Polyhedral-like approximations in complex analysis

Purvi Gupta
Indian Institute of Science, Bangalore

Online Asymptotic Geometric Analysis Seminar March 09, 2023

Notions of Complex Convexity

In Möbius geometry

$E \subset \mathbb{C}^{d} \subset \mathbb{C P}^{d}$, compact or open
\mathbb{C}-linear convexity

- $\mathbb{C}^{d} \backslash E$ is a union of complex hyperplanes.
- Preserved under intersections.
- Preserved under Cartesian products.
- Dual complement

$$
E^{*}=\left\{\zeta \in \mathbb{C}^{d}:\langle z, \zeta\rangle \neq 1 \forall z \in E\right\}
$$

- $d=1$: no condition.
\mathbb{C}-convexity
- $E \cap \ell$ is simply connected $\forall \mathbb{C}$-lines ℓ.
- \mathbb{C}-convexity $\Rightarrow \mathbb{C}$-linear convexity. Converse not true, even assuming connectedness.
- (Largely) not preserved under intersections \& Cartesian products.
- E^{*} is \mathbb{C}-convex.
- open $E \cong$ ball.
\star Allow for Cauchy-type integral representations of holomorphic functions.
\star Invariant under automorphisms of $\mathbb{C P}^{d}$ (LFTs):

$$
\left(z_{1}, \ldots, z_{d}\right) \mapsto\left(\frac{c_{11} z_{1}+\cdots+c_{1 d} z_{d}}{c_{01} z_{1}+\cdots+c_{0 d} z_{d}}, \ldots, \frac{c_{d 1} z_{1}+\cdots+c_{d d} z_{d}}{c_{01} z_{1}+\cdots+c_{0 d} z_{d}}\right)
$$

\star If $E \subset \mathbb{C}^{d}$ is a \mathcal{C}^{1}-domain, \mathbb{C}-linear convexity $\Longleftrightarrow \mathbb{C}$-convexity.

In biholomorphic geometry

$E \subset \mathbb{C}^{d}$, open
Pseudoconvexity (holomorphic convexity)

- For every compact $K \subset E$, its holomorphic hull

$$
\hat{K}_{E}=\left\{z \in E:|f(z)| \leq \sup _{K}|f| \quad \forall f: \Omega \xrightarrow{\text { nolo. }} \mathbb{C}\right\}
$$

is compact.

- Characterization of domains where simultaneous analytic extension doesn't occur.
- Non-example: $\mathbb{B}^{d} \backslash \frac{1}{2} \overline{\mathbb{B}}^{d}$.
- $d=1$: all domains, as \hat{K}_{E} "plugs" holes of K in E.
- Preserved under (open) intersections \& products.
- Preserved by biholomorphisms.
\star Convexity $\Rightarrow \mathbb{C}$-convexity $\Rightarrow \mathbb{C}$-linear convexity \Rightarrow psuedoconvexity
$\star E \subset \mathbb{R}^{d}=\left\{z \in \mathbb{C}^{d}: \operatorname{Im}(z)=0\right\}$
- E is convex $\Longleftrightarrow E$ is \mathbb{C}-convex.
- E is convex $\Longleftrightarrow E+i \mathbb{R}^{d}$ is pseudoconvex.

Complex convexity for smooth domains

$\Omega \subset \mathbb{C}^{d} \cong \mathbb{R}^{2 d}, \mathcal{C}^{2}$-smooth domain
$r: \mathbb{C}^{d} \rightarrow \mathbb{R}$: defining function
$p \in b \Omega$
T_{p} : real tangent space of $b \Omega$ at p
$H_{p}=T_{p} \cap i T_{p}$: complex tangent space of $b \Omega$ at p
I_{p} : real Hessian of r at p

L_{p} : complex Hessian of r at p

Convexity	\mathbb{C}-convexity	ψ-convexity		
$\\|\left._{p}\right\|_{T_{p}} \geq 0$	$\\|\left._{p}\right\|_{H_{p}} \geq 0$	$\left.L_{p}\right\|_{H_{p}} \geq 0$		
$\Omega \cap T_{p}=\emptyset$	$\Omega \cap H_{p}=\emptyset$	No analogue		

