A zoo of dualities

Kasia Wyczesany

joint work with S. Artstein-Avidan and S. Sadovsky

AGA seminar November 1, 2022

The polarity transform, $\ ^{\circ}:\mathcal{P}(\mathbb{R}^{n})
ightarrow\mathcal{P}(\mathbb{R}^{n})$, is given by

$$K^{\circ} = \{ y \in \mathbb{R}^n : \forall x \in K, \ \langle x, y \rangle \le 1 \}.$$

The polarity transform, $\circ : \mathcal{P}(\mathbb{R}^n) \to \mathcal{P}(\mathbb{R}^n)$, is given by

$$K^{\circ} = \{ y \in \mathbb{R}^n : \forall x \in K, \ \langle x, y \rangle \le 1 \}.$$

• The image of this transform is \mathcal{K}_0^n , the class of closed convex sets which include the origin. On it, \circ is a duality.

The polarity transform, $\circ : \mathcal{P}(\mathbb{R}^n) \to \mathcal{P}(\mathbb{R}^n)$, is given by

$$K^{\circ} = \{ y \in \mathbb{R}^n : \forall x \in K, \ \langle x, y \rangle \le 1 \}.$$

- The image of this transform is \mathcal{K}_0^n , the class of closed convex sets which include the origin. On it, \circ is a duality.
- As is well known, $K^{\circ\circ} = \operatorname{conv}(K, \mathbf{0})$ is the smallest set in the class which includes K.

The polarity transform, $\ ^{\circ}:\mathcal{P}(\mathbb{R}^n)
ightarrow \mathcal{P}(\mathbb{R}^n)$, is given by

$$K^{\circ} = \{ y \in \mathbb{R}^n : \forall x \in K, \ \langle x, y \rangle \le 1 \}.$$

- The image of this transform is \mathcal{K}_0^n , the class of closed convex sets which include the origin. On it, \circ is a duality.
- As is well known, $K^{\circ\circ} = \operatorname{conv}(K, \mathbf{0})$ is the smallest set in the class which includes K.
- The only invariant set is $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}.$

The polarity transform, $\ ^{\circ}:\mathcal{P}(\mathbb{R}^n)
ightarrow \mathcal{P}(\mathbb{R}^n)$, is given by

$$K^{\circ} = \{ y \in \mathbb{R}^n : \forall x \in K, \ \langle x, y \rangle \le 1 \}.$$

- The image of this transform is \mathcal{K}_0^n , the class of closed convex sets which include the origin. On it, \circ is a duality.
- As is well known, $K^{\circ\circ} = \operatorname{conv}(K, \mathbf{0})$ is the smallest set in the class which includes K.
- The only invariant set is $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}.$
- Böröczky and Schneider showed that polarity is essentially the only order reversing involution on Kⁿ₀.

The polarity transform, $\ ^{\circ}:\mathcal{P}(\mathbb{R}^n)
ightarrow \mathcal{P}(\mathbb{R}^n)$, is given by

$$K^{\circ} = \{ y \in \mathbb{R}^n : \forall x \in K, \ \langle x, y \rangle \le 1 \}.$$

- The image of this transform is \mathcal{K}_0^n , the class of closed convex sets which include the origin. On it, \circ is a duality.
- As is well known, $K^{\circ\circ}={\rm conv}(K,{\bf 0})$ is the smallest set in the class which includes K.
- The only invariant set is $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}.$
- Böröczky and Schneider showed that polarity is essentially the only order reversing involution on Kⁿ₀.
- $\bullet~$ Blaschke-Santaló inequality: for centrally symmetric $K\in \mathcal{K}_0^n$ we have $\mathrm{Vol}(K)\mathrm{Vol}(K^\circ)\leq \mathrm{Vol}(B_2^n)^2$

Definition

Let X be a set, and let $T : \mathcal{P}(X) \to \mathcal{P}(X)$, where by $\mathcal{P}(X)$ we denote the power set of X. The map T is an order reversing quasi involution if for every $K, L \subseteq X$, the following hold

• $K \subseteq TTK$, (quasi involution) • if $L \subseteq K$ then $TK \subseteq TL$. (order reversion)

Let C be the image of T, i.e. $C = \{K \subset X : \exists L \subset X \text{ s.th. } K = TL\}.$

We say that $T|_{\mathcal{C}}$ is a **duality** (order reversing involution).

