An intrinsic volume metric for convex bodies
 Online Asymptotic Geometric Analysis Seminar

Florian Besau and Steven Hoehner*
(arXiv: 2202.01353 to appear in Comm. Contemp. Math.)

TU Wien and Longwood University* hoehnersd@longwood.edu

January 26, 2023

Background

The intrinsic volumes $V_{0}(K), V_{1}(K), \ldots, V_{n}(K)$ of a convex body K in \mathbb{R}^{n} are defined as the coefficients in Steiner's formula for the volume of the outer parallel body

$$
\operatorname{vol}_{n}\left(K+\varepsilon B_{n}\right)=\sum_{j=0}^{n} \varepsilon^{n-j} \operatorname{vol}_{n-j}\left(B_{n-j}\right) V_{j}(K) \quad \forall \varepsilon \geq 0
$$

where B_{m} denotes the m-dimensional Euclidean unit ball centered at o and $K+\varepsilon B_{n}=\left\{x+\varepsilon y: x \in K, y \in B_{n}\right\}$.

- $V_{n}(K)=\operatorname{vol}_{n}(K)$
- $V_{n-1}(K)=\frac{1}{2} \operatorname{vol}_{n-1}(\partial K)$
- $V_{1}(K)=c(n) w(K)$
- $V_{0}(K)=\chi(K)=1$

$\operatorname{arca}\left(K+\varepsilon B_{2}\right)=\operatorname{arca}(K)+\varepsilon \cdot \operatorname{per}(K)+\pi \varepsilon^{2}$

$$
\begin{aligned}
& =\varepsilon^{2} \pi V_{0}(k)+2 \varepsilon V_{1}(k)+V_{2}(k)
\end{aligned}
$$

Kubota's integral formula

For $j \in[n]=\{1, \ldots, n\}$,

$$
V_{j}(K)=\left[\begin{array}{l}
n \\
j
\end{array}\right] \int_{\operatorname{Gr}(n, j)} \operatorname{vol}_{j}(K \mid H) \mathrm{d} \nu_{j}(H)
$$

where:

- $\operatorname{Gr}(n, j)$ is the Grassmannian of all j-dimensional subspaces of \mathbb{R}^{n}, and ν_{j} is the (uniquely determined) Haar probability measure on $\operatorname{Gr}(n, j)$;
- $K \mid H$ is the orthogonal projection of K into the subspace $H \in \operatorname{Gr}(n, j)$;
- $\left[\begin{array}{l}n \\ j\end{array}\right]=\binom{n}{j} \frac{\operatorname{vol}_{n}\left(B_{n}\right)}{\operatorname{vol}_{j}\left(B_{j}\right) \operatorname{vol}_{n-j}\left(B_{n-j}\right)}=\frac{1}{2} \frac{\omega_{j+1} \omega_{n-j+1}}{\omega_{n+1}}$ is the flag coefficient of Klain and Rota (1997), where $\omega_{n}=n \operatorname{vol}_{n}\left(B_{n}\right)$.

The intrinsic volume metric

Definition

For convex bodies K and L in \mathbb{R}^{n} and $j \in[n]$, we define the j th intrinsic volume metric δ_{j} by

$$
\delta_{j}(K, L):=\left[\begin{array}{l}
n \\
j
\end{array}\right] \int_{\operatorname{Gr}(n, j)} \operatorname{vol}_{j}((K \mid H) \triangle(L \mid H)) \mathrm{d} \nu_{j}(H) .
$$

- This quantity may be thought of as the mean distance of the shadows of K and L, averaged over all j-dimensional subspaces.
- Note that $\delta_{n}(K, L)=\operatorname{vol}_{n}(K \triangle L)$.