Strong convexity	Strong \mathbb{C}-convexity	Strong ψ-convexity
$\bar{\Omega} \cap T_{p}=\{p\}$	$\bar{\Omega} \cap H_{p}=\{p\}$	Local quadratic analogue
affine \cong ball	LFT \cong ball	bihol. \cong ball
$y_{2}>x_{1}^{2}+y_{1}^{2}+x_{2}^{2}$	$y_{2}>x_{1}^{2}+y_{1}^{2}-x_{2}^{2}$	$y_{2}>2 x_{1}^{2}-y_{1}^{2}-x_{2}^{2}$

(Best) Polyhedral Approximations

In \mathbb{R}^{d} : schemes of approximation
D : convex domain

$$
w_{1}, \ldots, w_{n} \in b D
$$

$$
P=\operatorname{conv}\left\{w_{1}, \ldots, w_{n}\right\}
$$

$$
\mathcal{P}_{n}^{\mathrm{i}}(D)=\{\text { inscribed poly. }
$$

$$
\text { with } \leq n \text { vertices }\}
$$

$P=\bigcap\left\{\left\langle\hat{\eta}_{w_{j}}, z-w_{j}\right\rangle \leq 0\right\}$
$\mathcal{P}_{(n)}^{\mathrm{c}}(D)=\{$ circumscribed poly. with $\leq n$ facets $\}$

$P=\bigcap\left\{\left\langle\hat{\eta}_{w_{j}}, z-w_{j}\right\rangle \leq-\delta_{j}\right\}$
$\mathcal{P}_{(n)}^{\mathrm{co}}(D)=\{$ contained poly. with $\leq n$ facets $\}$

Efficacy of the approximation:

- $\delta_{\mathrm{V}}(D, P)=\operatorname{vol}(D \triangle P)$
- $\delta_{\mathrm{H}}(D, P)=$ Hausdorff distance between D \& P

In \mathbb{R}^{d} : typical results

- Optimal approximation asymptotics.

$$
\inf \{\delta(D, P): \text { complexity }(P) \leq n\} \sim C_{d, D} \frac{1}{n^{k(d)}} \quad \text { as } n \rightarrow \infty
$$

- Identifying "almost-optimal" polyhedra.

Distribution of the source points w_{j} of "best" polyhedra:

- uniform with respect to certain densities,
- centers of minimal ball coverings of $b D$ in some metric

Asymptotic shapes of the facets

- Random approximation asymptotics.

Given i.i.d. random source points $W_{1}, \ldots, W_{n} \sim h$ on $b D$,

$$
\delta(D ; P)^{p, L^{1}} \sim^{\text {a.s. }} C_{d, D, h} \frac{\log (n)^{\ell(d)}}{n^{k(d)}} \quad \text { as } n \rightarrow \infty .
$$

In \mathbb{R}^{d} : some optimal approximation results

Gruber (1993), Ludwig (1999). Let $D \in \mathbb{R}^{d}$ be a strongly convex \mathcal{C}^{2} domain.

$$
\begin{aligned}
& v_{n}^{\mathrm{c}}:=\inf \left\{\operatorname{vol}(P \backslash D): P \in \mathcal{P}_{(n)}^{\mathrm{c}}(D)\right\} \sim a_{d} \cdot \sigma_{B}(b D)^{\frac{d+1}{d-1}} \cdot \frac{1}{n^{2 /(d-1)}} \quad \text { as } n \rightarrow \infty . \\
& v_{n}:=\inf \left\{\operatorname{vol}(D \triangle P): P \in \mathcal{P}_{(n)}(D)\right\} \sim b_{d} \cdot \sigma_{B}(b D)^{\frac{d+1}{d-1}} \cdot \frac{1}{n^{2 /(d-1)}} \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

- $a_{d}=\operatorname{div}_{d-1}$ and $b_{d}=\operatorname{ldiv}_{d-1}$ are unknown for $d>2$.
- The Blaschke measure on $b D: \sigma_{B}=\kappa^{1 /(d+1)} \sigma_{E}$, where

$$
\begin{aligned}
\kappa & =\text { Gaussian curvature function on } b D, \\
\sigma_{E} & =\text { Euclidean surface area measure on } b D .
\end{aligned}
$$

- Among bodies of unit volume, ellipsoids are the "hardest" to approximate!
- Böröczky (2000) removed the curvature assumption.

