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Our favourite duality

The polarity transform, ◦ : P(Rn) → P(Rn), is given by

K◦ = {y ∈ Rn : ∀x ∈ K, ⟨x, y⟩ ≤ 1}.

The image of this transform is Kn
0 , the class of closed convex sets

which include the origin. On it, ◦ is a duality.

As is well known, K◦◦ = conv(K,0) is the smallest set in the class
which includes K.

The only invariant set is Bn
2 = {x ∈ Rn : |x| ≤ 1}.

Böröczky and Schneider showed that polarity is essentially the only
order reversing involution on Kn

0 .

Blaschke-Santaló inequality: for centrally symmetric K ∈ Kn
0 we have

Vol(K)Vol(K◦) ≤ Vol(Bn
2 )

2
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Definition

Let X be a set, and let T : P(X) → P(X), where by P(X) we denote
the power set of X. The map T is an order reversing quasi involution
if for every K,L ⊆ X, the following hold

i K ⊆ TTK, (quasi involution)

ii if L ⊆ K then TK ⊆ TL. (order reversion)

Let C be the image of T , i.e. C = {K ⊂ X : ∃L ⊂ X s.th. K = TL}.

We say that T |C is a duality (order reversing involution).



Elementary properties

Let T : P(X) → P(X) be an order reversing quasi involution. Then
TTX = X and T∅ = X and for any collection of sets Ki ⊆ X, i ∈ I,

T (∪i∈IKi) = ∩i∈IT (Ki).

Proposition

Let T : P(X) → P(X) be an order reversing quasi involution, and let
K ⊆ X. Then

TTK = ∩{L : L ⊇ K and L = TTL}.

This means that for any set K ⊆ X, the set TTK is the “envelope” of K,
namely the smallest set in the image of T which contains K.
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When can we extend an order reversing quasi involution?

Definition

Let X be some set, C ⊆ P(X) and T : C → C. We say that the map T

respects inclusions if L ⊆ ∪i∈IKi implies TL ⊇ ∩i∈ITKi for any

L,Ki ∈ C, i ∈ I.

Theorem (Artstein-Avidan, Sadovsky, W.)

Let C ⊆ P(X) be a family of sets and T : C → C be an order reversing

quasi involution on C which respects inclusions. Then T can be extended

to an order reversing quasi involution T̂ : P(X) → P(X) with T̂ |C = T .
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Characterization of order reversing quasi involutions

Definition (Cost duality)

Let c : X ×X → (−∞,∞] satisfy c(x, y) = c(y, x). For K ⊆ X define

the c-dual set of K as

Kc = {y ∈ X : ∀x ∈ K, c(x, y) ≥ 0}.

Theorem (Artstein-Avidan, Sadovsky, W.)

Let T : P(X) → P(X) be an order reversing quasi involution. Then there

exists a cost function c : X ×X → {±1} such that for all K ⊆ X we

have TK = Kc.
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Proof



Invariant sets: K = TK

Fact

Let T : P(X) → P(X) be an order reversing quasi involution. If

K = TK then K ⊆ X0 = {x : c(x, x) ≥ 0} = {x : x ∈ T ({x})}.

Lemma

Let T : P(X) → P(X) be an order reversing quasi involution and denote
X0 as above.

i If TX0 = X0 then X0 is the unique invariant set for the transform.

ii If TX0 ̸⊆ X0 then there is no invariant set for the transform.

iii If TX0 ⊊ X0 then there are examples where no invariant set exists,
examples where only one invariant set exists, and examples where
more than one invariant set exists.
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A zoo of Examples



Polarity once again

Consider the polarity transform T : P(Rn) → P(Rn) given by

TK = K◦ = {y : ∀x ∈ K, ⟨x, y⟩ ≤ 1}.

The associated set is S = {(x, y) ∈ Rn × Rn : ⟨x, y⟩ ≤ 1}.

To write it as a cost-transform, one may take c(x, y) = −⟨x, y⟩+ 1 so
that

Kc = {y : ∀x ∈ K, −⟨x, y⟩+ 1 ≥ 0} = K◦.

X0 = {x : ⟨x, x⟩ ≤ 1} and TX0 = X0, hence it is the unique
invariant set.



Legendre transform

Consider the transform T : P(Rn+1) → P(Rn+1) defined by

T (epiφ) = epi (Lφ),

where L denotes the Legendre transform

Lφ(y) = sup
x

(⟨x, y⟩ − φ(x)) .

The associated set is

S = {((x, t), (y, s)) : ⟨x, y⟩ ≤ s+ t}.

The image class for this transform is the class of epi-graphs of
functions in Cvx(Rn) together with the constant +∞ and the
constant −∞ functions.

To write it as a cost transform, one may take

c((x, t), (y, s)) = t+ s− ⟨x, y⟩.