Elementary properties

Let $T : \mathcal{P}(X) \to \mathcal{P}(X)$ be an order reversing quasi involution. Then TTX = X and $T\emptyset = X$ and for any collection of sets $K_i \subseteq X$, $i \in I$,

 $T\left(\cup_{i\in I}K_i\right)=\cap_{i\in I}T(K_i).$

Elementary properties

Let $T : \mathcal{P}(X) \to \mathcal{P}(X)$ be an order reversing quasi involution. Then TTX = X and $T\emptyset = X$ and for any collection of sets $K_i \subseteq X$, $i \in I$,

 $T\left(\cup_{i\in I}K_i\right)=\cap_{i\in I}T(K_i).$

Proposition

Let $T : \mathcal{P}(X) \to \mathcal{P}(X)$ be an order reversing quasi involution, and let $K \subseteq X$. Then

 $TTK = \cap \{L : L \supseteq K \text{ and } L = TTL\}.$

This means that for any set $K \subseteq X$, the set TTK is the "envelope" of K, namely the smallest set in the image of T which contains K.

When can we extend an order reversing quasi involution?

When can we extend an order reversing quasi involution?

Definition

Let X be some set, $C \subseteq \mathcal{P}(X)$ and $T : C \to C$. We say that the map T respects inclusions if $L \subseteq \bigcup_{i \in I} K_i$ implies $TL \supseteq \cap_{i \in I} TK_i$ for any $L, K_i \in C, i \in I$.

When can we extend an order reversing quasi involution?

Definition

Let X be some set, $C \subseteq \mathcal{P}(X)$ and $T : C \to C$. We say that the map T respects inclusions if $L \subseteq \bigcup_{i \in I} K_i$ implies $TL \supseteq \cap_{i \in I} TK_i$ for any $L, K_i \in C, i \in I$.

Theorem (Artstein-Avidan, Sadovsky, W.)

Let $C \subseteq \mathcal{P}(X)$ be a family of sets and $T : C \to C$ be an order reversing quasi involution on C which respects inclusions. Then T can be extended to an order reversing quasi involution $\hat{T} : \mathcal{P}(X) \to \mathcal{P}(X)$ with $\hat{T}|_{\mathcal{C}} = T$.

Characterization of order reversing quasi involutions

Characterization of order reversing quasi involutions

Definition (Cost duality)

Let $c:X\times X\to (-\infty,\infty]$ satisfy c(x,y)=c(y,x). For $K\subseteq X$ define the c-dual set of K as

 $K^c = \{ y \in X : \forall x \in K, \ c(x,y) \ge 0 \}.$

Characterization of order reversing quasi involutions

Definition (Cost duality)

Let $c:X\times X\to (-\infty,\infty]$ satisfy c(x,y)=c(y,x). For $K\subseteq X$ define the c-dual set of K as

 $K^c = \{ y \in X : \forall x \in K, \ c(x,y) \ge 0 \}.$

Theorem (Artstein-Avidan, Sadovsky, W.) Let $T : \mathcal{P}(X) \to \mathcal{P}(X)$ be an order reversing quasi involution. Then there exists a cost function $c : X \times X \to \{\pm 1\}$ such that for all $K \subseteq X$ we have $TK = K^c$.

Proof

Invariant sets: K = TK

Fact

Let $T : \mathcal{P}(X) \to \mathcal{P}(X)$ be an order reversing quasi involution. If K = TK then $K \subseteq X_0 = \{x : c(x, x) \ge 0\} = \{x : x \in T(\{x\})\}.$

Invariant sets: K = TK

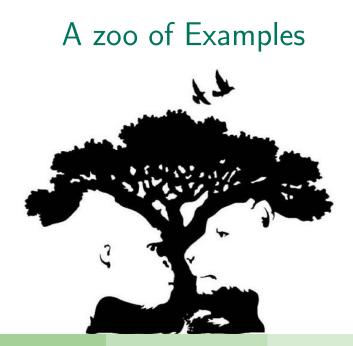
Fact

Let $T : \mathcal{P}(X) \to \mathcal{P}(X)$ be an order reversing quasi involution. If K = TK then $K \subseteq X_0 = \{x : c(x, x) \ge 0\} = \{x : x \in T(\{x\})\}.$

Lemma

Let $T : \mathcal{P}(X) \to \mathcal{P}(X)$ be an order reversing quasi involution and denote X_0 as above.