Properties of δ_{j}

Theorem (Besau-H., 2023)

The functional $\delta_{j}: \mathcal{K}^{n} \times \mathcal{K}^{n} \rightarrow[0, \infty)$ is:
(i) a metric on \mathcal{K}^{n};
(ii) continuous with respect to the Hausdorff metric;
(iii) rigid motion invariant, that is,

$$
\delta_{j}(\vartheta K+x, \vartheta L+x)=\delta_{j}(K, L)
$$

for all orthogonal transformations $\vartheta \in O\left(\mathbb{R}^{n}\right)$ and all $x \in \mathbb{R}^{n}$;
(iv) positively j-homogeneous, that is,

$$
\delta_{j}(t K, t L)=t^{j} \delta_{j}(K, L), \quad \forall t>0 .
$$

Comparison with other intrinsic volume distances

- Florian (1989): $\rho_{j}(K, L)=2 V_{j}([K, L])-V_{j}(K)-V_{j}(L)$
- Besau-H.-Kur (2019):

$$
\Delta_{j}(K, L)=V_{j}(K)+V_{j}(L)-2 V_{j}(K \cap L)
$$

Proposition (Besau-H., 2023)
For all convex bodies $K, L \in \mathcal{K}^{n}$, we have:
(i) If $K \subset L$ and $j \in[n]$, then

$$
\delta_{j}(K, L)=\rho_{j}(K, L)=\Delta_{j}(K, L)=V_{j}(L)-V_{j}(K) ;
$$

(ii) $\delta_{j}(K, L) \leq \min \left\{\rho_{j}(K, L), \Delta_{j}(K, L)\right\}$ for all $j \in[n]$;
(iii) $\delta_{j}(K, L) \geq\left|V_{j}(K)-V_{j}(L)\right|$ for all $j \in[n]$;
(iv) $\rho_{n}(K, L) \geq \delta_{n}(K, L)=\Delta_{n}(K, L)=\operatorname{vol}_{n}(K \triangle L)$;
(v) If $K \cap L \neq \varnothing$, then

$$
\begin{aligned}
\Delta_{1}(K, L) \geq \delta_{1}(K, L) & =\rho_{1}(K, L) \\
& =2\left[\begin{array}{l}
n \\
1
\end{array}\right] \int_{\mathbb{S}^{n-1}}\left|h_{K}(u)-h_{L}(u)\right| \mathrm{d} \sigma(u) .
\end{aligned}
$$

The random beta polytope model

- Let X_{1}, \ldots, X_{N} be i.i.d. points chosen from \mathbb{R}^{n} according to the beta distribution, which for a parameter $\beta>-1$ has the density

$$
f_{n, \beta}(x)=\frac{\Gamma\left(\frac{n}{2}+\beta+1\right)}{\pi^{\frac{n}{2}} \Gamma(\beta+1)}\left(1-\|x\|^{2}\right)^{\beta} \mathbb{1}_{\{x:\|x\|<1\}}(x) .
$$

- A random beta polytope $P_{n, N}^{\beta}$ is the convex hull of the X_{i}, which is denoted by $\left[X_{1}, \ldots, X_{N}\right]$.
- The uniform probability distribution on B_{n} is the $\beta=0$ distribution.
- Kabluchko, Temesvari and Thäle (2019): The uniform probability distribution σ on the sphere \mathbb{S}^{n-1} is the weak limit of the beta distribution as $\beta \rightarrow-1^{+}$.

Expected volume of random beta polytopes

Theorem (Affentranger, 1991)

Let $n \in \mathbb{N}$ and let X_{1}, \ldots, X_{N} be i.i.d. random points chosen from B_{n} according to the beta distribution with $\beta>-1$, and set $P_{n, N}^{\beta}:=\left[X_{1}, \ldots, X_{N}\right]$. Then the expected volume of $P_{n, N}^{\beta}$ satisfies

$$
\lim _{N \rightarrow \infty} N^{\frac{2}{n+2 \beta+1}} \mathbb{E}\left[\operatorname{vol}_{n}\left(B_{n} \backslash P_{n, N}^{\beta}\right)\right]=A_{n, \beta}
$$

