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Background

The intrinsic volumes V0(K ),V1(K ), . . . ,Vn(K ) of a convex

body K in Rn are defined as the coefficients in Steiner’s formula

for the volume of the outer parallel body

voln(K + εBn) =
n∑

j=0

εn−j voln−j(Bn−j)Vj(K ) ∀ε ≥ 0,

where Bm denotes the m-dimensional Euclidean unit ball

centered at o and K + εBn = {x + εy : x ∈ K , y ∈ Bn}.
• Vn(K ) = voln(K )

• Vn−1(K ) = 1
2 voln−1(∂K )

• V1(K ) = c(n)w(K )

• V0(K ) = χ(K ) = 1
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Kubota’s integral formula

For j ∈ [n] = {1, . . . , n},

Vj(K ) =

[
n

j

]∫
Gr(n,j)

volj(K |H)dνj(H)

where:

• Gr(n, j) is the Grassmannian of all j-dimensional subspaces

of Rn, and νj is the (uniquely determined) Haar probability

measure on Gr(n, j);

• K |H is the orthogonal projection of K into the subspace

H ∈ Gr(n, j);

•
[
n
j

]
=

(n
j

) voln(Bn)
volj (Bj ) voln−j (Bn−j )

= 1
2
ωj+1ωn−j+1

ωn+1
is the flag

coefficient of Klain and Rota (1997), where

ωn = n voln(Bn).
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The intrinsic volume metric

Definition
For convex bodies K and L in Rn and j ∈ [n], we define the jth

intrinsic volume metric δj by

δj(K , L) :=

[
n

j

]∫
Gr(n,j)

volj((K |H)△(L|H))dνj(H).

• This quantity may be thought of as the mean distance of the

shadows of K and L, averaged over all j-dimensional subspaces.

• Note that δn(K , L) = voln(K△L).
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Properties of δj

Theorem (Besau-H., 2023)

The functional δj : Kn ×Kn → [0,∞) is:

(i) a metric on Kn;

(ii) continuous with respect to the Hausdorff metric;

(iii) rigid motion invariant, that is,

δj(ϑK + x , ϑL+ x) = δj(K , L)

for all orthogonal transformations ϑ ∈ O(Rn) and all

x ∈ Rn;

(iv) positively j-homogeneous, that is,

δj(tK , tL) = t jδj(K , L), ∀t > 0.
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Comparison with other intrinsic volume distances
• Florian (1989): ρj(K , L) = 2Vj([K , L])− Vj(K )− Vj(L)

• Besau-H.-Kur (2019):

∆j(K , L) = Vj(K ) + Vj(L)− 2Vj(K ∩ L)

Proposition (Besau-H., 2023)

For all convex bodies K , L ∈ Kn, we have:

(i) If K ⊂ L and j ∈ [n], then

δj(K , L) = ρj(K , L) = ∆j(K , L) = Vj(L)− Vj(K );

(ii) δj(K , L) ≤ min{ρj(K , L),∆j(K , L)} for all j ∈ [n];

(iii) δj(K , L) ≥ |Vj(K )− Vj(L)| for all j ∈ [n];

(iv) ρn(K , L) ≥ δn(K , L) = ∆n(K , L) = voln(K△L);

(v) If K ∩ L ̸= ∅, then

∆1(K , L) ≥ δ1(K , L) = ρ1(K , L)

= 2
[
n
1

] ∫
Sn−1 |hK (u)− hL(u)|dσ(u). 6 / 29



The random beta polytope model

• Let X1, . . . ,XN be i.i.d. points chosen from Rn according to the

beta distribution, which for a parameter β > −1 has the density

fn,β(x) =
Γ
(
n
2 + β + 1

)
π

n
2 Γ(β + 1)

(1− ∥x∥2)β1{x :∥x∥<1}(x).

• A random beta polytope Pβ
n,N is the convex hull of the Xi ,

which is denoted by [X1, . . . ,XN ].

• The uniform probability distribution on Bn is the β = 0

distribution.

• Kabluchko, Temesvari and Thäle (2019): The uniform probability

distribution σ on the sphere Sn−1 is the weak limit of the beta

distribution as β → −1+.
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Expected volume of random beta polytopes

Theorem (Affentranger, 1991)

Let n ∈ N and let X1, . . . ,XN be i.i.d. random points chosen from Bn

according to the beta distribution with β > −1, and set

Pβ
n,N := [X1, . . . ,XN ]. Then the expected volume of Pβ

n,N satisfies

lim
N→∞

N
2

n+2β+1E[voln(Bn \ Pβ
n,N)] = An,β ,

where

An,β :=
ωn

2

n + 2β + 1

n + 2β + 3

Γ
(
n + 1 + 2

n+2β+1

)
Γ(n + 1)

d
2

n+2β+1

n,β

=
ωn

2

(
1 + O

(
ln(n + 2β + 2)

n + 2β + 1

))
, ∀n ∈ N, ∀β ∈ [−1/2,∞)

and dn,β is a specifically known constant depending on the second

moment of a random beta simplex inscribed in Bn−1.
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Asymptotic best approximation of the ball