- If $TX_0 = X_0$ then X_0 is the unique invariant set for the transform.
- **(**) If $TX_0 \not\subseteq X_0$ then there is no invariant set for the transform.
- If TX₀ ⊊ X₀ then there are examples where no invariant set exists, examples where only one invariant set exists, and examples where more than one invariant set exists.



Polarity once again

Consider the polarity transform $T: \mathcal{P}(\mathbb{R}^n) \to \mathcal{P}(\mathbb{R}^n)$ given by

$$TK = K^{\circ} = \{ y : \forall x \in K, \ \langle x, y \rangle \le 1 \}.$$

- The associated set is $S = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : \langle x, y \rangle \leq 1\}.$
- $\bullet\,$ To write it as a cost-transform, one may take $c(x,y)=-\langle x,y\rangle+1$ so that

$$K^c = \{y : \forall x \in K, \ -\langle x, y \rangle + 1 \ge 0\} = K^{\circ}.$$

• $X_0 = \{x : \langle x, x \rangle \le 1\}$ and $TX_0 = X_0$, hence it is the unique invariant set.

Legendre transform

Consider the transform $T: \mathcal{P}(\mathbb{R}^{n+1}) \to \mathcal{P}(\mathbb{R}^{n+1})$ defined by

$$T(\operatorname{epi}\varphi) = \operatorname{epi}(\mathcal{L}\varphi),$$

where $\ensuremath{\mathcal{L}}$ denotes the Legendre transform

$$\mathcal{L}\varphi(y) = \sup_{x} \left(\langle x, y \rangle - \varphi(x) \right).$$

Legendre transform

Consider the transform $T: \mathcal{P}(\mathbb{R}^{n+1}) \to \mathcal{P}(\mathbb{R}^{n+1})$ defined by

$$T(\operatorname{epi}\varphi) = \operatorname{epi}\left(\mathcal{L}\varphi\right),$$

where $\ensuremath{\mathcal{L}}$ denotes the Legendre transform

$$\mathcal{L}\varphi(y) = \sup_{x} \left(\langle x, y \rangle - \varphi(x) \right).$$

• The associated set is

$$S = \{((x,t),(y,s)) : \langle x,y \rangle \le s+t\}.$$

- The image class for this transform is the class of epi-graphs of functions in Cvx(ℝⁿ) together with the constant +∞ and the constant -∞ functions.
- To write it as a cost transform, one may take

$$c((x,t),(y,s)) = t + s - \langle x,y \rangle.$$

• The only invariant set is $epi(||x||_2^2/2)$.

Complements of neighborhoods

Consider the transform $T : \mathcal{P}(X) \to \mathcal{P}(X)$ where (X, d) is a metric space, given by

$$TA = \{ y \in X : \ \forall x \in A, \ d(x,y) \ge \varepsilon \},\$$

which maps a set to the complement of its ε -neighborhood.

Complements of neighborhoods

Consider the transform $T : \mathcal{P}(X) \to \mathcal{P}(X)$ where (X, d) is a metric space, given by

$$TA=\{y\in X: \ \forall x\in A, \ d(x,y)\geq \varepsilon\},$$

which maps a set to the complement of its ε -neighborhood.

• The associated set is

$$S = \{(x,y) : d(x,y) \ge \varepsilon\}.$$

- The image class for this transform consists of complements of unions of ε-balls. For example, all convex sets are in the class.
- To write T as a cost transform, one may take $c(x,y) = d(x,y) \varepsilon$.
- Clearly there are no invariant sets.

Producing new dualities

Producing new dualities

Definition

Given a topological space X and an order reversing quasi involution $T: \mathcal{P}(X) \to \mathcal{P}(X)$ with an associated set

 $S_T = \{TK \times TTK : K \subseteq X\} \subset X \times X$

we define its dual order reversing quasi involution to be $T': \mathcal{P}(X) \to \mathcal{P}(X)$ with an associated set $S_{T'} = \overline{X \times X \setminus S_T}$.

