P_{\theta^{\perp}} K\right)=n V(K[n-1],[o, \theta])$
- Aleksandrov tell us that $V(K[n-1],[0, \theta])$ is convex function in θ.

The Polar Projection Body

- The polar projection body of $K, \Pi^{\circ} K$, is the centrally symmetric convex body whose radial function is given by

$$
\rho_{\Pi^{\circ} K}^{-1}(\theta)=n V(K[n-1],[0, \theta]) .
$$

- Why centrally symmetric? Translation invariance!

$$
\rho_{\Pi^{\circ} K}^{-1}(\theta)=n V(K[n-1],[o, \theta])=n V(K[n-1],[o,-\theta])=\rho_{\Pi^{\circ} K}^{-1}(-\theta)
$$

- Also, the fact that

$$
\rho_{\Pi^{\circ}(-K)}^{-1}(\theta)=n V(-K[n-1],[0, \theta])=n V(K[n-1],[0,-\theta])=\rho_{\Pi^{\circ} K}^{-1}(-\theta)
$$

shows

$$
\Pi^{\circ}(-K)=\Pi^{\circ} K .
$$

The Higher-order Polar Projection Body

Theorem
Let K be a convex body in \mathbb{R}^{n} and $m \in \mathbb{N}$. For every direction $\bar{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right) \in \mathbb{S}^{n m-1}$, let $C_{-\bar{\theta}}=\operatorname{conv}_{0 \leq i \leq m}\left[0,-\theta_{i}\right]$. Then:

$$
\left.\frac{d}{d r} g_{K, m}(r \bar{\theta})\right|_{r=0^{+}}=-n V\left(K[n-1], C_{-\bar{\theta}}\right) .
$$

The Higher-order Polar Projection Body

Theorem
Let K be a convex body in \mathbb{R}^{n} and $m \in \mathbb{N}$. For every direction $\bar{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right) \in \mathbb{S}^{n m-1}$, let $C_{-\bar{\theta}}=\operatorname{conv}_{0 \leq i \leq m}\left[0,-\theta_{i}\right]$. Then:

$$
\left.\frac{d}{d r} g_{K, m}(r \bar{\theta})\right|_{r=0^{+}}=-n V\left(K[n-1], C_{-\bar{\theta}}\right) .
$$

We define the m th order polar projection body of K as the convex body in $\mathbb{R}^{n m}$ whose radial function is given by

$$
\rho_{\Pi^{\circ}, m K}^{-1}(\bar{\theta})=n V\left(K[n-1], C_{-\bar{\theta}}\right)
$$

The Higher-order Polar Projection Body

Theorem
Let K be a convex body in \mathbb{R}^{n} and $m \in \mathbb{N}$. For every direction $\bar{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right) \in \mathbb{S}^{n m-1}$, let $C_{-\bar{\theta}}=\operatorname{conv}_{0 \leq i \leq m}\left[0,-\theta_{i}\right]$. Then:

$$
\left.\frac{d}{d r} g_{K, m}(r \bar{\theta})\right|_{r=0^{+}}=-n V\left(K[n-1], C_{-\bar{\theta}}\right) .
$$

We define the m th order polar projection body of K as the convex body in $\mathbb{R}^{n m}$ whose radial function is given by

$$
\rho_{\Pi^{\circ}, m K}^{-1}(\bar{\theta})=n V\left(K[n-1], C_{-\bar{\theta}}\right)
$$

- $\Pi^{\circ, m} K$ contains the origin as an interior point
- For $u \in \mathbb{S}^{n-1}$, let $u_{j}=(o, \ldots, o, u, o, \ldots, o) \in \mathbb{S}^{n m-1}$.

$$
\rho_{\Pi^{\circ}, m}\left(u_{j}\right)^{-1}=n V(K[n-1],[o,-u])=\rho_{\Pi^{\circ} K}(u)^{-1} .
$$

- For $m \geq 2, \Pi^{\circ} m_{K}$ is centrally symmetric if, and only if, K is symmetric $\left(-\Pi^{\circ, m} K=\Pi^{\circ, m}(-K)\right)$

The Mellin Transform

Let $\psi:[0, \infty) \rightarrow[0, \infty)$ be an integrable function that is right continuous and differentiable at 0 . Then, the map given by
$\mathcal{M}_{\psi}: p \mapsto \begin{cases}\int_{0}^{\infty} t^{p-1}(\psi(t)-\psi(0)) d t, & p \in(-1,0), \\ \int_{0}^{\infty} t^{p-1} \psi(t) d t, & p>0 \text { such that } t^{p-1} \psi(t) \in L^{1}\left(\mathbb{R}^{+}\right),\end{cases}$
is piece-wise continuous. This map is known as the Mellin transform.

The Mellin Transform

Let $\psi:[0, \infty) \rightarrow[0, \infty)$ be an integrable function that is right continuous and differentiable at 0 . Then, the map given by
$\mathcal{M}_{\psi}: p \mapsto \begin{cases}\int_{0}^{\infty} t^{p-1}(\psi(t)-\psi(0)) d t, & p \in(-1,0), \\ \int_{0}^{\infty} t^{p-1} \psi(t) d t, & p>0 \text { such that } t^{p-1} \psi(t) \in L^{1}\left(\mathbb{R}^{+}\right),\end{cases}$
is piece-wise continuous. This map is known as the Mellin transform.

