Polyhedral-like approximations in complex analysis

Purvi Gupta Indian Institute of Science, Bangalore

Online Asymptotic Geometric Analysis Seminar March 09, 2023 Notions of Complex Convexity

In Möbius geometry

 $E \subset \mathbb{C}^d \subset \mathbb{CP}^d$, compact or open

\mathbb{C} -linear convexity

- $\mathbb{C}^d \setminus E$ is a union of complex hyperplanes.
- Preserved under intersections.
- Preserved under Cartesian products.
- Dual complement

$$E^* = \{ \zeta \in \mathbb{C}^d : \langle z, \zeta \rangle \neq 1 \ \forall z \in E \}.$$

• d = 1: no condition.

\mathbb{C} -convexity

- $E \cap \ell$ is simply connected $\forall \mathbb{C}$ -lines ℓ .
- \mathbb{C} -convexity $\Rightarrow \mathbb{C}$ -linear convexity. Converse not true, even assuming connectedness.
- (Largely) not preserved under intersections & Cartesian products.
- E* is C-convex.
- open $E \cong$ ball.
- \star Allow for Cauchy-type integral representations of holomorphic functions.
- \star Invariant under automorphisms of \mathbb{CP}^d (LFTs):

$$(z_1,...,z_d) \mapsto \left(\frac{c_{11}z_1 + \cdots + c_{1d}z_d}{c_{01}z_1 + \cdots + c_{0d}z_d},...,\frac{c_{d1}z_1 + \cdots + c_{dd}z_d}{c_{01}z_1 + \cdots + c_{0d}z_d}\right).$$

* If $E \subset \mathbb{C}^d$ is a \mathcal{C}^1 -domain, \mathbb{C} -linear convexity $\iff \mathbb{C}$ -convexity.

In biholomorphic geometry

 $E \subset \mathbb{C}^d$, open

Pseudoconvexity (holomorphic convexity)

• For every compact $K \subset E$, its holomorphic hull

$$\hat{\mathcal{K}}_E = \left\{ z \in E : |f(z)| \leq \sup_{\mathcal{K}} |f| \quad orall f : \Omega \xrightarrow{\mathsf{holo.}} \mathbb{C}
ight\}$$

is compact.

- Characterization of domains where simultaneous analytic extension doesn't occur.
- Non-example: $\mathbb{B}^d \setminus \frac{1}{2}\overline{\mathbb{B}}^d$.
- d = 1: all domains, as \hat{K}_E "plugs" holes of K in E.
- Preserved under (open) intersections & products.
- Preserved by biholomorphisms.
- \star Convexity \Rightarrow \mathbb{C} -convexity \Rightarrow \mathbb{C} -linear convexity \Rightarrow psuedoconvexity
- $\star E \subset \mathbb{R}^d = \{z \in \mathbb{C}^d : \operatorname{Im}(z) = 0\}$
 - *E* is convex \iff *E* is \mathbb{C} -convex.
 - *E* is convex $\iff E + i\mathbb{R}^d$ is pseudoconvex.

Complex convexity for smooth domains

$$\begin{split} \Omega \subset \mathbb{C}^d &\cong \mathbb{R}^{2d}, \ \mathcal{C}^2\text{-smooth domain} \\ r : \mathbb{C}^d \to \mathbb{R}: \ \text{defining function} \\ p \in b\Omega \\ T_p: \ \text{real tangent space of } b\Omega \ \text{at } p \\ H_p &= T_p \cap iT_p: \ \text{complex tangent space of } b\Omega \ \text{at } p \\ \text{II}_p: \ \text{real Hessian of } r \ \text{at } p \end{split}$$