The only invariant set is epi (∥x∥22/2).
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Complements of neighborhoods

Consider the transform T : P(X) → P(X) where (X, d) is a metric space,
given by

TA = {y ∈ X : ∀x ∈ A, d(x, y) ≥ ε},

which maps a set to the complement of its ε-neighborhood.

The associated set is

S = {(x, y) : d(x, y) ≥ ε}.

The image class for this transform consists of complements of unions

of ε-balls. For example, all convex sets are in the class.

To write T as a cost transform, one may take c(x, y) = d(x, y)− ε.

Clearly there are no invariant sets.
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Producing new dualities

Definition

Given a topological space X and an order reversing quasi involution

T : P(X) → P(X) with an associated set

ST = {TK × TTK : K ⊆ X} ⊂ X ×X

we define its dual order reversing quasi involution to be

T ′ : P(X) → P(X) with an associated set ST ′ = X ×X \ ST .
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Ball intersections

Let (X, d) be some metric space. Let

S = {(x, y) ∈ X ×X : d(x, y) ≤ ε}.

The associated transform is given by

TA = ∩x∈AB(x, ε).

The image class consists of all sets obtained by intersections of balls
of radius ε. In particular, these sets are closed and of diameter at
most 2ε.

The invariant sets are the so-called “diametrically complete” sets, and
when X = Rn with the Euclidean distance d, these are precisely sets
of equal width ε.
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Dual polarity

Let
S = {(x, y) : ⟨x, y⟩ ≥ 1} ⊆ Rn × Rn

The associated transform is given by

TA = {y : ∀x ∈ A, ⟨x, y⟩ ≥ 1}.

The image class consists of intersections of affine half-spaces that do not
include the origin. In particular, these are unbounded, closed and convex
sets.

Lemma

The class C = {TK : K ⊆ Rn} consists of Rn together with all closed

convex sets K ⊆ Rn that do not include the origin and satisfy for all

λ ≥ 1 that λK ⊆ K.
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The class C decomposes into sub-classes:

For every u ∈ Sn−1 we define the sub-class Cu to be those K ∈ C whose
closest point to the origin lies on the ray uR+.

Fact

For any u ∈ Sn−1 the sub-class Cu is invariant under T .

Further,
Cu = ∪a>0Cu,a,

where K ∈ Cu,a if its point closest to the origin is au.

Therefore, having fixed an orthonormal basis {ei}ni=1 for Rn, in order to
study T it suffices to focus on one sub-class Cen,1.
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More about the subclass Cen,1



Lemma

For K ∈ Cen,1 ⊂ P(Rn) we have that

−J̃(K)◦ = J̃(T (K)).

Let J be a transform on subsets of Rn−1 × R+ defined by JK = F (K),
where

F (x, t) = (x/t, 1/t).

This is a convexity preserving map that maps rays emanating from the
origin to rays parallel to the ray {0} × R+.

Let J̃(K) = JK ∪Re⊥n
JK

The resulting body always includes the segment [−en, en], is included in
the slab {|⟨·, en⟩| ≤ 1}, and is invariant under reflections about e⊥n .
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Theorem (Artstein-Avidan, Sadovsky, W.)

Let K ⊂ C be essentially symmetric. Let T : P(Rn) → P(Rn) be given by
TK = {x : ∀y ∈ K, ⟨x, y⟩ ≥ 1}. Then

γn(K)γn(TK) ≤ γn(K0)
2,

where K0 = {(x, t) ∈ Rn−1 × R+ : |x|2 + 1 ≤ t2}, and γn is the Gaussian
measure on Rn.

It is useful to note that the set K0 corresponds to the ball under the
pull-back. More precisely, we have

J̃(K0) = Bn
2 .

Lemma. Let K ∈ Cen,1 ⊂ P(Rn). Then γn(K) = ν(JK), where

dν(x, z) = (2π)−ne−|x|2/2z2e−1/2z2z−(n+1)dxdz

is defined on Rn−1 × R+ (and dν(x, z) is 0 for z ≤ 0).
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Equivalently

Theorem

Let L ⊆ Rn be a centrally symmetric convex body which includes the
segment [−en, en], is included in the slab {|⟨·, en⟩| ≤ 1}, and is invariant
to reflections about e⊥n . Then

ν(L)ν(L◦) ≤ ν(Bn
2 )

2,

where dν(x, z) = (2π)−ne−|x|2/2z2e−1/2z2z−(n+1)dxdz on Rn−1 × R+.
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Sketch of the proof

Lemma (D. Cordero-Erausquin)

For a centrally symmetric convex set L ⊆ Rn we have

γn(L)γn(L
◦) ≤ γn(B

n
2 )

2.

Moreover, for any α > 0 we have that γn(αL)γn(αL
◦) ≤ γn(αB

n
2 )

2.
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Thank you!