Definition

For $\theta \in \mathbb{S}^{n-1}$ and a convex body K, the radial pth mean body of K is the compact, symmetric, star shaped set whose radial function is given by

$$
\rho_{R_{p} K}(\theta):=\left(p \mathcal{M}_{\frac{g_{K}(r \theta)}{\mathrm{Voln}(K)}}(p)\right)^{\frac{1}{p}} .
$$

The Mellin Transform

Let $\psi:[0, \infty) \rightarrow[0, \infty)$ be an integrable function that is right continuous and differentiable at 0 . Then, the map given by
$\mathcal{M}_{\psi}: p \mapsto \begin{cases}\int_{0}^{\infty} t^{p-1}(\psi(t)-\psi(0)) d t, & p \in(-1,0), \\ \int_{0}^{\infty} t^{p-1} \psi(t) d t, & p>0 \text { such that } t^{p-1} \psi(t) \in L^{1}\left(\mathbb{R}^{+}\right),\end{cases}$
is piece-wise continuous. This map is known as the Mellin transform.
Definition
For $\theta \in \mathrm{S}^{n-1}$ and a convex body K, the radial pth mean body of K is the compact, symmetric, star shaped set whose radial function is given by

$$
\rho_{R_{p} K}(\theta):=\left(p \mathcal{M}_{\frac{g_{K}(r \theta)}{\mathrm{Voln}(K)}}(p)\right)^{\frac{1}{p}} .
$$

Note: g_{K} is $(1 / n)$-concave. Thus, it is log-concave. Keith Ball tells us that this means $R_{p} K$ is a convex body when $p \geq 0$ (0 follows by continuity).

Gardner and Zhang's Radial Mean Bodies

- Jensen's inequality tells us, for $-1<p \leq q \leq \infty$

$$
\{o\}=R_{-1} K \subset R_{p} K \subset R_{q} K \subset D K .
$$

Gardner and Zhang's Radial Mean Bodies

- Jensen's inequality tells us, for $-1<p \leq q \leq \infty$

$$
\{o\}=R_{-1} K \subset R_{p} K \subset R_{q} K \subset D K .
$$

- However, by adjusting for asymptotics, we obtain

$$
\operatorname{Vol}_{n}(K) \Pi^{\circ} K=\lim _{p \rightarrow-1}(1+p)^{\frac{1}{p}} R_{p} K \subset(1+p)^{\frac{1}{p}} R_{p} K \subset(1+q)^{\frac{1}{q}} R_{q} K \subset D K
$$

Gardner and Zhang's Radial Mean Bodies

- Jensen's inequality tells us, for $-1<p \leq q \leq \infty$

$$
\{o\}=R_{-1} K \subset R_{p} K \subset R_{q} K \subset D K .
$$

- However, by adjusting for asymptotics, we obtain
$\operatorname{Vol}_{n}(K) \Pi^{\circ} K=\lim _{p \rightarrow-1}(1+p)^{\frac{1}{p}} R_{p} K \subset(1+p)^{\frac{1}{p}} R_{p} K \subset(1+q)^{\frac{1}{q}} R_{q} K \subset D K$
- Berwald's inequality lets us reverse the above inclusions for $-1<p \leq q \leq \infty$:

$$
D K \subseteq\binom{n+q}{n}^{\frac{1}{q}} R_{q} K \subseteq\binom{n+p}{n}^{\frac{1}{p}} R_{p} K \subseteq n \operatorname{Vol}_{n}(K) \Pi^{\circ} K
$$

if equality if, and only if, K is a n-dimensional simplex.

Zhang's inequality

- It turns out that $\operatorname{Vol}_{n}\left(R_{n} K\right)=\operatorname{Vol}_{n}(K)$. Thus, the previous result implies

$$
\operatorname{Vol}_{n}(D K) \leq\binom{ 2 n}{n} \operatorname{Vol}_{n}(K) \leq n^{n} \operatorname{Vol}_{n}(K)^{n} \operatorname{Vol}_{n}\left(\Pi^{\circ} K\right)
$$

Zhang's inequality

- It turns out that $\operatorname{Vol}_{n}\left(R_{n} K\right)=\operatorname{Vol}_{n}(K)$. Thus, the previous result implies

$$
\operatorname{Vol}_{n}(D K) \leq\binom{ 2 n}{n} \operatorname{Vol}_{n}(K) \leq n^{n} \operatorname{Vol}_{n}(K)^{n} \operatorname{Vol}_{n}\left(\Pi^{\circ} K\right)
$$

- The first inequality is the Rogers-Shephard inequality again. The second inequality is known as Zhang's inequality, usually written as

$$
\frac{1}{n^{n}}\binom{2 n}{n} \leq \operatorname{Vol}_{n}(K)^{n-1} \operatorname{Vol}_{n}\left(\Pi^{\circ} K\right)
$$

with equality if, and only if, K is a n-dimensional simplex.

Zhang's inequality

- It turns out that $\operatorname{Vol}_{n}\left(R_{n} K\right)=\operatorname{Vol}_{n}(K)$. Thus, the previous result implies

$$
\operatorname{Vol}_{n}(D K) \leq\binom{ 2 n}{n} \operatorname{Vol}_{n}(K) \leq n^{n} \operatorname{Vol}_{n}(K)^{n} \operatorname{Vol}_{n}\left(\Pi^{\circ} K\right)
$$

- The first inequality is the Rogers-Shephard inequality again. The second inequality is known as Zhang's inequality, usually written as

$$
\frac{1}{n^{n}}\binom{2 n}{n} \leq \operatorname{Vol}_{n}(K)^{n-1} \operatorname{Vol}_{n}\left(\Pi^{\circ} K\right)
$$

with equality if, and only if, K is a n-dimensional simplex.
Definition
For $m \in \mathbb{N}$ and $p>-1$, we define the (m, p) radial mean bodies $R_{p}^{m} K$, to be the star bodies (convex if $p \geq 0$) in $\mathbb{R}^{n m}$ whose radial functions are given by, for $\bar{\theta} \in \mathbb{S}^{n m-1}$:

$$
\begin{equation*}
\rho_{R_{p}^{m} K}(\bar{\theta})=\left(p \mathcal{M}_{\left.\frac{g_{K, m^{(r \bar{\theta})}}^{\operatorname{Vol}_{n}(K)}}{}(p)\right)^{\frac{1}{p}}}\right. \tag{1}
\end{equation*}
$$