 L_p : complex Hessian of r at p

Convexity	\mathbb{C} -convexity	ψ -convexity	
$\left II_{p} \right _{T_{p}} \geq 0$	$\left. H_{p} \right _{H_{p}} \geq 0$	$L_{P} _{H_{P}} \geq 0$	
$\Omega\cap \mathcal{T}_{p}=\emptyset$	$\Omega\cap H_p=\emptyset$	No analogue	
Strong convexity	Strong \mathbb{C} -convexity	Strong ψ -convexity	
$\overline{\Omega}\cap T_p=\{p\}$	$\overline{\Omega} \cap H_{p} = \{p\}$	Local quadratic analogue	
$affine\congball$	$LFT\congball$	bihol. \cong ball	
$y_2 > x_1^2 + y_1^2 + x_2^2$	$y_2 > x_1^2 + y_1^2 - x_2^2$	$y_2 > 2x_1^2 - y_1^2 - x_2^2$	

(Best) Polyhedral Approximations

In \mathbb{R}^d : schemes of approximation

D: convex domain

 $w_1, \ldots, w_n \in bD$

 $P = \operatorname{conv}\{w_1, \dots, w_n\}$

 $\mathcal{P}_{n}^{i}(D) = \{\text{inscribed poly.}\}$ with $\leq n$ vertices}

 $P = \bigcap \left\{ \langle \hat{\eta}_{w_i}, z - w_i \rangle \leq 0 \right\} \qquad P = \bigcap \left\{ \langle \hat{\eta}_{w_i}, z - w_i \rangle \leq -\delta_i \right\}$ $\mathcal{P}_{(n)}^{c}(D) = \{ circumscribed \}$ poly. with < n facets}

W4

 $\hat{\eta}_1$ W1

W2

W3

W7

W6

 W_5

 $\mathcal{P}_{(n)}^{co}(D) = \{\text{contained}$ poly. with < n facets}

Efficacy of the approximation:

- $\delta_{\mathrm{V}}(\overline{D,P}) = \mathrm{vol}(\overline{D \triangle P})$
- $\delta_{\rm H}(D, P) =$ Hausdorff distance between D & P

In \mathbb{R}^d : typical results

• Optimal approximation asymptotics.

$$\inf \{ \delta(D,P) : \operatorname{complexity}(P) \leq n \} \sim C_{d,D} \frac{1}{n^{k(d)}} \quad \text{as } n \to \infty.$$

• Identifying "almost-optimal" polyhedra.

Distribution of the source points w_i of "best" polyhedra:

- · uniform with respect to certain densities,
- centers of minimal ball coverings of bD in some metric

Asymptotic shapes of the facets

Random approximation asymptotics.

Given i.i.d. random source points $W_1, ..., W_n \sim h$ on bD,

$$\delta(D; P) \stackrel{p, L^1, a.s.}{\sim} C_{d,D,h} \frac{\log(n)^{\ell(d)}}{n^{k(d)}} \text{ as } n \to \infty$$

In \mathbb{R}^d : some optimal approximation results

Gruber (1993), Ludwig (1999). Let $D \in \mathbb{R}^d$ be a strongly convex C^2 domain.

$$v_n^{\mathrm{c}} := \inf \left\{ \mathrm{vol}(\mathcal{P} \setminus D) : \mathcal{P} \in \mathbb{P}_{(n)}^{\mathrm{c}}(D)
ight\} \sim a_d \cdot \sigma_{\scriptscriptstyle B}(bD)^{rac{d+1}{d-1}} \cdot rac{1}{n^{2/(d-1)}} \qquad ext{as } n o \infty.$$

$$\mathsf{v}_n := \inf \left\{ \mathsf{vol}(D riangle P) : P \in \mathbb{P}_{(n)}(D)
ight\} \sim b_d \cdot \sigma_{\scriptscriptstyle B}(bD)^{rac{d+1}{d-1}} \cdot rac{1}{n^{2/(d-1)}} \qquad ext{as } n o \infty.$$

- $a_d = \operatorname{div}_{d-1}$ and $b_d = \operatorname{Idiv}_{d-1}$ are unknown for d > 2.
- The Blaschke measure on *bD*: $\sigma_{B} = \kappa^{1/(d+1)}\sigma_{E}$, where

 κ = Gaussian curvature function on *bD*,

- $\sigma_{\rm F}$ = Euclidean surface area measure on bD.
- Among bodies of unit volume, ellipsoids are the "hardest" to approximate!
- Böröczky (2000) removed the curvature assumption.