Theorem (Besau-H.-Kur, 2019)

For every j ∈ [n] there exist absolute constants c1, c2 > 0 such

that for all sufficiently large N, there exists a polytope

Pn,j ,N ⊂ Bn with at most N vertices (respectively, Pn,j ,N ⊃ Bn

with at most N facets) which satisfies

c1jVj(Bn)N
− 2

n−1 ≤ ∆j(Bn,Pn,j ,N) ≤ c2jVj(Bn)N
− 2

n−1 .

• It is also shown that c1 ∼ c2 =
1
2 + O

(
ln n
n

)
as n → ∞.

• Interestingly, it turns out there is a polytope which satisfies

all n inequalities (5) simultaneously.
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Comparing best and random approximations of the ball

Comparing the previous two theorems, we find that in the

inscribed case, random approximation of the ball is

asymptotically (almost) as good as best approximation.

Corollary (Besau-H.-Kur, 2019)

Choose N points X1, . . . ,XN independently with respect to the

uniform probability measure σ on the unit sphere Sn−1, and let

PN := [X1, . . . ,XN ]. Then for every j ∈ [n],

lim sup
N→∞

E[∆j(Bn,PN)]

∆j(Bn,Pbest
N )

= 1 + O

(
ln n

n

)
.
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Arbitrarily positioned polytopes: Volume, surface area and

mean width approximations

• For the symmetric difference metric (j = n) and surface

area deviation (j = n − 1), dropping the restriction that the

ball contains the polytope (or vice versa) improves the

estimate by at least a factor of n.

• The same phenomenon has also been observed for the

mean width metric ρ1.

• This can be seen by comparing results of Besau-H.-Kur

(2019), Glasauer-Gruber (1997), Grote-Thäle-Werner

(2021), Grote-Werner (2018), Gruber (1993), H.-Kur

(2021), H.-Schütt-Werner (2018), Ludwig (1999),

Ludwig-Schütt-Werner (2006) and Kur (2020).
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Arbitrarily positioned polytopes: Intrinsic volume

approximation

Theorem (Besau-H.-Kur, 2019)

There exists an absolute constant C such that for all sufficiently

large N,

min
Q∈Pn,N

∆j(Bn,Q) ≤ C min

{
1,

j ln n

n

}
Vj(Bn)N

− 2
n−1 . (1)

where Pn,N is the set of all polytopes in Rn with at most N

vertices.

• Recall that δj ≤ ∆j .

How much can we improve the upper bound (1) for the

approximation if we measure the distance by δj instead

of ∆j?

12 / 29



Main result

Theorem (Besau-H., 2023)

There exists an absolute constant C such that for every n ∈ N
with n ≥ 2 and every j ∈ [n], when N is sufficiently large

min
Q∈Pn,N

δj(Bn,Q) ≤ C
j

n
Vj(Bn)N

− 2
n−1 . (2)

It is shown that C = 2 + O
(
ln n
n

)
as n → ∞.
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Main ingredients of the proof

The proof combines ideas from two papers:

• The random construction of Ludwig-Schütt-Werner (2006)

yields the best-known estimate for the asymptotic best

approximation of Bn by polytopes with N vertices in the

symmetric difference metric.

• A random uniform polytope is generated in the ball, which

is shrunk by a carefully chosen factor depending on N. The

expected symmetric volume difference is estimated using

the Blaschke-Petkanschin formula.

• The orthogonal projection of a beta distribution onto a

subspace yields another beta distribution.

Kabluchko-Temesvari-Thäle (2019) give a formula for it.
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Step 1: Reduction to the weighted symmetric volume

difference

First we reduce the problem to estimating the expected

symmetric volume difference of the projection of a random beta

polytope and a Euclidean ball.