Two Cool Technical Lemmas

Mellin-Berwald inequality by Fradelizi, Madiman and Li
For every non-increasing, s-concave, $s>0$, function ψ, the function

$$
G_{\psi}(p):=\left(\frac{\mathcal{M}_{\psi}(p)}{\mathcal{M}_{\psi_{s}}(p)}\right)^{1 / p}=\left(p\binom{p+\frac{1}{s}}{p} \mathcal{M}_{\psi}(p)\right)^{1 / p}
$$

is decreasing on $(-1, \infty)$ (here, $\left.\psi_{s}(t)=(1-t)^{1 / s}\right)$. Additionally, if there is equality for any two $p, q \in(-1, \infty)$, then $G_{\psi}(p)$ is constant. Furthermore, $G_{\psi}(p)$ is constant if, and only if, ψ^{s} is affine on its support.
(note: version for $s \leq 0$ also exists)

Two Cool Technical Lemmas

Mellin-Berwald inequality by Fradelizi, Madiman and Li
For every non-increasing, s-concave, $s>0$, function ψ, the function

$$
G_{\psi}(p):=\left(\frac{\mathcal{M}_{\psi}(p)}{\mathcal{M}_{\psi_{s}}(p)}\right)^{1 / p}=\left(p\binom{p+\frac{1}{s}}{p} \mathcal{M}_{\psi}(p)\right)^{1 / p}
$$

is decreasing on $(-1, \infty)$ (here, $\left.\psi_{s}(t)=(1-t)^{1 / s}\right)$. Additionally, if there is equality for any two $p, q \in(-1, \infty)$, then $G_{\psi}(p)$ is constant. Furthermore, $G_{\psi}(p)$ is constant if, and only if, ψ^{s} is affine on its support.
(note: version for $s \leq 0$ also exists)
Fractional Derivative result by Haddad and Ludwig
If $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a measurable function with $\lim _{t \rightarrow 0^{+}} \varphi(t)=$ $\varphi(0)$ and such that $\int_{0}^{\infty} t^{-s_{0}} \varphi(t) \mathrm{d} t<\infty$ for some $s_{0} \in(0,1)$, then

$$
\lim _{s \rightarrow 1^{-}}(1-s) \int_{0}^{\infty} t^{-s} \varphi(t) \mathrm{d} t=\varphi(0)
$$

Higher-Order Zhang's inequality

Theorem

Let K be a convex body in \mathbb{R}^{n} and $m \in \mathbb{N}$. Then, for $-1<p \leq q<\infty$, one has

$$
D^{m}(K) \subseteq\binom{q+n}{n}^{\frac{1}{q}} R_{q}^{m} K \subseteq\binom{p+n}{n}^{\frac{1}{p}} R_{p}^{m} K \subseteq n \operatorname{Vol}_{n}(K) \Pi^{\circ, m} K
$$

Equality occurs in any set inclusion if, and only if, K is a n-dimensional simplex.

Higher-Order Zhang's inequality

Theorem

Let K be a convex body in \mathbb{R}^{n} and $m \in \mathbb{N}$. Then, for $-1<p \leq q<\infty$, one has

$$
D^{m}(K) \subseteq\binom{q+n}{n}^{\frac{1}{q}} R_{q}^{m} K \subseteq\binom{p+n}{n}^{\frac{1}{p}} R_{p}^{m} K \subseteq n \operatorname{Vol}_{n}(K) \Pi^{\circ, m} K
$$

Equality occurs in any set inclusion if, and only if, K is a n-dimensional simplex.

- It turns out that $\operatorname{Vol}_{n m}\left(R_{n m}^{m} K\right)=\operatorname{Vol}_{n}(K)^{m}$.
- This fact and the above theorem yields a new proof of the higher-order Rogers-Shephard inequality.

Higher-Order Zhang's inequality

Theorem

Let K be a convex body in \mathbb{R}^{n} and $m \in \mathbb{N}$. Then, for $-1<p \leq q<\infty$, one has

$$
D^{m}(K) \subseteq\binom{q+n}{n}^{\frac{1}{q}} R_{q}^{m} K \subseteq\binom{p+n}{n}^{\frac{1}{p}} R_{p}^{m} K \subseteq n \operatorname{Vol}_{n}(K) \Pi^{\circ, m} K
$$

Equality occurs in any set inclusion if, and only if, K is a n-dimensional simplex.

- It turns out that $\operatorname{Vol}_{n m}\left(R_{n m}^{m} K\right)=\operatorname{Vol}_{n}(K)^{m}$.
- This fact and the above theorem yields a new proof of the higher-order Rogers-Shephard inequality.
Zhang's inequality for higher-order projection bodies
Fix $m \in \mathbb{N}$ and K be a convex body in \mathbb{R}^{n}. Then, one has

$$
\operatorname{Vol}_{n}(K)^{n m-m} \operatorname{Vol}_{n m}\left(\Pi^{\circ, m} K\right) \geq \frac{1}{n^{n m}}\binom{n m+n}{n}
$$

with equality if, and only if, K is a n-dimensional simplex.

The Inequalities of Petty

There are two more well-known inequalities associated with $\Pi^{\circ} K$.