where

$$
\begin{aligned}
A_{n, \beta} & :=\frac{\omega_{n}}{2} \frac{n+2 \beta+1}{n+2 \beta+3} \frac{\Gamma\left(n+1+\frac{2}{n+2 \beta+1}\right)}{\Gamma(n+1)} d_{n, \beta}^{\frac{2}{n+2 \beta+1}} \\
& =\frac{\omega_{n}}{2}\left(1+O\left(\frac{\ln (n+2 \beta+2)}{n+2 \beta+1}\right)\right), \quad \forall n \in \mathbb{N}, \forall \beta \in[-1 / 2, \infty)
\end{aligned}
$$

and $d_{n, \beta}$ is a specifically known constant depending on the second moment of a random beta simplex inscribed in B_{n-1}.

Asymptotic best approximation of the ball

Theorem (Besau-H.-Kur, 2019)
For every $j \in[n]$ there exist absolute constants $c_{1}, c_{2}>0$ such that for all sufficiently large N, there exists a polytope $P_{n, j, N} \subset B_{n}$ with at most N vertices (respectively, $P_{n, j, N} \supset B_{n}$ with at most N facets) which satisfies

$$
c_{1} j V_{j}\left(B_{n}\right) N^{-\frac{2}{n-1}} \leq \Delta_{j}\left(B_{n}, P_{n, j, N}\right) \leq c_{2} j V_{j}\left(B_{n}\right) N^{-\frac{2}{n-1}}
$$

- It is also shown that $c_{1} \sim c_{2}=\frac{1}{2}+O\left(\frac{\ln n}{n}\right)$ as $n \rightarrow \infty$.
- Interestingly, it turns out there is a polytope which satisfies all n inequalities (5) simultaneously.

Comparing best and random approximations of the ball

Comparing the previous two theorems, we find that in the inscribed case, random approximation of the ball is
asymptotically (almost) as good as best approximation.

Corollary (Besau-H.-Kur, 2019)

Choose N points X_{1}, \ldots, X_{N} independently with respect to the uniform probability measure σ on the unit sphere \mathbb{S}^{n-1}, and let $P_{N}:=\left[X_{1}, \ldots, X_{N}\right]$. Then for every $j \in[n]$,

$$
\limsup _{N \rightarrow \infty} \frac{\mathbb{E}\left[\Delta_{j}\left(B_{n}, P_{N}\right)\right]}{\Delta_{j}\left(B_{n}, P_{N}^{\text {best }}\right)}=1+O\left(\frac{\ln n}{n}\right)
$$

Arbitrarily positioned polytopes: Volume, surface area and mean width approximations

- For the symmetric difference metric $(j=n)$ and surface area deviation $(j=n-1)$, dropping the restriction that the ball contains the polytope (or vice versa) improves the estimate by at least a factor of n.
- The same phenomenon has also been observed for the mean width metric ρ_{1}.
- This can be seen by comparing results of Besau-H.-Kur (2019), Glasauer-Gruber (1997), Grote-Thäle-Werner (2021), Grote-Werner (2018), Gruber (1993), H.-Kur (2021), H.-Schütt-Werner (2018), Ludwig (1999),

Ludwig-Schütt-Werner (2006) and Kur (2020).

Arbitrarily positioned polytopes: Intrinsic volume approximation

Theorem (Besau-H.-Kur, 2019)

There exists an absolute constant C such that for all sufficiently large N,

$$
\begin{equation*}
\min _{Q \in \mathcal{P}_{n, N}} \Delta_{j}\left(B_{n}, Q\right) \leq C \min \left\{1, \frac{j \ln n}{n}\right\} V_{j}\left(B_{n}\right) N^{-\frac{2}{n-1}} . \tag{1}
\end{equation*}
$$

where $\mathcal{P}_{n, N}$ is the set of all polytopes in \mathbb{R}^{n} with at most N vertices.

- Recall that $\delta_{j} \leq \Delta_{j}$.

How much can we improve the upper bound (1) for the approximation if we measure the distance by δ_{j} instead of Δ_{j} ?