Geometric & combinatorial aspects of the problem

Transformation Geometry

- (Strong) Convexity, classes of polyhedra: invariant under affine tranformations of \mathbb{R}^d .
- v_n^c and v_n : invariant under volume-preserving or equi-affine transformations of \mathbb{R}^d .
- Let $A: \mathbb{R}^d o \mathbb{R}^d$ be an affine map, and D' = A(D). Then

$$\mathsf{A}^*\sigma^{D'}_{\mathsf{B}} = |\det\mathsf{A}|^{rac{d-1}{d+1}}\sigma^D_{\mathsf{B}}.$$

Tilings on \mathbb{R}^{d-1}

2nd-order local model for strongly convex domains:

$$U = \Big\{ (x_1, ..., x_d) \in \mathbb{R}^d : x_d > x_1^2 + \cdots x_{d-1}^2 \Big\}.$$

 $\mathbf{w} = \{w_1, ..., w_n\} \in bU \xrightarrow{\text{proj.}} \mathbf{w}' = \{w'_1, ..., w'_n\} \in \mathbb{R}^{d-1}$

- div_{d-1}: facets of circ{**w**} $\xrightarrow{\text{proj.}}$ Dirichlet–Voronoi cells of **w**'.
- $\operatorname{Idiv}_{d-1}$: facets of $P(\mathbf{w}, \delta) \xrightarrow{\operatorname{proj.}} \operatorname{Laguerre}$ cells of (\mathbf{w}', δ) .

Dual Image

Polyhedral constructions in \mathbb{C}^d

- No notion of C-convex hulls or psuedoconvex hulls for finite sets!
- In the literature: an analytic polyhedron in Ω with ≤ n facets is any finite union of relatively compact components of

$$\left\{z\in\Omega:|f_j(z)|<1,\;j=1,...,n
ight\},\;\;\;f_j:\Omega\xrightarrow{\mathsf{hol.}}\mathbb{C}.$$

Bishop (1961). Any bounded ψ -convex domain in \mathbb{C}^d can be approximated arbitrarily well by *d*-faceted analytic polyhedra.

$$\begin{split} \Omega &= \mathbb{D} \\ P_m &:= \left\{ z \in \mathbb{D} : \prod_{k=0}^{2m-1} \left| z - \exp(\frac{k\pi i}{m}) \right| > \frac{\pi}{m} \right\} \\ &* \inf\{ \operatorname{vol}(\mathbb{D} \setminus P) : P \text{ has one facet} \} = 0. \end{split}$$

*
$$m \operatorname{vol}(\mathbb{D} \setminus P_m) \to c \neq 0 \text{ as } m \to \infty.$$

Want to say: P_m has O(m) facets.

• We will mimic the "pushing in" of tangent planes.

 $P_{30} \subset \mathbb{D}$

Polyhedral constructions in \mathbb{C}^d

A convex polyhedron in
$$D \subset \mathbb{R}^d$$
: $\bigcap_{1 \leq j \leq n} \{\overline{\langle \hat{\eta}_{w^j}, z - w^j \rangle} < \delta_j \}$

 $f(z,w^j)$

 $\Omega = \{
ho < 0 \}$ is strongly $\mathbb C$ -convex.

•
$$L(z, w) = \sum \frac{\partial \rho}{\partial z_j}(w)(z_j - w_j)$$

• $H^+(w, \delta) = \{z \in \Omega : |L(z, w)| > \delta\}$

 $\Omega = \{\rho < 0\} \text{ is strongly } \psi\text{-convex}.$

• $Q_{
ho}(z,w) = L(z,w) + 2$ nd order terms

•
$$H^+(w,\delta)=\{z\in\Omega:|Q_
ho(z,w)|>\delta\}$$

$$\begin{split} \mathbf{w} &= \{\mathbf{w}^1, ..., \mathbf{w}^n\} \subset b\Omega \qquad \text{(source set)} \\ \mathbf{\delta} &= \{\delta_1, ..., \delta_n\} \subset \mathbb{R}_+ \qquad \text{(depth set)} \\ P(\mathbf{w}; \mathbf{\delta}) &:= \bigcap_{1 \leq j \leq n} H^+(\mathbf{w}^j, \delta_j) \\ \mathbb{P}_n(\Omega) &= \{P(\mathbf{w}; \mathbf{\delta}) : P(\mathbf{w}; \mathbf{\delta}) \Subset \Omega\} \end{split}$$