- Petty's projection inequality:

$$
\operatorname{Vol}_{n}(K)^{n-1} \operatorname{Vol}_{n}\left(\Pi^{\circ} K\right) \leq\left(\frac{\operatorname{Vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{Vol}_{n}\left(B_{2}^{n-1}\right)}\right)^{n}
$$

with equality if, and only if, K is an ellipsoid. (Note: one possible method of proof is with Steiner symmetrization)

The Inequalities of Petty

There are two more well-known inequalities associated with $\Pi^{\circ} K$.

- Petty's projection inequality:

$$
\operatorname{Vol}_{n}(K)^{n-1} \operatorname{Vol}_{n}\left(\Pi^{\circ} K\right) \leq\left(\frac{\operatorname{Vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{Vol}_{n}\left(B_{2}^{n-1}\right)}\right)^{n}
$$

with equality if, and only if, K is an ellipsoid. (Note: one possible method of proof is with Steiner symmetrization)

- Petty's isoperimetric inequality:

$$
\operatorname{Vol}_{n}\left(\Pi^{\circ} K\right) \operatorname{Vol}_{n-1}(\partial K)^{n} \geq \operatorname{Vol}_{n}\left(B_{2}^{n}\right)\left(\frac{\operatorname{Vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{Vol}_{n}\left(B_{2}^{n-1}\right)}\right)^{n},
$$

with equality if, and only if, K is a dilate of B_{2}^{n}. (Note: follows from Jensen's inequality and Aleksandrov's formula for mixed volume)

The Inequalities of Petty

There are two more well-known inequalities associated with $\Pi^{\circ} K$.

- Petty's projection inequality:

$$
\operatorname{Vol}_{n}(K)^{n-1} \operatorname{Vol}_{n}\left(\Pi^{\circ} K\right) \leq\left(\frac{\operatorname{Vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{Vol}_{n}\left(B_{2}^{n-1}\right)}\right)^{n}
$$

with equality if, and only if, K is an ellipsoid. (Note: one possible method of proof is with Steiner symmetrization)

- Petty's isoperimetric inequality:

$$
\operatorname{Vol}_{n}\left(\Pi^{\circ} K\right) \operatorname{Vol}_{n-1}(\partial K)^{n} \geq \operatorname{Vol}_{n}\left(B_{2}^{n}\right)\left(\frac{\operatorname{Vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{Vol}_{n}\left(B_{2}^{n-1}\right)}\right)^{n}
$$

with equality if, and only if, K is a dilate of B_{2}^{n}. (Note: follows from Jensen's inequality and Aleksandrov's formula for mixed volume)

- Combining the two yields the classical isoperimetric inequality

Higher-order Petty's inequalities

Theorem (Petty's projection inequality for higher-order projection bodies)
Let $m \in \mathbb{N}$ be fixed. Then, for every convex body K in \mathbb{R}^{n}, one has

$$
\operatorname{Vol}_{n}(K)^{n m-m} \operatorname{Vol}_{n m}\left(\Pi^{\circ, m} K\right) \leq \operatorname{Vol}_{n}\left(B_{2}^{n}\right)^{n m-m} \operatorname{Vol}_{n m}\left(\Pi^{\circ, m} B_{2}^{n}\right)
$$

with equality if, and only if, K is an ellipsoid.

Higher-order Petty's inequalities

Theorem (Petty's projection inequality for higher-order projection bodies)
Let $m \in \mathbb{N}$ be fixed. Then, for every convex body K in \mathbb{R}^{n}, one has

$$
\operatorname{Vol}_{n}(K)^{n m-m} \operatorname{Vol}_{n m}\left(\Pi^{\circ, m} K\right) \leq \operatorname{Vol}_{n}\left(B_{2}^{n}\right)^{n m-m} \operatorname{Vol}_{n m}\left(\Pi^{\circ, m} B_{2}^{n}\right)
$$

with equality if, and only if, K is an ellipsoid.
The proof uses a multi-dimensional Steiner symmetrization developed in two papers by (Bianchi, Gardner and Gronchi) and Ulivelli.

Higher-order Petty's inequalities

Theorem (Petty's projection inequality for higher-order projection bodies)
Let $m \in \mathbb{N}$ be fixed. Then, for every convex body K in \mathbb{R}^{n}, one has

$$
\operatorname{Vol}_{n}(K)^{n m-m} \operatorname{Vol}_{n m}\left(\Pi^{\circ}, m \quad K\right) \leq \operatorname{Vol}_{n}\left(B_{2}^{n}\right)^{n m-m} \operatorname{Vol}_{n m}\left(\Pi^{\circ, m} B_{2}^{n}\right)
$$

with equality if, and only if, K is an ellipsoid.
Theorem (Petty's isoperimetric inequality for higher-order projection bodies)
Let K be a convex body in \mathbb{R}^{n} and $m \in \mathbb{N}$. Then, one has the following inequality:

$$
\operatorname{Vol}_{n m}\left(\Pi^{\circ, m} K\right) \operatorname{Vol}_{n-1}(\partial K)^{n m} \geq \operatorname{Vol}_{n m}\left(\Pi^{\circ, m} B_{2}^{n}\right) \operatorname{Vol}_{n-1}\left(S^{n-1}\right)^{n m}
$$

with equality if, and only if, K is an Euclidean ball.