Main result

Theorem (Besau-H., 2023)
There exists an absolute constant C such that for every $n \in \mathbb{N}$ with $n \geq 2$ and every $j \in[n]$, when N is sufficiently large

$$
\begin{equation*}
\min _{Q \in \mathcal{P}_{n, N}} \delta_{j}\left(B_{n}, Q\right) \leq C \frac{j}{n} V_{j}\left(B_{n}\right) N^{-\frac{2}{n-1}} \tag{2}
\end{equation*}
$$

It is shown that $C=2+O\left(\frac{\ln n}{n}\right)$ as $n \rightarrow \infty$.

Main ingredients of the proof

The proof combines ideas from two papers:

- The random construction of Ludwig-Schütt-Werner (2006) yields the best-known estimate for the asymptotic best approximation of B_{n} by polytopes with N vertices in the symmetric difference metric.
- A random uniform polytope is generated in the ball, which is shrunk by a carefully chosen factor depending on N. The expected symmetric volume difference is estimated using the Blaschke-Petkanschin formula.
- The orthogonal projection of a beta distribution onto a subspace yields another beta distribution.
Kabluchko-Temesvari-Thäle (2019) give a formula for it.

Step 1: Reduction to the weighted symmetric volume difference

First we reduce the problem to estimating the expected symmetric volume difference of the projection of a random beta polytope and a Euclidean ball.

Lemma (Besau-H., 2023)
Let U_{1}, \ldots, U_{N} be chosen independently and uniformly from the sphere \mathbb{S}^{n-1}, and set $P_{n, N}^{\text {unif }}:=\left[U_{1}, \ldots, U_{N}\right]$. Then for any fixed $r>0$ and all $j \in[n]$,

$$
\mathbb{E}\left[\delta_{j}\left(P_{n, N}^{\text {unif }}, r B_{n}\right)\right]=\left[\begin{array}{l}
n \\
j
\end{array}\right] \mathbb{E}\left[\operatorname{vol}_{j}\left(P_{j, N}^{\beta=\frac{n-j-2}{2}} \triangle r B_{j}\right)\right]
$$

Step 2: The choice of scaling factor

For any $r \in(0,1)$,

$$
\begin{align*}
\mathbb{E}\left[\operatorname{vol}_{n}\left(r B_{n} \triangle P_{n, N}^{\beta}\right)\right] & =\operatorname{vol}_{n}\left(B_{n} \backslash r B_{n}\right)-\mathbb{E}\left[\operatorname{vol}_{n}\left(B_{n} \backslash P_{n, N}^{\beta}\right)\right] \\
& +2 \mathbb{E}\left[\operatorname{vol}_{n}\left(r B_{n} \cap\left(P_{n, N}^{\beta}\right)^{c}\right)\right] . \tag{3}
\end{align*}
$$

Given $N \geq n+1$ and $\beta \geq-1, \exists \gamma_{n, N, \beta} \in(0,1)$ such that

$$
\begin{equation*}
\operatorname{vol}_{n}\left(B_{n} \backslash\left(1-\gamma_{n, N, \beta}\right) B_{n}\right)=\mathbb{E}\left[\operatorname{vol}_{n}\left(B_{n} \backslash P_{n, N}^{\beta}\right)\right] \tag{4}
\end{equation*}
$$

Setting $r=t_{n, N, \beta}:=1-\gamma_{n, N, \beta}$ and $\mathrm{dP}_{\beta}(x)=f_{n, \beta}(x) \mathrm{d} x$, by (3) and (4) we have

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \triangle P_{n, N}^{\beta}\right)\right]=2 \int_{B_{n}} & \cdots \int_{B_{n}} \operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \backslash\left[x_{1}, \ldots, x_{N}\right]\right) \\
& \times d \mathbb{P}_{\beta}\left(x_{1}\right) \cdots \mathbb{P}_{\beta}\left(x_{N}\right)
\end{aligned}
$$

Estimating the inflation factor

- By the choice of $\gamma_{n, N, \beta}$, Affentranger's result and the homogeneity of volume,

$$
\gamma_{n, N, \beta} \sim \frac{\mathbb{E}\left[\operatorname{vol}_{n}\left(B_{n} \backslash P_{n, N}^{\beta}\right)\right]}{n \operatorname{vol}_{n}\left(B_{n}\right)} \sim \frac{A_{n, \beta}}{\omega_{n}} N^{-\frac{2}{n+2 \beta+1}}
$$

as $N \rightarrow \infty$.