Some relevant features of complex convexity (d > 1)

 $\sum = \sum_{j=1}^{d-1}$

$\Omega \in \mathcal{C}^{2}$ domain \mathbb{C}^{d}	Strong \mathbb{C} -convexity	Strong pseudoconvexity
polyhedra	Leray polyhedra	Levi polyhedra
Transform. grp.	LFTs/Möbius	biholomorphisms
Local model(s)	$\operatorname{Im} z_d > \sum z_j ^2 + \sum \beta_j \operatorname{Re}(z_j)^2$	$\lim_{d \to 0} z_1 ^2 + \dots + z_{d-1} ^2$
2nd order inv.	Eccentricity $oldsymbol{eta}(oldsymbol{p})=(eta_1,,eta_{d-1})$	None
"Equi"-models	$\operatorname{Im} z_d > \sum \alpha_j z_j ^2 + \sum \gamma_j \operatorname{Re}(z_j)^2$	$\lim_{d \to 0} z_{d} > \alpha_{1} z_{1} ^{2} + \dots + \alpha_{d-1} z_{d-1} ^{2}$
"Equi"-inv.	$lpha_j > \gamma_j \geq 0$	$lpha_j > 0$
Gaussian analogue	$\begin{split} \mathfrak{Q}(\boldsymbol{p}) &= \prod (\alpha_j^2 - \gamma_j^2) \\ &= \mathcal{L}^2(\boldsymbol{p}) \prod (1 - \beta_j^2) \end{split}$	Levi curvature $\mathcal{L}(p) = \alpha_1 \cdots \alpha_{d-1}$
Blaschke analogue $\sigma_{\rm B} = \kappa^{1/d} \sigma_{\rm E}$		Fefferman $\sigma_{\rm F} = \mathcal{L}^{1/(d+1)} \sigma_{\rm E}$

Optimal approximation results

Theorem (G., 2017, 2023+). Let $\Omega \in \mathbb{C}^d$ be a \mathcal{C}^{∞} -smooth domain.

1. Ω is strongly pseudoconvex. $\exists k_d > 0$ s.t.

 $\inf \left\{ \operatorname{vol}(D \setminus P) : P \in \mathfrak{P}_n(\Omega) \right\} \sim k_d \cdot \sigma_{\mathsf{F}}(b\Omega)^{\frac{d+1}{d}} \cdot \frac{1}{n^{1/d}} \qquad \text{as } n \to \infty.$

2. Ω is strongly \mathbb{C} -convex. \exists continuous $K_d : [0,1)^{d-1} \to (0,\infty)$ s.t.

$$\mathsf{nf}\left\{\mathsf{vol}(D\setminus P): P\in \mathfrak{P}_n(\Omega)\right\}\sim k_d \cdot \left(\int\limits_{b\Omega} K_d(\boldsymbol{\beta}(z)) \, d\sigma_{_F}(z)\right)^{\frac{d+1}{d}} \cdot \frac{1}{n^{1/d}} \qquad \mathsf{as} \ n\to\infty.$$

d = 1. Each Leray "cut" is a disk.

$$u_n \sim rac{\pi}{8} \cdot (\sigma_{\sf arc}(b\Omega))^2 \cdot rac{1}{n} \qquad {
m as} \ n o \infty.$$

 $\beta \equiv 0. \ \Omega \stackrel{LFT}{\cong} \mathbb{B}^d$ and $K_d(0,...,0) = 1.$

Speculation. The measure $K_d(\beta) \sigma_F$ is σ_{MF} , i.e., $K_d(\beta)^{d+1} = \sqrt{\prod (1 - \beta_j^2)}$.

A single "cap"

Model in \mathbb{R}^4 : $\{x_4 > x_1^2 + x_2^2 + x_3^2\}$

Projection of δ -cap at $(0,0) = \sqrt{\delta}$ -ball in Euclidean metric on $(\mathbb{R}^3, +)$.