Higher-order Petty's inequalities

Theorem (Petty's projection inequality for higher-order projection bodies)
Let $m \in \mathbb{N}$ be fixed. Then, for every convex body K in \mathbb{R}^{n}, one has

$$
\operatorname{Vol}_{n}(K)^{n m-m} \operatorname{Vol}_{n m}\left(\Pi^{\circ, m} K\right) \leq \operatorname{Vol}_{n}\left(B_{2}^{n}\right)^{n m-m} \operatorname{Vol}_{n m}\left(\Pi^{\circ, m} B_{2}^{n}\right)
$$

with equality if, and only if, K is an ellipsoid.
Theorem (Petty's isoperimetric inequality for higher-order projection bodies)
Let K be a convex body in \mathbb{R}^{n} and $m \in \mathbb{N}$. Then, one has the following inequality:

$$
\operatorname{Vol}_{n m}\left(\Pi^{\circ, m} K\right) \operatorname{Vol}_{n-1}(\partial K)^{n m} \geq \operatorname{Vol}_{n m}\left(\Pi^{\circ, m} B_{2}^{n}\right) \operatorname{Vol}_{n-1}\left(S^{n-1}\right)^{n m}
$$

with equality if, and only if, K is an Euclidean ball.
The proof uses Jensen's inequality applied at the level of the orthogonal group.

Higher-order Petty's inequalities

Theorem (Petty's projection inequality for higher-order projection bodies)
Let $m \in \mathbb{N}$ be fixed. Then, for every convex body K in \mathbb{R}^{n}, one has

$$
\operatorname{Vol}_{n}(K)^{n m-m} \operatorname{Vol}_{n m}\left(\Pi^{\circ}, m \quad K\right) \leq \operatorname{Vol}_{n}\left(B_{2}^{n}\right)^{n m-m} \operatorname{Vol}_{n m}\left(\Pi^{\circ, m} B_{2}^{n}\right)
$$

with equality if, and only if, K is an ellipsoid.
Theorem (Petty's isoperimetric inequality for higher-order projection bodies)
Let K be a convex body in \mathbb{R}^{n} and $m \in \mathbb{N}$. Then, one has the following inequality:

$$
\operatorname{Vol}_{n m}\left(\Pi^{\circ, m} K\right) \operatorname{Vol}_{n-1}(\partial K)^{n m} \geq \operatorname{Vol}_{n m}\left(\Pi^{\circ, m} B_{2}^{n}\right) \operatorname{Vol}_{n-1}\left(S^{n-1}\right)^{n m}
$$

with equality if, and only if, K is an Euclidean ball.
Combining both inequalities yields the isoperimetric inequality for every choice of m.

The Centroid Body

- Lutwak introduced the dual Mixed volume for star bodies K and L:

$$
\widetilde{V}_{i}(K[n-i], L[i])=\frac{1}{n} \int_{S^{n-1}} \rho_{K}(\theta)^{n-i} \rho_{L}(\theta)^{i} d \theta .
$$

When $i=-1$ we write $\widetilde{V}(K[n+1], L)$.

The Centroid Body

- Lutwak introduced the dual Mixed volume for star bodies K and L:

$$
\widetilde{V}_{i}(K[n-i], L[i])=\frac{1}{n} \int_{S^{n-1}} \rho_{K}(\theta)^{n-i} \rho_{L}(\theta)^{i} d \theta
$$

When $i=-1$ we write $\widetilde{V}(K[n+1], L)$.

- Given a star body L in \mathbb{R}^{n}, its centroid body ΓL is the unique centrally symmetric convex body that satisfies the following duality: for every convex body K in \mathbb{R}^{n}, one has

$$
\widetilde{V}_{-1}\left(L[n+1], \Pi^{\circ} K\right)=\frac{n+1}{2} \operatorname{Vol}_{n}(L) V(K[n-1], \Gamma L) .
$$

The Centroid Body

- Lutwak introduced the dual Mixed volume for star bodies K and L:

$$
\widetilde{V}_{i}(K[n-i], L[i])=\frac{1}{n} \int_{S^{n-1}} \rho_{K}(\theta)^{n-i} \rho_{L}(\theta)^{i} d \theta
$$

When $i=-1$ we write $\widetilde{V}(K[n+1], L)$.

- Given a star body L in \mathbb{R}^{n}, its centroid body ΓL is the unique centrally symmetric convex body that satisfies the following duality: for every convex body K in \mathbb{R}^{n}, one has

$$
\widetilde{V}_{-1}\left(L[n+1], \Pi^{\circ} K\right)=\frac{n+1}{2} \operatorname{Vol}_{n}(L) V(K[n-1], \Gamma L) .
$$

- By setting $K=\Gamma L$ and using the so-called Dual Minkowski's inequality + Petty's projection inequality, one obtains the Busemann-Petty centroid inequality, which says

$$
\operatorname{Vol}_{n}(\Gamma L) \operatorname{Vol}_{n}(L)^{-1}
$$

is minimized when L is a centered ellipsoid.

The Higher-Order Centroid Body

- Given a star body L in $\mathbb{R}^{n m}$, its higher-order centroid body $\Gamma^{m} L$ is the unique convex body in \mathbb{R}^{n} that satisfies the following duality: for every convex body K in \mathbb{R}^{n}, one has

$$
\widetilde{V}_{-1}\left(L[n m+1], \Pi^{\circ, m} K\right)=\operatorname{Vol}_{n m}(L) \frac{n m+1}{m} V\left(K[n-1], \Gamma^{m} L\right) .
$$

The Higher-Order Centroid Body

- Given a star body L in $\mathbb{R}^{n m}$, its higher-order centroid body $\Gamma^{m} L$ is the unique convex body in \mathbb{R}^{n} that satisfies the following duality: for every convex body K in \mathbb{R}^{n}, one has

$$
\widetilde{V}_{-1}\left(L[n m+1], \Pi^{\circ, m} K\right)=\operatorname{Vol}_{n m}(L) \frac{n m+1}{m} V\left(K[n-1], \Gamma^{m} L\right) .
$$

- By setting $K=\Gamma^{m} L$ and using the so-called Dual Minkowski's inequality + the higher-order Petty's projection inequality, one obtains the Busemann-Petty centroid inequality, which says

$$
\operatorname{Vol}_{n}\left(\Gamma^{m} L\right) \operatorname{Vol}_{n m}(L)^{-\frac{1}{m}}
$$

is minimized when $L=\Pi^{\circ, m} E$ for an ellipsoid E.