- By Stirling's inequality, $\exists c_{1}, c_{2}>0$ (absolute constants) such that

$$
c_{1} N^{-\frac{2}{n+2 \beta+1}} \leq \gamma_{n, N, \beta} \leq c_{2} N^{-\frac{2}{n+2 \beta+1}}
$$

In fact,

$$
\frac{A_{n, \beta}}{\omega_{n}} \sim c_{1} \sim c_{2}=\frac{1}{2}\left(1+O\left(\frac{\ln (n+2 \beta+2)}{n+2 \beta+1}\right)\right)
$$

as $n \rightarrow \infty$.

Step 3: The local estimate

The next result extends LSW from the uniform distribution on the sphere $\mathbb{S}^{n-1}(\beta=-1)$ to all beta distributions on B_{n} with $\beta \geq-\frac{1}{2}$.

Theorem (Besau-H., 2023)

Fix $n \in \mathbb{N}$ and $\beta \geq-\frac{1}{2}$, and let $P_{n, N}^{\beta}$ be the convex hull of $N \geq n+1$ random points X_{1}, \ldots, X_{N} chosen i.i.d. from the Euclidean unit ball B_{n} with respect to the beta distribution. Then for all sufficiently large N,

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{vol}_{n}\left(B_{n} \triangle t_{n, N, \beta}^{-1} P_{n, N}^{\beta}\right)\right] & \leq\left(1+O\left(\frac{\ln (n+2 \beta+2)}{n+2 \beta+1}\right)\right) \\
& \times \frac{2 n \operatorname{vol}_{n}\left(B_{n}\right)}{n+2 \beta+1} N^{-\frac{2}{n+2 \beta+1}}
\end{aligned}
$$

Step 3(i): Reduction to beta polytopes containing o

- Choose i.i.d. random points X_{1}, X_{2}, \ldots from B_{n} according to $f_{n, \beta}$, and for $N \geq n+1$ define $P_{n, N}^{\beta}:=\left[X_{1}, \ldots, X_{N}\right]$.
- Let $\mathcal{E}_{n, N, \beta}$ denote the event that the origin o lies in the interior of $P_{n, N}^{\beta}$. By a result of Schütt and Werner (2003),
$\mathbb{P}\left(\mathcal{E}_{n, N, \beta}^{c}\right)=\mathbb{P}\left(\left\{o \notin \operatorname{int}\left[X_{1}, \ldots, X_{N}\right]\right\}\right)$
$=\mathbb{P}_{\beta}^{N}\left(\left\{\left(x_{1}, \ldots, x_{N}\right) \in B_{n}^{N}: o \notin \operatorname{int}\left[x_{1}, \ldots, x_{N}\right]\right\}\right)$
$\leq e^{-c(n, \beta) N}$
for some constant $c(n, \beta)$ satisfying $0<C_{1} \leq c(n, \beta) \leq C_{2}$ where C_{1}, C_{2} are absolute constants.

