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Notions of Complex Convexity




In Mobius geometry

E C C? ¢ CP?, compact or open

C-linear convexity
e C?\ E is a union of complex hyperplanes.
e Preserved under intersections.
e Preserved under Cartesian products.
e Dual complement

E*={CeC?: (z,¢) #1Vz € E}.

e d = 1: no condition.

C-convexity
e ENZis simply connected V C-lines £.
e C-convexity = C-linear convexity. Converse not true, even assuming connectedness.
e (Largely) not preserved under intersections & Cartesian products.
e E* is C-convex.

e open E = ball.

* Allow for Cauchy-type integral representations of holomorphic functions.
* Invariant under automorphisms of CP9 (LFTs):

c1121 + -+ + €424 Cd1Z1 + -+ + CddZd
(21,...,Zd) — 5 a00g) o
€121 + -+ + CodZd €121 + -+ + CodZd

% If EC €9 is a Cl-domain, C-linear convexity <= C-convexity.

e




e

In biholomorphic geometry
EcCcCe, open
Pseudoconvexity (holomorphic convexity)

e For every compact K C E, its holomorphic hull
Ke = {ze E:|f(2)| < sup|f| vr:QMc}
K

is compact.
e Characterization of domains where simultaneous analytic extension doesn't occur.
o Non-example: B9\ %Ed.
e d = 1: all domains, as RE “plugs” holes of K in E.
e Preserved under (open) intersections & products.

e Preserved by biholomorphisms.
* Convexity = C-convexity = C-linear convexity = psuedoconvexity
* ECRI={zeC?:Im(z) =0}

e E is convex <= E is C-convex.

e Eis convex <= E + iR? is pseudoconvex.

e




Complex convexity for smooth domains

Q c C? =~ R*, C?-smooth domain

r:C9 — R: defining function

p € bQ2

Tp: real tangent space of bQ2 at p

Hp = Tp N iTp: complex tangent space of b2 at p
I, real Hessian of r at p

Lp: complex Hessian of r at p

Convexity C-convexity 1h-convexity
I > I > L >
ply, 20 ply, 20 ply, 20
QNT,=0 QNH,=0 No analogue
Strong convexity Strong C-convexity Strong 1)-convexity
QN T, ={p} QN H, = {p} Local quadratic analogue
affine 2 ball LFT = ball bihol. = ball
yo > X2+ y? +x3 yo > X2+ yP—x2 yo > 2x2 —y2 — X2

e




(Best) Polyhedral Approximations




In R?: schemes of approximation

D: convex domain

Wi, ..., Wn € bD

w1
wy
w2
We
w3
Wy wa
P = conv{wi, ..., wn}

?in(D) = {inscribed poly.

with < n vertices}

Efficacy of the approximation:

e 6y(D,P) = vol(DAP)

wi

w2
We

w3

w5 Wa

P=N{(w,z=w) <0} P=N{(fw,z—w) < =4}

co

(PE'H)(D) = {circumscribed ?(n)(D) = {contained

poly. with < n facets} poly. with < n facets}

e 61(D, P) = Hausdorff distance between D & P




In RY: typical results
e Optimal approximation asymptotics.

inf{6(D, P) : complexity(P) < n} ~ Cyp

as n — oo.
nk(d)

e |dentifying “almost-optimal” polyhedra.

Distribution of the source points w; of “best” polyhedra:
» uniform with respect to certain densities,

» centers of minimal ball coverings of bD in some metric

Asymptotic shapes of the facets

e Random approximation asymptotics.

Given i.i.d. random source points Wj, ..., W, ~ h on bD,

1 | £(d)
5(D, P) B L/\’; s Cd,D,h% as n — o0.
n




In R?: some optimal approximation results

Gruber (1993), Ludwig (1999). Let D € RY be a strongly convex C? domain.

d+1
. d—1 1
Ve = inf {voI(P \D):Pe fpfn)(D)} ~agoy(bD)" ey asn— oo
et 1
v == inf {vol(DAP) : P € T(n)(D)} ~ by - o5z (bD) e as n — oo.

e ay =divy_1 and by = Idivg_1 are unknown for d > 2.

e The Blaschke measure on bD: o, = nl/(d“)aE, where

k = Gaussian curvature function on bD,

o = Euclidean surface area measure on bD.

e Among bodies of unit volume, ellipsoids are the “hardest” to approximate!

e Boroczky (2000) removed the curvature assumption.




Geometric & combinatorial aspects of the problem

Transformation Geometry

e (Strong) Convexity, classes of polyhedra: invariant under affine tranformations of R,
e vS and vp: invariant under volume-preserving or equi-affine transformations of RY.

o Let A:R? — RY be an affine map, and D’ = A(D). Then
d—1
A*oD" = |det Al 0.