The Random Simplex inequality

- We denote the expected volume of $C_{\bar{X}}=\operatorname{conv}_{1 \leq i \leq m}\left[0, X_{i}\right]$, a random simplex of K, by

$$
\mathbb{E}_{K^{n}}\left(\operatorname{Vol}_{n}\left(C_{\bar{X}}\right)\right):=\operatorname{Vol}_{n}(K)^{-n} \int_{K} \ldots \int_{K} \operatorname{Vol}_{n}\left(\operatorname{conv}_{1 \leq i \leq n}\left[0, x_{i}\right]\right) d x_{1} \ldots d x_{n} .
$$

The Random Simplex inequality

- We denote the expected volume of $C_{\bar{X}}=\operatorname{conv}_{1 \leq i \leq m}\left[0, X_{i}\right]$, a random simplex of K, by

$$
\mathbb{E}_{K^{n}}\left(\operatorname{Vol}_{n}\left(C_{\bar{X}}\right)\right):=\operatorname{Vol}_{n}(K)^{-n} \int_{K} \cdots \int_{K} \operatorname{Vol}_{n}\left(\operatorname{conv}_{1 \leq i \leq n}\left[0, x_{i}\right]\right) d x_{1} \ldots d x_{n} .
$$

By an observation of Petty, the right-hand side equals $2^{-n} \operatorname{Vol}_{n}(\Gamma K)$.

- Thus, the Busemann-Petty centroid inequality is equivalent to the Busemann random simplex inequality:

$$
\mathbb{E}_{K^{n}}\left(\operatorname{Vol}_{n}\left(C_{\bar{X}}\right)\right) \operatorname{Vol}_{n}(K)^{-1} \geq\left(\frac{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right)}{(n+1) \operatorname{Vol}_{n}\left(B_{2}^{n}\right)}\right)^{n}
$$

with equality if, and only if, K is a centered ellipsoid.

The Higher order Random Simplex inequality

- Fix a convex body K in \mathbb{R}^{n} and a star body L in $\mathbb{R}^{n m}$. Let $\bar{X}=\left(X_{1}, \ldots, X_{m}\right) \in \mathbb{R}^{n m}$ be a random vector uniformly distributed inside L, (no independence of the X_{i} is required).

The Higher order Random Simplex inequality

- We denote the expected mixed volume of K and $C_{\bar{X}}$ by

$$
\mathbb{E}_{L}\left(V\left(K[n-1], C_{\bar{X}}\right):=\frac{1}{\operatorname{Vol}_{n m}(L)} \int_{L} V\left(K[n-1], C_{\bar{x}}\right) d \bar{x}\right.
$$

The Higher order Random Simplex inequality

- We denote the expected mixed volume of K and $C_{\bar{X}}$ by

$$
\mathbb{E}_{L}\left(V\left(K[n-1], C_{\bar{X}}\right):=\frac{1}{\operatorname{Vol}_{n m}(L)} \int_{L} V\left(K[n-1], C_{\bar{x}}\right) d \bar{x}\right.
$$

Theorem

Let \mathcal{K}^{n} be the class of convex bodies in \mathbb{R}^{n} and $\mathcal{S}^{n m}$ the class of star bodies in $\mathbb{R}^{n m}$. Then, the functional

$$
(K, L) \in \mathcal{K}^{n} \times \mathcal{S}^{n m} \mapsto \operatorname{Vol}_{n m}(L)^{-\frac{1}{n m}} \operatorname{Vol}_{n}(K)^{-\frac{n-1}{n}} \mathbb{E}_{L}\left(V\left(K[n-1], C_{\bar{X}}\right)\right)
$$

is uniquely minimized when K is an ellipsoid and $L=\lambda \Pi^{\circ, m} K$ for some $\lambda>0$.

The Higher order Random Simplex inequality

- We denote the expected mixed volume of K and $C_{\bar{X}}$ by

$$
\mathbb{E}_{L}\left(V\left(K[n-1], C_{\bar{X}}\right):=\frac{1}{\operatorname{Vol}_{n m}(L)} \int_{L} V\left(K[n-1], C_{\bar{x}}\right) d \bar{x}\right.
$$

Theorem

Let \mathcal{K}^{n} be the class of convex bodies in \mathbb{R}^{n} and $\mathcal{S}^{n m}$ the class of star bodies in $\mathbb{R}^{n m}$. Then, the functional

$$
(K, L) \in \mathcal{K}^{n} \times \mathcal{S}^{n m} \mapsto \operatorname{Vol}_{n m}(L)^{-\frac{1}{n m}} \operatorname{Vol}_{n}(K)^{-\frac{n-1}{n}} \mathbb{E}_{L}\left(V\left(K[n-1], C_{\bar{X}}\right)\right)
$$

is uniquely minimized when K is an ellipsoid and $L=\lambda \Pi^{\circ, m} K$ for some $\lambda>0$.
It turns out that

$$
\rho_{\Pi^{o, m} B_{2}^{n}}(\bar{x})^{-1}=n \operatorname{Vol}_{n}\left(B_{2}^{n}\right) w_{n}\left(C_{\bar{x}}\right) .
$$

The Higher order Random Simplex inequality

- We denote the expected mixed volume of K and $C_{\bar{X}}$ by

$$
\mathbb{E}_{L}\left(V\left(K[n-1], C_{\bar{X}}\right):=\frac{1}{\operatorname{Vol}_{n m}(L)} \int_{L} V\left(K[n-1], C_{\bar{X}}\right) d \bar{x}\right.
$$