Geometric \& combinatorial aspects of the problem

Transformation Geometry

- (Strong) Convexity, classes of polyhedra: invariant under affine tranformations of \mathbb{R}^{d}.
- v_{n}^{c} and v_{n} : invariant under volume-preserving or equi-affine transformations of \mathbb{R}^{d}.
- Let $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be an affine map, and $D^{\prime}=A(D)$. Then

$$
A^{*} \sigma_{B}^{D^{\prime}}=|\operatorname{det} A|^{\frac{d-1}{d+1}} \sigma_{B}^{D} .
$$

Tilings on \mathbb{R}^{d-1}
2nd-order local model for strongly convex domains:

$$
\begin{gathered}
U=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: x_{d}>x_{1}^{2}+\cdots x_{d-1}^{2}\right\} . \\
\mathbf{w}=\left\{w_{1}, \ldots, w_{n}\right\} \in b U \xrightarrow{\text { proj. }} \mathbf{w}^{\prime}=\left\{w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right\} \in \mathbb{R}^{d-1}
\end{gathered}
$$

- div_{d-1} : facets of circ $\{\mathbf{w}\} \xrightarrow{\text { proj. }}$ Dirichlet-Voronoi cells of \mathbf{w}^{\prime}.
- Idiv ${ }_{d-1}$: facets of $P(\mathbf{w}, \boldsymbol{\delta}) \xrightarrow{\text { proj. }}$ Laguerre cells of $\left(\mathbf{w}^{\prime}, \boldsymbol{\delta}\right)$.

Dual Image

Polyhedral constructions in \mathbb{C}^{d}

- No notion of \mathbb{C}-convex hulls or psuedoconvex hulls for finite sets!
- In the literature: an analytic polyhedron in Ω with $\leq n$ facets is any finite union of relatively compact components of

$$
\left\{z \in \Omega:\left|f_{j}(z)\right|<1, j=1, \ldots, n\right\}, \quad f_{j}: \Omega \xrightarrow{\text { hol. }} \mathbb{C} .
$$

Bishop (1961). Any bounded ψ-convex domain in \mathbb{C}^{d} can be approximated arbitrarily well by d-faceted analytic polyhedra.

$$
\begin{aligned}
& \Omega=\mathbb{D} \\
& P_{m}:=\left\{z \in \mathbb{D}: \prod_{k=0}^{2 m-1}\left|z-\exp \left(\frac{k \pi i}{m}\right)\right|>\frac{\pi}{m}\right\} \\
& \quad * \inf \{\operatorname{vol}(\mathbb{D} \backslash P): P \text { has one facet }\}=0 . \\
& \quad * m \operatorname{vol}\left(\mathbb{D} \backslash P_{m}\right) \rightarrow c \neq 0 \text { as } m \rightarrow \infty
\end{aligned}
$$

Want to say: P_{m} has $\mathrm{O}(m)$ facets.

$$
P_{30} \subset \mathbb{D}
$$

- We will mimic the "pushing in" of tangent planes.

Polyhedral constructions in \mathbb{C}^{d}
A convex polyhedron in $D \subset \mathbb{R}^{d}$:

$$
\bigcap_{1 \leq j \leq n}\{\overbrace{\left\langle\hat{\eta}_{w^{j}}, z-w^{j}\right\rangle}<\delta_{j}\}
$$

$\Omega=\{\rho<0\}$ is strongly \mathbb{C}-convex.

- $L(z, w)=\sum \frac{\partial \rho}{\partial z_{j}}(w)\left(z_{j}-w_{j}\right)$
- $H^{+}(w, \delta)=\{z \in \Omega:|L(z, w)|>\delta\}$
$\Omega=\{\rho<0\}$ is strongly ψ-convex.