Tilings on R9—1

2nd-order local model for strongly convex domains:

U:{(Xl,...,xd)E]Rd:Xd>X12+'~~X§_1}. .‘.\) g

w={wi,..,wp} € bU X% w' = {w],..,w)} € RI! »

e divy_1: facets of circ{w} 2%, Dirichlet-Voronoi cells of w’. / @w/
e Idivy_;: facets of P(w,d) LN Laguerre cells of (w’, d).

Dual Image




Polyhedral constructions in C¢

e No notion of C-convex hulls or psuedoconvex hulls for finite sets!

e In the literature: an analytic polyhedron in Q2 with < n facets is any finite union of
relatively compact components of

{zeQ:|fi(2)| <1, j=1,..,n}, f}:Qﬂ)C.

Bishop (1961). Any bounded t-convex domain in C9 can be approximated arbitrarily
well by d-faceted analytic polyhedra.

Q=D
2m—1 P
Pmi=qzeD: TT z—exp(%’)’>%
# inf{vol(D \ P) : P has one facet} = 0.
# m vol(D\ Ppn) — ¢ # 0as m — oco.

Want to say: Pm has O(m) facets.

e We will mimic the “pushing in” of tangent planes.




Polyhedral constructions in C? Flzwd)

—
A convex polyhedron in D C RY: {<ﬁwj,z — wj> <4}
1<j<n

Q = {p < 0} is strongly C-convex.

Q = {p < 0} is strongly t)-convex.

o L(z,w) =3 %(W)(Q —w) e Qy(z,w) = L(z, w) + 2nd order terms

o HT(w,8) = {z € Q:|L(z,w)| > &} o Hf(w,8) = {z € Q:|Qp(z,w)| > 5}

PN
»

w = {Wl, o009 Wn} C bQ2 (source set)

o= {517 coog 5,,} C Ry (depth set)
P(w;8):= N H* (W)
1<j<n

Pn(Q) = {P(w;3) : P(w;d) € Q}




Some relevant features of complex convexity (d > 1)

=55

Q @Czdomain (Cd

Strong C-convexity

Strong pseudoconvexity

polyhedra

Leray polyhedra

Levi polyhedra

Transform. grp.

LFTs/Méobius

biholomorphisms

Local model(s) Imzy > 3" |zj|2 + 3 Bj Re(z;)? Imzg > |z1]? 4+ - + |zg—1]?

2nd order inv. Eccentricity B3(p) = (B1, ..., Bd—1) | None

“Equi”-models Imzg > 3 aj|zj|2 + 3 7 Re(z) Imzg > ai|z1]?+- - +ag_1]|zg_1/?
“Equi”-inv. aj > 20 a; >0

Gaussian analogue | Q(p) = H(af. — 71.2) Levi curvature

= L(p)T1(1 - B7)

L(p):al"'ad—l

Blaschke analogue
oy = kY9

Mobius—Fefferman
Oy = — Ql/(2d+2),

= G(B)o,

Fefferman
T = Ll/(d+1)gE




Optimal approximation results
Theorem (G., 2017, 20234). Let Q € CY be a C*°-smooth domain.

1. Q is strongly pseudoconvex. 3 kg > 0 s.t.
Gt 1
as n — oo.

inf{vol(D\ P) : P € Pn(Q2)} ~ ky - o'F(bQ)d v

2. Qis strongly C-convex. 3 continuous Ky : [0,1)?~1 — (0, c0) s.t.
di1
]

inf {vol(D\ P) : P € Pn(Q)} ~ ky- (b/ Kq(8(2)) doF(z)) nl—l/d asn = oo
Q

d = 1. Each Leray “cut” is a disk.
s 1
Vn ~ — - (oare(b2))2 - =
8 n

LFT
B=0. Q2 = B and Ky(0,...,0) = 1.
Speculation. The measure Kq(B) oy is 0, i.e., Kq(B)4! = /TI(X — 612)

as n — oQ.




A single “cap”
Model in R*: {33 > x2 + X3 + x2
Projection of d-cap at (0,0) = +/d-ball in

Euclidean metric on (R3, +).

X4 R*

?

X2, X3

X2

TobD = R3

Model in C2: {Imz > |z|?}

Projection of d-cap at (0,0) = v/d-ball in
Koranyi metric on (C X R, Heisenberg).