Step 3(i): Reduction to beta polytopes containing o

- By the law of total expectation,

$$
\begin{aligned}
& \mathbb{E}\left[\operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \triangle P_{n, N}^{\beta}\right)\right] \\
&=\mathbb{E}\left[\operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \triangle P_{n, N}^{\beta}\right) \mid \mathcal{E}_{n, N, \beta}\right] \mathbb{P}\left(\mathcal{E}_{n, N, \beta}\right) \\
& \quad+ \mathbb{E}\left[\operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \triangle P_{n, N}^{\beta}\right) \mid \mathcal{E}_{n, N, \beta}^{c}\right] \mathbb{P}\left(\mathcal{E}_{n, N, \beta}^{c}\right) \\
& \quad \leq \mathbb{E}\left[\operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \triangle P_{n, N}^{\beta}\right) \mid \mathcal{E}_{n, N, \beta}\right] \\
&+\operatorname{vol}_{n}\left(B_{n}\right) e^{-c(n, \beta) N} .
\end{aligned}
$$

- The second term is negligible and we shall henceforth ignore it.

Step 3(ii): Reduction to simplicial polytopes

Let

$$
\begin{aligned}
E_{n, N, \beta}:=\left\{\left(x_{1}, \ldots, x_{N}\right)\right. & \in B_{n}^{N}: o \in \operatorname{int}\left[x_{1}, \ldots, x_{N}\right] \\
& \text { and } \left.\left[x_{1}, \ldots, x_{n}\right] \text { is simplicial }\right\} .
\end{aligned}
$$

Since $P_{n, N}^{\beta}$ is simplicial with probability 1 ,

$$
\begin{aligned}
& \mathbb{E}\left[\operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \triangle P_{n, N}^{\beta}\right) \mid \mathcal{E}_{n, N, \beta}\right] \\
& \begin{aligned}
=2 \int_{B_{n}} \cdots \int_{B_{n}} \operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \backslash\right. & {\left.\left[x_{1}, \ldots, x_{N}\right]\right) \mathbb{1}_{E_{n, N, \beta}}\left(x_{1}, \ldots, x_{N}\right) } \\
& \times d \mathbb{P}_{\beta}\left(x_{1}\right) \cdots \mathbb{P}_{\beta}\left(x_{N}\right) .
\end{aligned}
\end{aligned}
$$

Step 3(iii): Express the integral as a sum over cones

For $\left(x_{1}, \ldots, x_{N}\right) \in E_{n, N, \beta}$, we have

$$
\mathbb{R}^{n}=\bigcup_{\left[x_{j_{1}}, \ldots, x_{j_{n}}\right] \in \mathcal{F}_{n-1}\left(\left[x_{1}, \ldots, x_{N}\right]\right)} \operatorname{cone}\left(x_{j_{1}}, \ldots, x_{j_{n}}\right),
$$

where $\mathcal{F}_{n-1}\left(\left[x_{1}, \ldots, x_{N}\right]\right)$ is the set of facets of $\left[x_{1}, \ldots, x_{N}\right]$ and

$$
\operatorname{cone}\left(y_{1}, \ldots, y_{m}\right):=\left\{\sum_{i=1}^{m} a_{i} y_{i}: a_{i} \geq 0, i \in[m]\right\}
$$

denotes the cone spanned by $y_{1}, \ldots, y_{m} \in \mathbb{R}^{n}$.

Step 3(iii): Express the integral as a sum over cones

- For $y_{1}, \ldots, y_{n} \in \mathbb{R}^{n}$ whose affine hull is an
($n-1$)-dimensional hyperplane $H\left(y_{1}, \ldots, y_{n}\right)$, let $H^{+}\left(y_{1}, \ldots, y_{n}\right)$ denote the halfspace with $o \in H^{+}\left(y_{1}, \ldots, y_{n}\right)$.
- For $x_{1}, \ldots, x_{N} \in \mathbb{R}^{n}$ and $\left\{j_{1}, \ldots, j_{n}\right\} \subset[N]$, define the functional $\Phi_{j_{1}, \ldots, j_{n}}^{\beta}:\left(\mathbb{R}^{n}\right)^{N} \rightarrow[0, \infty)$ by

$$
\begin{aligned}
& \Phi_{j_{1}, \ldots, j_{n}}^{\beta}\left(x_{1}, \ldots, x_{N}\right) \\
& :=\operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \cap H^{-}\left(x_{j_{1}}, \ldots, x_{j_{n}}\right) \cap \operatorname{cone}\left(x_{j_{1}}, \ldots, x_{j_{n}}\right)\right),
\end{aligned}
$$