Model in \mathbb{C}^2 : {Im $z_2 > |z_1|^2$ }

Projection of δ -cap at $(0,0) = \sqrt{\delta}$ -ball in Korányi metric on $(\mathbb{C} \times \mathbb{R}, \text{Heisenberg})$.

The models \leftrightarrow 'good' tilings of the Heisenberg group (d=2)

$$D_eta = \Big\{(z_1, z_2) \in \mathbb{C}^2 : \operatorname{Im} z_2 > |z_1|^2 + eta \operatorname{Re} z_1^2\Big\}, \quad eta \in [0, 1)$$

- \bullet I = unit cube in $\mathbb{C}\times\mathbb{R}$
- $\mathcal{C}_{eta}(w,\delta) =$ Leray cut with source w and depth δ
- $c_{\beta}(w, \delta) =$ projection of $C(w, \delta)$

•
$$v_n = \inf \left\{ \operatorname{vol} \bigcup_{j=1}^n C(w^j, \delta_j) : \mathsf{I} \subset \bigcup_{j=1}^n c(w^j, \delta_j) \right\}$$

Claim. $\lim_{n\to\infty} \sqrt{n}v_n$ exists $=: 2k_2 \cdot K_2(\beta)^{3/2}$.

- Key ingredient: \exists on $\mathbb{C} \times \mathbb{R}$
 - * group operation \otimes_{β} : $w^2 \otimes_{\beta} c(w^1; \delta) = c(w^2 \otimes_{\beta} w^1; \delta).$
 - * left-invariant quasimetric $d_eta\colon oldsymbol{c}(w;\delta)=\Big\{d_eta(w,z)<\sqrt{\delta}\Big\}.$
- K₂(β) comes from exploiting d_β-tilings of C × R.

Missing. $K_2(\beta) = (1 - \beta)^{3/2}$.

- All $(\mathbb{C} \times \mathbb{R}, \otimes_{\beta})$ are isomorphic (to the Heisenberg group).
- These isomorphisms are not isometries!

From the model to the general case

The technique of 'shaking' is entirely unavailable!

Near p, Φ and Ψ must

- be close to volume-preserving;
- be close to s_{Euc} -preserving on $\partial \Omega$;
- keep the pushed-forward cuts and model cuts 'comparable'.

The maps:

- Φ is an almost explicit LFT.
- The boundary of a strongly \mathbb{C} -convex Ω has a natural contact structure.
- Darboux: any two equi-dim. contact str. are loc. contact isomorphic.
- Ψ along $\partial \Omega$ is a Darboux map.

On the exponents

1. $D \subset \mathbb{R}^d$.

$$v_n \sim c_d \cdot \left(\textit{measure}
ight)^{rac{d+1}{d-1}} \cdot rac{1}{n^{2/(d-1)}} \qquad \text{as } n o \infty.$$

2.
$$\Omega \subset \mathbb{C}^d$$

$$v_n \sim b_d \cdot \left(\textit{measure}
ight)^{rac{d+1}{d}} \cdot rac{1}{n^{1/d}} \qquad \text{as } n
ightarrow \infty.$$

Exponents	Haus. dim. of induced metric	measure	complexity
in \mathbb{R}^d	d-1	(d+1)/(d-1)	2/(d-1)
in \mathbb{C}^d	2 <i>d</i>	(d+1)/d	1/d
	$=\eta$	$=(\eta+2)/\eta$	$=2/\eta$