Theorem

Let \mathcal{K}^{n} be the class of convex bodies in \mathbb{R}^{n} and $\mathcal{S}^{n m}$ the class of star bodies in $\mathbb{R}^{n m}$. Then, the functional

$$
(K, L) \in \mathcal{K}^{n} \times \mathcal{S}^{n m} \mapsto \operatorname{Vol}_{n m}(L)^{-\frac{1}{n m}} \operatorname{Vol}_{n}(K)^{-\frac{n-1}{n}} \mathbb{E}_{L}\left(V\left(K[n-1], C_{\bar{X}}\right)\right)
$$

is uniquely minimized when K is an ellipsoid and $L=\lambda \Pi^{\circ, m} K$ for some $\lambda>0$.
In fact, a special case of the above theorem is that the functional

$$
\operatorname{Vol}_{n m}(L)^{-\frac{1}{n m}} \mathbb{E}_{L}\left(w_{n}\left(C_{\bar{X}}\right)\right)=\operatorname{Vol}_{n}(L)^{-\frac{n m+1}{n m}} \int_{L} w_{n}\left(C_{\bar{x}}\right) d \bar{x}
$$

is minimized for $L=\Pi^{\circ}, m B_{2}^{n}$ over $\mathcal{S}^{n m}$.

The Higher order Random Simplex inequality

- We denote the expected mixed volume of K and $C_{\bar{X}}$ by

$$
\mathbb{E}_{L}\left(V\left(K[n-1], C_{\bar{x}}\right):=\frac{1}{\operatorname{Vol}_{n m}(L)} \int_{L} V\left(K[n-1], C_{\bar{x}}\right) d \bar{x}\right.
$$

Theorem

Let \mathcal{K}^{n} be the class of convex bodies in \mathbb{R}^{n} and $\mathcal{S}^{n m}$ the class of star bodies in $\mathbb{R}^{n m}$. Then, the functional

$$
(K, L) \in \mathcal{K}^{n} \times \mathcal{S}^{n m} \mapsto \operatorname{Vol}_{n m}(L)^{-\frac{1}{n m}} \operatorname{Vol}_{n}(K)^{-\frac{n-1}{n}} \mathbb{E}_{L}\left(V\left(K[n-1], C_{\bar{X}}\right)\right)
$$

is uniquely minimized when K is an ellipsoid and $L=\lambda \Pi^{\circ, m} K$ for some $\lambda>0$.
Recall that mixed volumes of the form $V\left(K_{1}, \ldots, K_{r}\right)$ are the coefficients of the polynomial $\left|t_{1} K_{1}+\cdots+t_{r} K_{r}\right|$.

The Higher order Random Simplex inequality

- We denote the expected mixed volume of K and $C_{\bar{X}}$ by

$$
\mathbb{E}_{L}\left(V\left(K[n-1], C_{\bar{x}}\right):=\frac{1}{\operatorname{Vol}_{n m}(L)} \int_{L} V\left(K[n-1], C_{\bar{x}}\right) d \bar{x}\right.
$$

Theorem

Let \mathcal{K}^{n} be the class of convex bodies in \mathbb{R}^{n} and $\mathcal{S}^{n m}$ the class of star bodies in $\mathbb{R}^{n m}$. Then, the functional

$$
(K, L) \in \mathcal{K}^{n} \times \mathcal{S}^{n m} \mapsto \operatorname{Vol}_{n m}(L)^{-\frac{1}{n m}} \operatorname{Vol}_{n}(K)^{-\frac{n-1}{n}} \mathbb{E}_{L}\left(V\left(K[n-1], C_{\bar{X}}\right)\right)
$$

is uniquely minimized when K is an ellipsoid and $L=\lambda \Pi^{\circ, m} K$ for some $\lambda>0$.
In general, by using that $\operatorname{Vol}_{n}\left(\Gamma^{m}(-L)\right)=\mathbb{E}_{L^{m}}\left(V\left(C_{\bar{X}_{1}}, \cdots, C_{\bar{X}_{n}}\right)\right)$ we obtain from the higher-order Busemann-Petty centroid inequality that the functional

$$
L \in \mathcal{S}^{n m} \mapsto \operatorname{Vol}_{n m}(L)^{-\frac{1}{m}} \mathbb{E}_{L^{m}}\left(V\left(C_{\bar{X}_{1}}, \cdots, C_{\bar{X}_{n}}\right)\right)
$$

is minimized exactly when $L=\Pi^{\circ, m} E$, where E is an ellipsoid.

BONUS: affine Sobolev's Inequality

Recall that a function f is said to be in $W^{1,1}\left(\mathbb{R}^{n}\right)$ if there exists a vector field ∇f satisfying

$$
\int_{\mathbb{R}^{n}} f(x) \operatorname{div} \psi(x) d x=-\int_{\mathbb{R}^{n}}\langle\nabla f, \psi(x)\rangle d x
$$

for every smooth vector field ψ.