(C2
Im z

—ee - =)
“Rez
Re )
Im 4
Tob2 =C x R
Re z;




The models <+ ‘good’ tilings of the Heisenberg group (d = 2)

Dg = {(zl,zz) €C?:lmz > |z1]? —|—,8Rezf}, B€0,1)
o | = unit cube in C x R
e Cg(w,d) = Leray cut with source w and depth ¢
e cg(w, d) = projection of C(w, J)

=

e v, = inf {vol LTJ C(wi,8;):1C LTJ c(Wj,6j)}
=1 j=1

Claim. lim \/nv, exists =: 2ko - Ka(3)3/2.
n— oo

e Key ingredient: 3on C x R

* group operation ®5: w? ®g c(w?; ) = c(w? ®g wl;d). i
% left-invariant quasimetric dg: c(w;d) = {dﬂ(w,z) < \/3} =

® K>(3) comes from exploiting dg-tilings of C x R. [T

i\
Missing. Ka(8) = (1 — B)3/2. 'A‘\Q

e All (C x R,®g) are isomorphic (to the Heisenberg group).

i,
CLES
NI

e These isomorphisms are not isometries!




From the model to the general case

The technique of ‘shaking’ is entirely unavailable!

Near p, ® and ¥ must

e be close to volume-preserving;
e be close to s, _-preserving on 0Q;
e keep the pushed-forward cuts and model cuts ‘comparable’.
The maps:
e & is an almost explicit LFT.
e The boundary of a strongly C-convex Q has a natural contact structure.
e Darboux: any two equi-dim. contact str. are loc. contact isomorphic.

e W along 0N is a Darboux map.



On the exponents

1. D C R4

d+1 1

d—1
Vp ~ ¢4 - (measure) =D as n — oo.

2. Qcc.
ar i
Vo ~ by - (measure) ¢ - i7d as n — oo.
Exponents  Haus. dim. of induced metric measure complexity
in RY d—1 (d+1)/(d—1) 2/(d—1)
in CY 2d (d+1)/d 1/d

=1 =m+2)/n =2/n




(Random) Polyhedral Approximations




In R?: some random approximation results

D € R C?, strongly convex (1)

X1,.., X" € bD are i.i.d. with density f : bD L R,

Schiitt-Werner (2003). P, = conv {X1, ..., X"}.
2
nd=1 E(éy(D, Pn)) — ci(d, D, f) as n — oo.

Boroczky—Reitzner (2004). P, = () HT(X?) N large ball.
j=1

2
nd—1 E(éy(D, Pn)) — c(d, D, f) as n — oo.
Glasauer—Schneider (1996). P, = conv{X, ..., Xn}.
2
n d—1 P
(7) O0n(D, Pn) = c3(d, D, f) as n — oo.
log(n)

e Exponent of n = that in the optimal case.
e The best density = (normalized) boundary measure in the optimal case.

e Best “random” constant differs “optimal” constant only by a dimensional factor.




Random polyhedra in strongly C-convex domains (d > 1)
(Joint work with S. Athreya & D. Yogeshwaran)
Domain. Q € CY: strongly C-convex C2 domain.
Random (Leray) polyhedron. P, := P(wg;d,), where

cont.

o w, = (@ o are I1.1.d. wit ensit : —_— 00).
{WE, .., W} C bQ, W2, ..., W™ are i.i.d. with density f : bQ (0, c0)

cont.

e 0, : bQ — R4 with appropriate decay.

Po= () H* (Wf,an(wf)).

1<j<n
Metric of approximation. §y(n) := vol(Q2\ P,)1(Pn € ) + vol(Q)1(P, & Q)

+ In RY, such a “penalty” is imposed when circumscribing by random polyhedra.

The depth function. | i
5:(2) = (B2) ga), zenm,

for g : bS2 Lont, R+ such that

lim P(Py € Q) = 1. *)

x Log factor: P, € Q <= the “caps” of P, cover bS).

% The decay rate and (x) are compatible.

e




A random approximation result

Theorem (Athreya-G.-Yogeshwaran, 2022). Given , f, g, w, and 8, as above

(Iogn(n))% Sy(n) B -/bQ g(z)dogyc(2) as n — oo.

Optimal random approximation?
Q1. What is the best R.H.S., say vp(f), for a fixed f?

Missing. The Leray polyhedra are associated to a natural sub-Riemannian metric d on bXQ2.
We need asymptotics of

n
Ry =minq r>0:bQC | JBg(W,r)
j=1

Q2. Which density f gives vp := least possible vp(f)?
Conjecture. Assuming heuristics for R,

aMF
omr(bQ)

d+1
d

&tEe = and vp = kq (omF (bS2))




THANK YOU.