Lemma (Besau-H., 2023)

Let U1, . . . ,UN be chosen independently and uniformly from the

sphere Sn−1, and set Punif
n,N := [U1, . . . ,UN ]. Then for any fixed

r > 0 and all j ∈ [n],

E[δj(Punif
n,N , rBn)] =

[
n

j

]
E[volj(P

β= n−j−2
2

j ,N △rBj)].
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Step 2: The choice of scaling factor
For any r ∈ (0, 1),

E[voln(rBn△Pβ
n,N)] = voln(Bn \ rBn)− E[voln(Bn \ Pβ

n,N)]

+ 2E[voln(rBn ∩ (Pβ
n,N)

c)]. (3)

Given N ≥ n + 1 and β ≥ −1, ∃γn,N,β ∈ (0, 1) such that

voln(Bn \ (1− γn,N,β)Bn) = E[voln(Bn \ Pβ
n,N)]. (4)

Setting r = tn,N,β := 1− γn,N,β and dPβ(x) = fn,β(x) dx , by (3)

and (4) we have

E[voln(tn,N,βBn△Pβ
n,N)] = 2

∫
Bn

· · ·
∫
Bn

voln(tn,N,βBn \ [x1, . . . , xN ])

× dPβ(x1) · · · dPβ(xN).
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Estimating the inflation factor

• By the choice of γn,N,β , Affentranger’s result and the

homogeneity of volume,

γn,N,β ∼
E[voln(Bn \ Pβ

n,N)]

n voln(Bn)
∼ An,β

ωn
N− 2

n+2β+1

as N → ∞.

• By Stirling’s inequality, ∃c1, c2 > 0 (absolute constants) such that

c1N
− 2

n+2β+1 ≤ γn,N,β ≤ c2N
− 2

n+2β+1 .

In fact,

An,β

ωn
∼ c1 ∼ c2 =

1

2

(
1 + O

(
ln(n + 2β + 2)

n + 2β + 1

))
as n → ∞.
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Step 3: The local estimate

The next result extends LSW from the uniform distribution on

the sphere Sn−1 (β = −1) to all beta distributions on Bn with

β ≥ −1
2 .

Theorem (Besau-H., 2023)

Fix n ∈ N and β ≥ −1
2 , and let Pβ

n,N be the convex hull of

N ≥ n + 1 random points X1, . . . ,XN chosen i.i.d. from the

Euclidean unit ball Bn with respect to the beta distribution.

Then for all sufficiently large N,

E[voln(Bn△t−1
n,N,βP

β
n,N)] ≤

(
1 + O

(
ln(n + 2β + 2)

n + 2β + 1

))
× 2n voln(Bn)

n + 2β + 1
N− 2

n+2β+1 .

18 / 29



Step 3(i): Reduction to beta polytopes containing o

• Choose i.i.d. random points X1,X2, . . . from Bn according

to fn,β, and for N ≥ n + 1 define Pβ
n,N := [X1, . . . ,XN ].

• Let En,N,β denote the event that the origin o lies in the

interior of Pβ
n,N . By a result of Schütt and Werner (2003),

P(Ec
n,N,β) = P({o ̸∈ int[X1, . . . ,XN ]})

= PN
β ({(x1, . . . , xN) ∈ BN

n : o ̸∈ int[x1, . . . , xN ]})
≤ e−c(n,β)N

for some constant c(n, β) satisfying 0 < C1 ≤ c(n, β) ≤ C2

where C1,C2 are absolute constants.

19 / 29













































Step 3(i): Reduction to beta polytopes containing o

• By the law of total expectation,

E[voln(tn,N,βBn△Pβ
n,N)]

= E[voln(tn,N,βBn△Pβ
n,N)|En,N,β]P(En,N,β)

+ E[voln(tn,N,βBn△Pβ
n,N)|E

c
n,N,β]P(Ec

n,N,β)

≤ E[voln(tn,N,βBn△Pβ
n,N)|En,N,β]

+ voln(Bn)e
−c(n,β)N .

• The second term is negligible and we shall henceforth

ignore it.
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Step 3(ii): Reduction to simplicial polytopes

Let

En,N,β := {(x1, . . . , xN) ∈ BN
n : o ∈ int[x1, . . . , xN ]

and [x1, . . . , xn] is simplicial}.

Since Pβ
n,N is simplicial with probability 1,

E[voln(tn,N,βBn△Pβ
n,N)|En,N,β]

= 2

∫
Bn

· · ·
∫
Bn

voln(tn,N,βBn \ [x1, . . . , xN ])1En,N,β
(x1, . . . , xN)

× dPβ(x1) · · · dPβ(xN).
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Step 3(iii): Express the integral as a sum over cones

For (x1, . . . , xN) ∈ En,N,β, we have

Rn =
⋃

[xj1 ,...,xjn ]∈Fn−1([x1,...,xN ])

cone(xj1 , . . . , xjn),

where Fn−1([x1, . . . , xN ]) is the set of facets of [x1, . . . , xN ] and

cone(y1, . . . , ym) :=

{
m∑
i=1

aiyi : ai ≥ 0, i ∈ [m]

}

denotes the cone spanned by y1, . . . , ym ∈ Rn.
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Step 3(iii): Express the integral as a sum over cones

• For y1, . . . , yn ∈ Rn whose affine hull is an

(n − 1)-dimensional hyperplane H(y1, . . . , yn), let

H+(y1, . . . , yn) denote the halfspace with

o ∈ H+(y1, . . . , yn).