Ball intersections

Let (X, d) be some metric space. Let

$$S = \{(x,y) \in X \times X : \ d(x,y) \le \varepsilon\}.$$

The associated transform is given by

$$TA = \cap_{x \in A} B(x, \varepsilon).$$

Ball intersections

Let (X, d) be some metric space. Let

$$S = \{(x, y) \in X \times X : d(x, y) \le \varepsilon\}.$$

The associated transform is given by

$$TA = \cap_{x \in A} B(x, \varepsilon).$$

- The image class consists of all sets obtained by intersections of balls of radius ε . In particular, these sets are closed and of diameter at most 2ε .
- The invariant sets are the so-called "diametrically complete" sets, and when $X = \mathbb{R}^n$ with the Euclidean distance d, these are precisely sets of equal width ε .

Dual polarity

Let

$$S = \{(x, y) : \langle x, y \rangle \ge 1\} \subseteq \mathbb{R}^n \times \mathbb{R}^n$$

The associated transform is given by

$$TA = \{ y : \forall x \in A, \ \langle x, y \rangle \ge 1 \}.$$

Dual polarity

Let

$$S = \{(x, y) : \langle x, y \rangle \ge 1\} \subseteq \mathbb{R}^n \times \mathbb{R}^n$$

The associated transform is given by

$$TA = \{ y : \forall x \in A, \ \langle x, y \rangle \ge 1 \}.$$

The image class consists of intersections of affine half-spaces that do not include the origin. In particular, these are unbounded, closed and convex sets.

Lemma

The class $C = \{TK : K \subseteq \mathbb{R}^n\}$ consists of \mathbb{R}^n together with all closed convex sets $K \subseteq \mathbb{R}^n$ that do not include the origin and satisfy for all $\lambda \ge 1$ that $\lambda K \subseteq K$.

The class C decomposes into sub-classes:

For every $u \in S^{n-1}$ we define the sub-class C_u to be those $K \in C$ whose closest point to the origin lies on the ray $u\mathbb{R}^+$.

The class \mathcal{C} decomposes into sub-classes:

For every $u \in S^{n-1}$ we define the sub-class C_u to be those $K \in C$ whose closest point to the origin lies on the ray $u\mathbb{R}^+$.

Fact

For any $u \in S^{n-1}$ the sub-class C_u is invariant under T.

The class \mathcal{C} decomposes into sub-classes:

For every $u \in S^{n-1}$ we define the sub-class C_u to be those $K \in C$ whose closest point to the origin lies on the ray $u\mathbb{R}^+$.

Fact

For any $u \in S^{n-1}$ the sub-class C_u is invariant under T.

Further,

$$\mathcal{C}_u = \cup_{a>0} \mathcal{C}_{u,a},$$

where $K \in C_{u,a}$ if its point closest to the origin is au.

The class \mathcal{C} decomposes into sub-classes:

For every $u \in S^{n-1}$ we define the sub-class C_u to be those $K \in C$ whose closest point to the origin lies on the ray $u\mathbb{R}^+$.

Fact

For any $u \in S^{n-1}$ the sub-class C_u is invariant under T.

Further,

$$\mathcal{C}_u = \cup_{a>0} \mathcal{C}_{u,a},$$

where $K \in C_{u,a}$ if its point closest to the origin is au.

Therefore, having fixed an orthonormal basis $\{e_i\}_{i=1}^n$ for \mathbb{R}^n , in order to study T it suffices to focus on one sub-class $\mathcal{C}_{e_n,1}$.

More about the subclass $C_{e_n,1}$

For $K \in \mathcal{C}_{e_n,1} \subset \mathcal{P}(\mathbb{R}^n)$ we have that

 $-\tilde{J}(K)^{\circ} = \tilde{J}(T(K)).$

For $K \in \mathcal{C}_{e_n,1} \subset \mathcal{P}(\mathbb{R}^n)$ we have that

 $-\tilde{J}(K)^{\circ} = \tilde{J}(T(K)).$

Let J be a transform on subsets of $\mathbb{R}^{n-1} \times \mathbb{R}^+$ defined by JK = F(K), where

$$F(x,t) = (x/t, 1/t).$$

This is a convexity preserving map that maps rays emanating from the origin to rays parallel to the ray $\{0\} \times \mathbb{R}^+$.