- $Q_{\rho}(z, w)=L(z, w)+2$ nd order terms
- $H^{+}(w, \delta)=\left\{z \in \Omega:\left|Q_{\rho}(z, w)\right|>\delta\right\}$

$$
\begin{aligned}
& \boldsymbol{w}=\left\{w^{1}, \ldots, w^{n}\right\} \subset b \Omega \quad \text { (source set) } \\
& \boldsymbol{\delta}=\left\{\delta_{1}, \ldots, \delta_{n}\right\} \subset \mathbb{R}_{+} \quad \text { (depth set) } \\
& P(\boldsymbol{w} ; \boldsymbol{\delta}):=\bigcap_{1 \leq j \leq n} H^{+}\left(w^{j}, \delta_{j}\right) \\
& \mathcal{P}_{n}(\Omega)=\{P(\boldsymbol{w} ; \delta): P(\boldsymbol{w} ; \delta) \Subset \Omega\}
\end{aligned}
$$

Some relevant features of complex convexity $(d>1)$
$\Sigma=\Sigma_{j=1}^{d-1}$

$\Omega \mathbb{C}^{2}$ domain \mathbb{C}^{d}	Strong \mathbb{C}-convexity	Strong pseudoconvexity
polyhedra	Leray polyhedra	Levi polyhedra
Transform. grp.	LFTs/Möbius	biholomorphisms
Local model (s)	Im $z_{d}>\sum\left\|z_{j}\right\|^{2}+\sum \beta_{j} \operatorname{Re}\left(z_{j}\right)^{2}$	Im $z_{d}>\left\|z_{1}\right\|^{2}+\cdots+\left\|z_{d-1}\right\|^{2}$
2nd order inv.	Eccentricity $\beta(p)=\left(\beta_{1}, \ldots, \beta_{d-1}\right)$	None

Optimal approximation results

Theorem (G., 2017, 2023+). Let $\Omega \in \mathbb{C}^{d}$ be a \mathcal{C}^{∞}-smooth domain.

1. Ω is strongly pseudoconvex. $\exists k_{d}>0$ s.t.

$$
\inf \left\{\operatorname{vol}(D \backslash P): P \in \mathcal{P}_{n}(\Omega)\right\} \sim k_{d} \cdot \sigma_{F}(b \Omega)^{\frac{d+1}{d}} \cdot \frac{1}{n^{1 / d}} \quad \text { as } n \rightarrow \infty
$$

2. Ω is strongly \mathbb{C}-convex. \exists continuous $K_{d}:[0,1)^{d-1} \rightarrow(0, \infty)$ s.t.

$$
\inf \left\{\operatorname{vol}(D \backslash P): P \in \mathcal{P}_{n}(\Omega)\right\} \sim k_{d} \cdot\left(\int_{b \Omega} K_{d}(\beta(z)) d \sigma_{F}(z)\right)^{\frac{d+1}{d}} \cdot \frac{1}{n^{1 / d}} \quad \text { as } n \rightarrow \infty
$$

$d=1$. Each Leray "cut" is a disk.

$$
v_{n} \sim \frac{\pi}{8} \cdot\left(\sigma_{\operatorname{arc}}(b \Omega)\right)^{2} \cdot \frac{1}{n} \quad \text { as } n \rightarrow \infty
$$

$\beta \equiv 0 . \Omega \stackrel{L F T}{\cong} \mathbb{B}^{d}$ and $K_{d}(0, \ldots, 0)=1$.
Speculation. The measure $K_{d}(\boldsymbol{\beta}) \sigma_{F}$ is $\sigma_{M F}$, i.e., $K_{d}(\boldsymbol{\beta})^{d+1}=\sqrt{\Pi\left(1-\beta_{j}^{2}\right)}$.

A single "cap"

Model in $\mathbb{R}^{4}:\left\{x_{4}>x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right\}$
Projection of δ-cap at $(0,0)=\sqrt{\delta}$-ball in Euclidean metric on $\left(\mathbb{R}^{3},+\right)$.

Model in $\mathbb{C}^{2}:\left\{\operatorname{lm} z_{2}>\left|z_{1}\right|^{2}\right\}$
Projection of δ-cap at $(0,0)=\sqrt{\delta}$-ball in Korányi metric on ($\mathbb{C} \times \mathbb{R}$, Heisenberg).