if $o \in \operatorname{int}\left(\left[x_{1}, \ldots, x_{N}\right]\right)$ and $\operatorname{dim}\left(\left[x_{j_{1}}, \ldots, x_{j_{n}}\right]\right)=n-1$; otherwise, set $\Phi_{j_{1}, \ldots, j_{n}}^{\beta}\left(x_{1}, \ldots, x_{N}\right):=0$.

Step 3(iii): Express the integral as a sum over cones

Then

$$
\begin{aligned}
& \mathbb{E}\left[\operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \triangle P_{n, N}^{\beta}\right) \mid \mathcal{E}_{n, N, \beta}\right] \\
& =2 \int_{B_{n}} \cdots \int_{B_{n}} \operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \backslash\left[x_{1}, \ldots, x_{N}\right]\right) \mathbb{1}_{E_{n, N, \beta}}\left(x_{1}, \ldots, x_{N}\right) \\
& \\
& \times 2 \int_{B_{n}} \cdots \int_{B_{n}} \sum_{\left\{j_{1}, \ldots, j_{n}\right\} \subset[N]} \Phi_{j_{1}, \ldots, j_{n}}^{\beta}\left(x_{1}, \ldots, x_{N}\right) d \mathbb{P}_{\beta}\left(x_{N}\right) \\
& =2\left(x_{1}\right) \cdots d \mathbb{P}_{\beta}\left(x_{N}\right) \\
& =2 \int_{B_{n}} \cdots \int_{B_{n}} \Phi_{1, \ldots, n}^{\beta}\left(x_{1}, \ldots, x_{N}\right) d \mathbb{P}_{\beta}\left(x_{1}\right) \cdots \operatorname{dP}_{\beta}\left(x_{N}\right) .
\end{aligned}
$$

Step 3(iv): Apply the affine Blaschke-Petkanschin formula

We apply the affine Blaschke-Petkantschin formula to derive

$$
\begin{aligned}
& \mathbb{E}\left[\operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \triangle P_{n, N}^{\beta}\right) \mid \mathcal{E}_{n, N, \beta}\right] \\
& =2 \omega_{n}(n-1)!\binom{N}{n} \int_{\mathbb{S}^{n-1}} \int_{0}^{1} \int_{B_{n} \cap H} \cdots \int_{B_{n} \cap H} \\
& {\left[\int_{B_{n}} \ldots \int_{B_{n}} \Phi_{1, \ldots, n}^{\beta}\left(x_{1}, \ldots, x_{N}\right) \mathbb{P}_{\beta}\left(x_{n+1}\right) \cdots \mathbb{d}_{\beta}\left(x_{N}\right)\right] \times} \\
& \quad \times \operatorname{vol}_{n-1}\left(\left[x_{1}, \ldots, x_{n}\right]\right) d \mathbb{P}_{\beta}^{H}\left(x_{1}\right) \cdots \mathbb{P}_{\beta}^{H}\left(x_{n}\right) \mathrm{d} h \mathrm{~d} \sigma(u) .
\end{aligned}
$$

After some standard computations...

...we finally arrive at the estimate

$$
\begin{aligned}
& \mathbb{E}\left[\mathrm{vol}_{n}\left(t_{n, N, \beta} B_{n} \triangle P_{n, N}^{\beta}\right)\right] \\
& \leq\left(1+\frac{1}{n+2 \beta+3}\right) \frac{2 n \omega_{n}}{n+2 \beta+1} \frac{1}{N^{n}}\binom{N}{n}\left(\frac{d_{n, \beta}}{N}\right)^{\frac{2}{n+2 \beta+1}} \\
& \quad \times \int_{0}^{N \varphi_{\beta}\left(\frac{n+2 \beta+2}{n+2 \beta+3)}\right.} t^{n-1+\frac{2}{n+2 \beta+1}}\left(1-\frac{t}{N}\right)^{N-n} \mathrm{~d} t+e^{-C(n, \beta) N} .
\end{aligned}
$$