(Random) Polyhedral Approximations

In \mathbb{R}^d : some random approximation results

$$D \in \mathbb{R}^{d} \ C^{2}, \text{ strongly convex (!)}$$

$$X^{1}, ..., X^{n} \in bD \text{ are i.i.d. with density } f : bD \xrightarrow{(!)} \mathbb{R}_{+}$$
Schütt-Werner (2003). $P_{n} = \operatorname{conv} \{X^{1}, ..., X^{n}\}.$

$$n^{\frac{2}{d-1}} \mathbb{E}(\delta_{V}(D, P_{n})) \rightarrow c_{1}(d, D, f) \quad \text{as } n \rightarrow$$
Böröczky-Reitzner (2004). $P_{n} = \bigcap_{i=1}^{n} H^{+}(X^{i}) \cap \text{ large ball}$

$$n^{rac{2}{d-1}} \mathbb{E}(\delta_V(D,P_n)) o c_1(d,D,f) \qquad ext{as } n o \infty.$$

j=1

$$n^{rac{2}{d-1}} \mathbb{E}(\delta_V(D,P_n)) o c_2(d,D,f) \qquad ext{as } n o \infty.$$

Glasauer–Schneider (1996). $P_n = \operatorname{conv}\{X_1, ..., X_n\}$.

$$\left(rac{n}{\log(n)}
ight)^{rac{2}{d-1}} \delta_H(D,P_n) \xrightarrow{p} c_3(d,D,f) \qquad ext{as } n o \infty$$

- Exponent of n = that in the optimal case. ۲
- The best density = (normalized) boundary measure in the optimal case. ۲
- Best "random" constant differs "optimal" constant only by a dimensional factor. ۲

Random polyhedra in strongly \mathbb{C} -convex domains (d > 1)

(Joint work with S. Athreya & D. Yogeshwaran)

Domain. $\Omega \Subset \mathbb{C}^d$: strongly \mathbb{C} -convex \mathcal{C}^2 domain.

Random (Leray) polyhedron. $P_n := P(w_n; \delta_n)$, where

- $\boldsymbol{w}_n = \{W^1, ..., W^n\} \subset b\Omega, W^1, ..., W^n$ are i.i.d. with density $f : b\Omega \xrightarrow{cont.} (0, \infty)$.
- $\delta_n : b\Omega \xrightarrow{cont.} \mathbb{R}_+$ with appropriate decay.

$$\mathcal{P}_n = \bigcap_{1 \leq j \leq n} \mathcal{H}^+\left(\mathcal{W}^j, \delta_n(\mathcal{W}^j)\right).$$

Metric of approximation. $\delta_V(n) := \operatorname{vol}(\Omega \setminus P_n) \mathbf{1}(P_n \Subset \Omega) + \operatorname{vol}(\Omega) \mathbf{1}(P_n \notin \Omega)$

* In \mathbb{R}^d , such a "penalty" is imposed when circumscribing by random polyhedra.

The depth function. $oldsymbol{\delta}_n(z) = \left(rac{\log(n)}{n}
ight)^{rac{1}{d}}g(z), \quad z\in b\Omega,$

for $g: b\Omega \xrightarrow{cont.} \mathbb{R}_+$ such that

$$\lim_{n \to \infty} \mathbb{P}(P_n \Subset \Omega) = 1. \tag{(\star)}$$

- * Log factor: $P_n \subseteq \Omega \iff$ the "caps" of P_n cover $b\Omega$.
- * The decay rate and (*) are compatible.

A random approximation result

Theorem (Athreya-G.-Yogeshwaran, 2022). Given Ω , f, g, w_n and δ_n as above

$$\left(rac{n}{\log(n)}
ight)^{rac{1}{d}}\delta_V(n) \xrightarrow{p} \int_{b\Omega}g(z)d\sigma_{Euc}(z) \qquad ext{as } n o \infty.$$

Optimal random approximation?

- Q1. What is the best R.H.S., say $\nu_D(f)$, for a fixed f?
- Missing. The Leray polyhedra are associated to a natural sub-Riemannian metric d on $b\Omega$. We need asymptotics of

$$R_n = \min\left\{r > 0: b\Omega \subset igcup_{j=1}^n B_d(W^j, r)
ight\}.$$

Q2. Which density f gives $\nu_D :=$ least possible $\nu_D(f)$?

Conjecture. Assuming heuristics for R_n ,

$$f\sigma_{Euc} = rac{\sigma_{MF}}{\sigma_{MF}(b\Omega)}$$
 and $u_D = \widetilde{k}_d \left(\sigma_{MF}(b\Omega)\right)^{rac{d+1}{d}}$

THANK YOU.