The models \leftrightarrow 'good' tilings of the Heisenberg group $(d=2)$

$$
D_{\beta}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: \operatorname{Im} z_{2}>\left|z_{1}\right|^{2}+\beta \operatorname{Re} z_{1}^{2}\right\}, \quad \beta \in[0,1)
$$

- $\mathrm{I}=$ unit cube in $\mathbb{C} \times \mathbb{R}$
- $C_{\beta}(w, \delta)=$ Leray cut with source w and depth δ
- $c_{\beta}(w, \delta)=$ projection of $C(w, \delta)$
- $v_{n}=\inf \left\{\operatorname{vol} \bigcup_{j=1}^{n} C\left(w^{j}, \delta_{j}\right): I \subset \bigcup_{j=1}^{n} c\left(w^{j}, \delta_{j}\right)\right\}$

Claim. $\lim _{n \rightarrow \infty} \sqrt{n} v_{n}$ exists $=: 2 k_{2} \cdot K_{2}(\beta)^{3 / 2}$.

- Key ingredient: \exists on $\mathbb{C} \times \mathbb{R}$
* group operation $\otimes_{\beta}: w^{2} \otimes_{\beta} c\left(w^{1} ; \delta\right)=c\left(w^{2} \otimes_{\beta} w^{1} ; \delta\right)$.
* left-invariant quasimetric $d_{\beta}: c(w ; \delta)=\left\{d_{\beta}(w, z)<\sqrt{\delta}\right\}$.
- $K_{2}(\beta)$ comes from exploiting d_{β}-tilings of $\mathbb{C} \times \mathbb{R}$.

$$
\text { Missing. } K_{2}(\beta)=(1-\beta)^{3 / 2} \text {. }
$$

- All $\left(\mathbb{C} \times \mathbb{R}, \otimes_{\beta}\right)$ are isomorphic (to the Heisenberg group).
- These isomorphisms are not isometries!

From the model to the general case

The technique of 'shaking' is entirely unavailable!

Near p, Φ and ψ must

- be close to volume-preserving;
- be close to $s_{\text {Euc }}$-preserving on $\partial \Omega$;
- keep the pushed-forward cuts and model cuts 'comparable'.

The maps:

- Φ is an almost explicit LFT.
- The boundary of a strongly \mathbb{C}-convex Ω has a natural contact structure.
- Darboux: any two equi-dim. contact str. are loc. contact isomorphic.
- ψ along $\partial \Omega$ is a Darboux map.

On the exponents

1. $D \subset \mathbb{R}^{d}$.

$$
v_{n} \sim c_{d} \cdot(\text { measure })^{\frac{d+1}{d-1}} \cdot \frac{1}{n^{2 /(d-1)}} \quad \text { as } n \rightarrow \infty
$$

2. $\Omega \subset \mathbb{C}^{d}$.

$$
v_{n} \sim b_{d} \cdot(\text { measure })^{\frac{d+1}{d}} \cdot \frac{1}{n^{1 / d}} \quad \text { as } n \rightarrow \infty
$$

Exponents	Haus. dim. of induced metric	measure	complexity
in \mathbb{R}^{d}	$d-1$	$(d+1) /(d-1)$	$2 /(d-1)$
in \mathbb{C}^{d}	$2 d$	$(d+1) / d$	$1 / d$
	$=\eta$	$=(\eta+2) / \eta$	$=2 / \eta$

(Random) Polyhedral Approximations

In \mathbb{R}^{d} : some random approximation results
$D \in \mathbb{R}^{d} \mathcal{C}^{2}$, strongly convex (!)
$X^{1}, \ldots, X^{n} \in b D$ are i.i.d. with density $f: b D \xrightarrow{(!)} \mathbb{R}_{+}$
Schütt-Werner (2003). $P_{n}=\operatorname{conv}\left\{X^{1}, \ldots, X^{n}\right\}$.

$$
n^{d^{\frac{2}{d-1}}} \mathbb{E}\left(\delta_{V}\left(D, P_{n}\right)\right) \rightarrow c_{1}(d, D, f) \quad \text { as } n \rightarrow \infty .
$$

Böröczky-Reitzner (2004). $P_{n}=\bigcap_{j=1}^{n} H^{+}\left(X^{i}\right) \cap$ large ball.