Here $d_{n, \beta}$ is a specifically known constant depending on the second moment of a random beta simplex, $C(n, \beta)>0$, and $\varphi_{\beta}(h)=1-F_{1, \beta+\frac{n-1}{2}}(h)$ where $F_{1, \beta}$ is the cdf of the one-dimensional beta distribution,

$$
F_{1, \beta}(h)=c_{1, \beta} \int_{-1}^{h}\left(1-x^{2}\right)^{\beta} \mathrm{d} x
$$

Conclusion of Step 3

By standard estimates we get that for large enough N,

$$
\begin{aligned}
& \int_{0}^{N \varphi_{\beta}\left(\frac{n+2 \beta+2}{n+2 \beta+3}\right)} t^{n-1+\frac{2}{n+2 \beta+1}}\left(1-\frac{t}{N}\right)^{N-n} \mathrm{~d} t \\
& \leq\left(1+e^{-O(n+2 \beta+1)}\right) \Gamma\left(n+\frac{2}{n+2 \beta+1}\right)
\end{aligned}
$$

Thus for large enough N,
$\mathbb{E}\left[\operatorname{vol}_{n}\left(t_{n, N, \beta} B_{n} \triangle P_{n, N}^{\beta}\right)\right] \leq\left(1+O\left((n+2 \beta+3)^{-1}\right)\right) \frac{2 \omega_{n}}{n+2 \beta+1}$

$$
\times \frac{n!}{N^{n}}\binom{N}{n} \frac{\Gamma\left(n+\frac{2}{n+2 \beta+1}\right)}{\Gamma(n)}\left(\frac{d_{n, \beta}}{N}\right)^{\frac{2}{n+2 \beta+1}}+e^{-C(n, \beta) N} .
$$

Estimates for the gamma function yield
$\mathbb{E}\left[\operatorname{vol}_{n}\left(B_{n} \triangle t_{n, N, \beta}^{-1} P_{n, N}^{\beta}\right)\right] \leq \frac{C_{n \operatorname{vol}_{n}\left(B_{n}\right)}^{n+2 \beta+1}}{n} N^{-\frac{2}{n+2 \beta+1}}$.

Step 4: Going from local estimates to the global estimate

- Replace n by j.
- Select the parameter $\beta=\frac{n-j-2}{2}$, which corresponds to a j-dimensional projection of the uniform distribution on \mathbb{S}^{n-1}

$$
(\beta=-1) .
$$

- Choose the scaling factor $t_{j, N, \frac{n-j-2}{2}}$.
- Substitute everything into the local estimate from Step 3.

Using the identity $V_{j}\left(B_{n}\right)=\left[\begin{array}{l}n \\ j\end{array}\right] \operatorname{vol}_{j}\left(B_{j}\right)$, for large N we get

$$
\begin{aligned}
\mathbb{E}\left[\delta_{j}\left(t_{j, N, \frac{n-j-2}{2}}^{-1} P_{n, N}^{\mathrm{unif}}, B_{n}\right)\right] & =\left[\begin{array}{l}
n \\
j
\end{array}\right] \mathbb{E}\left[\operatorname{vol}_{j}\left(t_{j, N, \frac{n-j-2}{2}}^{-1} P_{j, N}^{\beta=\frac{n-j-2}{2}} \triangle B_{j}\right)\right] \\
& \leq\left[\begin{array}{c}
n \\
j
\end{array}\right] \frac{C_{j v o l}^{j}\left(B_{j}\right)}{n-1} N^{-\frac{2}{n-1}} \\
& =\frac{C j}{n-1} V_{j}\left(B_{n}\right) N^{-\frac{2}{n-1}} .
\end{aligned}
$$

Thank you!

hoehnersd@longwood.edu