• For x1, . . . , xN ∈ Rn and {j1, . . . , jn} ⊂ [N], define the

functional Φβ
j1,...,jn

: (Rn)N → [0,∞) by

Φβ
j1,...,jn

(x1, . . . , xN)

:= voln(tn,N,βBn ∩ H−(xj1 , . . . , xjn) ∩ cone(xj1 , . . . , xjn)),

if o ∈ int([x1, . . . , xN ]) and dim([xj1 , . . . , xjn ]) = n − 1;

otherwise, set Φβ
j1,...,jn

(x1, . . . , xN) := 0.
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Step 3(iii): Express the integral as a sum over cones

Then

E[voln(tn,N,βBn△Pβ
n,N)|En,N,β]

= 2

∫
Bn

· · ·
∫
Bn

voln(tn,N,βBn \ [x1, . . . , xN ])1En,N,β
(x1, . . . , xN)

× dPβ(x1) · · · dPβ(xN)

= 2

∫
Bn

· · ·
∫
Bn

∑
{j1,...,jn}⊂[N]

Φβ
j1,...,jn

(x1, . . . , xN) dPβ(x1) · · · dPβ(xN)

= 2

(
N

n

)∫
Bn

· · ·
∫
Bn

Φβ
1,...,n(x1, . . . , xN)dPβ(x1) · · · dPβ(xN).
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Step 3(iv): Apply the affine Blaschke-Petkanschin formula

We apply the affine Blaschke–Petkantschin formula to derive

E[voln(tn,N,βBn△Pβ
n,N)|En,N,β]

= 2ωn(n − 1)!

(
N

n

)∫
Sn−1

∫ 1

0

∫
Bn∩H

· · ·
∫
Bn∩H[∫

Bn

· · ·
∫
Bn

Φβ
1,...,n(x1, . . . , xN)dPβ(xn+1) · · · dPβ(xN)

]
×

× voln−1([x1, . . . , xn])dPH
β (x1) · · · dPH

β (xn)dh dσ(u).
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After some standard computations...

...we finally arrive at the estimate

E[voln(tn,N,βBn△Pβ
n,N)]

≤
(
1 +

1

n + 2β + 3

)
2nωn

n + 2β + 1

1

Nn

(
N

n

)(
dn,β
N

) 2
n+2β+1

×
∫ Nφβ(

n+2β+2
n+2β+3 )

0

tn−1+ 2
n+2β+1

(
1− t

N

)N−n

dt + e−C(n,β)N .

Here dn,β is a specifically known constant depending on the

second moment of a random beta simplex, C (n, β) > 0, and

φβ(h) = 1− F1,β+ n−1
2
(h) where F1,β is the cdf of the

one-dimensional beta distribution,

F1,β(h) = c1,β

∫ h

−1
(1− x2)β dx .
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Conclusion of Step 3

By standard estimates we get that for large enough N,

∫ Nφβ(
n+2β+2
n+2β+3

)

0
tn−1+ 2

n+2β+1

(
1− t

N

)N−n

dt

≤ (1 + e−O(n+2β+1))Γ

(
n +

2

n + 2β + 1

)
.

Thus for large enough N,

E[voln(tn,N,βBn△Pβ
n,N)] ≤

(
1 + O

(
(n + 2β + 3)−1

)) 2ωn

n + 2β + 1

× n!

Nn

(
N

n

)Γ
(
n + 2

n+2β+1

)
Γ(n)

(
dn,β
N

) 2
n+2β+1

+ e−C(n,β)N .

Estimates for the gamma function yield

E[voln(Bn△t−1
n,N,βP

β
n,N)] ≤

Cn voln(Bn)
n+2β+1 N− 2

n+2β+1 .
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Step 4: Going from local estimates to the global estimate

• Replace n by j .

• Select the parameter β = n−j−2
2 , which corresponds to a

j-dimensional projection of the uniform distribution on Sn−1

(β = −1).

• Choose the scaling factor tj,N, n−j−2
2

.

• Substitute everything into the local estimate from Step 3.

Using the identity Vj(Bn) =
[
n
j

]
volj(Bj), for large N we get

E[δj(t−1

j,N, n−j−2
2

Punif
n,N ,Bn)] =

[
n

j

]
E[volj(t−1

j,N, n−j−2
2

P
β= n−j−2

2

j,N △Bj)]

≤

[
n

j

]
Cj volj(Bj)

n − 1
N− 2

n−1

=
Cj

n − 1
Vj(Bn)N

− 2
n−1 .
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Thank you!

hoehnersd@longwood.edu
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