BONUS: affine Sobolev's Inequality

Recall that a function f is said to be in $W^{1,1}\left(\mathbb{R}^{n}\right)$ if there exists a vector field ∇f satisfying

$$
\int_{\mathbb{R}^{n}} f(x) \operatorname{div} \psi(x) d x=-\int_{\mathbb{R}^{n}}\langle\nabla f, \psi(x)\rangle d x
$$

for every smooth vector field ψ.
Theorem
Fix $m, n \in \mathbb{N}$. Consider a compactly supported, non-identically zero function $f \in W^{1,1}\left(\mathbb{R}^{n}\right)$. Then, by setting
$d_{n, m}:=\left(n m \operatorname{Vol}_{n m}\left(\Pi^{o, m} B_{2}^{n}\right)\right)^{\frac{1}{n m}} \operatorname{Vol}_{n}\left(B_{2}^{n}\right)^{\frac{n-1}{n}}$, one has

$$
\left(\int_{S^{n m-1}}\left(\int_{\mathbb{R}^{n}} \max _{1 \leq i \leq m}\left\langle\nabla f(z), \theta_{i}\right\rangle_{-} d z\right)^{-n m} d \bar{\theta}\right)^{-\frac{1}{n m}} d_{n, m} \geq\|f\|_{\frac{n}{n-1}} .
$$

This inequality can be extended to functions of bounded variation. There is equality if, and only if, there exists $A>0$, and an ellipsoid $E \in \mathcal{K}^{n}$ such that $f(x)=A \chi_{E}(x)$.

BONUS: affine Sobolev's Inequality

Recall that a function f is said to be in $W^{1,1}\left(\mathbb{R}^{n}\right)$ if there exists a vector field ∇f satisfying

$$
\int_{\mathbb{R}^{n}} f(x) \operatorname{div} \psi(x) d x=-\int_{\mathbb{R}^{n}}\langle\nabla f, \psi(x)\rangle d x
$$

for every smooth vector field ψ.

Theorem

Fix $m, n \in \mathbb{N}$. Consider a compactly supported, non-identically zero function $f \in W^{1,1}\left(\mathbb{R}^{n}\right)$. Then, by setting
$d_{n, m}:=\left(n m \operatorname{Vol}_{n m}\left(\Pi^{\circ}, m B_{2}^{n}\right)\right)^{\frac{1}{n m}} \operatorname{Vol}_{n}\left(B_{2}^{n}\right)^{\frac{n-1}{n}}$, one has

$$
\left(\int_{S^{n m-1}}\left(\int_{\mathbb{R}^{n}} \max _{1 \leq i \leq m}\left\langle\nabla f(z), \theta_{i}\right\rangle-d z\right)^{-n m} d \bar{\theta}\right)^{-\frac{1}{n m}} d_{n, m} \geq\|f\|_{\frac{n}{n-1}} .
$$

This inequality can be extended to functions of bounded variation. There is equality if, and only if, there exists $A>0$, and an ellipsoid $E \in \mathcal{K}^{n}$ such that $f(x)=A_{\chi_{E}}(x)$.

- The case $m=1$ is known as Zhang's affine Sobolev inequality

BONUS: affine Sobolev's Inequality

Recall that a function f is said to be in $W^{1,1}\left(\mathbb{R}^{n}\right)$ if there exists a vector field ∇f satisfying

$$
\int_{\mathbb{R}^{n}} f(x) \operatorname{div} \psi(x) d x=-\int_{\mathbb{R}^{n}}\langle\nabla f, \psi(x)\rangle d x
$$

for every smooth vector field ψ.
Theorem
Fix $m, n \in \mathbb{N}$. Consider a compactly supported, non-identically zero function $f \in W^{1,1}\left(\mathbb{R}^{h}\right)$. Then, by setting
$d_{n, m}:=\left(n m \operatorname{Vol}_{n m}\left(\Pi^{\circ}, m B_{2}^{n}\right)\right)^{\frac{1}{n m}} \operatorname{Vol}_{n}\left(B_{2}^{n}\right)^{\frac{n-1}{n}}$, one has

$$
\left(\int_{S^{n m-1}}\left(\int_{\mathbb{R}^{n}} \max _{1 \leq i \leq m}\left\langle\nabla f(z), \theta_{i}\right\rangle-d z\right)^{-n m} d \bar{\theta}\right)^{-\frac{1}{n m}} d_{n, m} \geq\|f\|_{\frac{n}{n-1}} .
$$

This inequality can be extended to functions of bounded variation. There is equality if, and only if, there exists $A>0$, and an ellipsoid $E \in \mathcal{K}^{n}$ such that $f(x)=A_{\chi_{E}}(x)$.

- Extends our higher-order Petty projection inequality to sets of finite perimeter

BONUS: affine Sobolev's Inequality

Recall that a function f is said to be in $W^{1,1}\left(\mathbb{R}^{n}\right)$ if there exists a vector field ∇f satisfying

$$
\int_{\mathbb{R}^{n}} f(x) \operatorname{div} \psi(x) d x=-\int_{\mathbb{R}^{n}}\langle\nabla f, \psi(x)\rangle d x
$$

for every smooth vector field ψ.
Theorem
Fix $m, n \in \mathbb{N}$. Consider a compactly supported, non-identically zero function $f \in W^{1,1}\left(\mathbb{R}^{n}\right)$. Then, by setting
$d_{n, m}:=\left(n m \operatorname{Vol}_{n m}\left(\Pi^{\circ}, m B_{2}^{n}\right)\right)^{\frac{1}{n m}} \operatorname{Vol}_{n}\left(B_{2}^{n}\right)^{\frac{n-1}{n}}$, one has

$$
\left(\int_{S^{n m-1}}\left(\int_{\mathbb{R}^{n}} \max _{1 \leq i \leq m}\left\langle\nabla f(z), \theta_{i}\right\rangle-d z\right)^{-n m} d \bar{\theta}\right)^{-\frac{1}{n m}} d_{n, m} \geq\|f\|_{\frac{n}{n-1}} .
$$

This inequality can be extended to functions of bounded variation. There is equality if, and only if, there exists $A>0$, and an ellipsoid $E \in \mathcal{K}^{n}$ such that $f(x)=A_{\chi_{E}}(x)$.

- Implies the classical Sobolev inequality for every choice of m.