$$
n^{\frac{2}{d-1}} \mathbb{E}\left(\delta_{V}\left(D, P_{n}\right)\right) \rightarrow c_{2}(d, D, f) \quad \text { as } n \rightarrow \infty .
$$

Glasauer-Schneider (1996). $P_{n}=\operatorname{conv}\left\{X_{1}, \ldots, X_{n}\right\}$.

$$
\left(\frac{n}{\log (n)}\right)^{\frac{2}{d-1}} \delta_{H}\left(D, P_{n}\right) \xrightarrow{p} c_{3}(d, D, f) \quad \text { as } n \rightarrow \infty .
$$

- Exponent of $n=$ that in the optimal case.
- The best density $=$ (normalized) boundary measure in the optimal case.
- Best "random" constant differs "optimal" constant only by a dimensional factor.

Random polyhedra in strongly \mathbb{C}-convex domains $(d>1)$

(Joint work with S. Athreya \& D. Yogeshwaran)

Domain. $\Omega \in \mathbb{C}^{d}$: strongly \mathbb{C}-convex \mathcal{C}^{2} domain.
Random (Leray) polyhedron. $P_{n}:=P\left(\boldsymbol{w}_{n} ; \boldsymbol{\delta}_{n}\right)$, where

- $\boldsymbol{w}_{n}=\left\{W^{1}, \ldots, W^{n}\right\} \subset b \Omega, W^{1}, \ldots, W^{n}$ are i.i.d. with density $f: b \Omega \xrightarrow{\text { cont. }}(0, \infty)$.
- $\delta_{n}: b \Omega \xrightarrow{\text { cont. }} \mathbb{R}_{+}$with appropriate decay.

$$
P_{n}=\bigcap_{1 \leq j \leq n} H^{+}\left(W^{j}, \delta_{n}\left(W^{j}\right)\right) .
$$

Metric of approximation. $\delta_{V}(n):=\operatorname{vol}\left(\Omega \backslash P_{n}\right) \mathbf{1}\left(P_{n} \Subset \Omega\right)+\operatorname{vol}(\Omega) \mathbf{1}\left(P_{n} \nsubseteq \Omega\right)$

* In \mathbb{R}^{d}, such a "penalty" is imposed when circumscribing by random polyhedra.

The depth function.

$$
\delta_{n}(z)=\left(\frac{\log (n)}{n}\right)^{\frac{1}{d}} g(z), \quad z \in b \Omega,
$$

for $g: b \Omega \xrightarrow{\text { cont. }} \mathbb{R}_{+}$such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left(P_{n} \in \Omega\right)=1 \tag{*}
\end{equation*}
$$

* Log factor: $P_{n} \Subset \Omega \Longleftrightarrow$ the "caps" of P_{n} cover $b \Omega$.
* The decay rate and (\star) are compatible.

A random approximation result

Theorem (Athreya-G.-Yogeshwaran, 2022). Given $\Omega, f, \boldsymbol{g}, \boldsymbol{w}_{n}$ and $\boldsymbol{\delta}_{n}$ as above

$$
\left(\frac{n}{\log (n)}\right)^{\frac{1}{d}} \delta V(n) \xrightarrow{p} \int_{b \Omega} g(z) d \sigma_{E u c}(z) \quad \text { as } n \rightarrow \infty .
$$

Optimal random approximation?

Q1. What is the best R.H.S., say $\nu_{D}(f)$, for a fixed f ?
Missing. The Leray polyhedra are associated to a natural sub-Riemannian metric d on $b \Omega$.
We need asymptotics of

$$
R_{n}=\min \left\{r>0: b \Omega \subset \bigcup_{j=1}^{n} B_{d}\left(W^{j}, r\right)\right\} .
$$

Q2. Which density f gives $\nu_{D}:=$ least possible $\nu_{D}(f)$?
Conjecture. Assuming heuristics for R_{n},

$$
f \sigma_{E u c}=\frac{\sigma_{M F}}{\sigma_{M F}(b \Omega)} \quad \text { and } \quad \nu_{D}=\widetilde{k}_{d}\left(\sigma_{M F}(b \Omega)\right)^{\frac{d+1}{d}} .
$$

THANK YOU.