For $K \in \mathcal{C}_{e_n,1} \subset \mathcal{P}(\mathbb{R}^n)$ we have that

 $-\tilde{J}(K)^{\circ} = \tilde{J}(T(K)).$

Let J be a transform on subsets of $\mathbb{R}^{n-1}\times\mathbb{R}^+$ defined by JK=F(K), where

$$F(x,t) = (x/t, 1/t).$$

This is a convexity preserving map that maps rays emanating from the origin to rays parallel to the ray $\{0\} \times \mathbb{R}^+$.

Let $\tilde{J}(K) = JK \cup R_{e_n^{\perp}}JK$

The resulting body always includes the segment $[-e_n, e_n]$, is included in the slab $\{|\langle \cdot, e_n \rangle| \leq 1\}$, and is invariant under reflections about e_n^{\perp} .

For $K \in \mathcal{C}_{e_n,1} \subset \mathcal{P}(\mathbb{R}^n)$ we have that

 $-\tilde{J}(K)^{\circ} = \tilde{J}(T(K)).$

Theorem (Artstein-Avidan, Sadovsky, W.)

Let $K \subset C$ be essentially symmetric. Let $T : \mathcal{P}(\mathbb{R}^n) \to \mathcal{P}(\mathbb{R}^n)$ be given by $TK = \{x : \forall y \in K, \langle x, y \rangle \ge 1\}$. Then

 $\gamma_n(K)\gamma_n(TK) \le \gamma_n(K_0)^2,$

where $K_0 = \{(x,t) \in \mathbb{R}^{n-1} \times \mathbb{R}^+ : |x|^2 + 1 \le t^2\}$, and γ_n is the Gaussian measure on \mathbb{R}^n .

Theorem (Artstein-Avidan, Sadovsky, W.)

Let $K \subset C$ be essentially symmetric. Let $T : \mathcal{P}(\mathbb{R}^n) \to \mathcal{P}(\mathbb{R}^n)$ be given by $TK = \{x : \forall y \in K, \langle x, y \rangle \ge 1\}$. Then

 $\gamma_n(K)\gamma_n(TK) \le \gamma_n(K_0)^2,$

where $K_0 = \{(x,t) \in \mathbb{R}^{n-1} \times \mathbb{R}^+ : |x|^2 + 1 \le t^2\}$, and γ_n is the Gaussian measure on \mathbb{R}^n .

It is useful to note that the set K_0 corresponds to the ball under the pull-back. More precisely, we have

$$\tilde{J}(K_0) = B_2^n.$$

Theorem (Artstein-Avidan, Sadovsky, W.)

Let $K \subset C$ be essentially symmetric. Let $T : \mathcal{P}(\mathbb{R}^n) \to \mathcal{P}(\mathbb{R}^n)$ be given by $TK = \{x : \forall y \in K, \langle x, y \rangle \ge 1\}$. Then

 $\gamma_n(K)\gamma_n(TK) \le \gamma_n(K_0)^2,$

where $K_0 = \{(x,t) \in \mathbb{R}^{n-1} \times \mathbb{R}^+ : |x|^2 + 1 \le t^2\}$, and γ_n is the Gaussian measure on \mathbb{R}^n .

It is useful to note that the set K_0 corresponds to the ball under the pull-back. More precisely, we have

$$\tilde{J}(K_0) = B_2^n.$$

Lemma. Let $K \in \mathcal{C}_{e_n,1} \subset \mathcal{P}(\mathbb{R}^n)$. Then $\gamma_n(K) = \nu(JK)$, where

$$d\nu(x,z) = (2\pi)^{-n} e^{-|x|^2/2z^2} e^{-1/2z^2} z^{-(n+1)} dx dz$$

is defined on $\mathbb{R}^{n-1} \times \mathbb{R}^+$ (and $d\nu(x, z)$ is 0 for $z \leq 0$).

Equivalently

Theorem

Let $L \subseteq \mathbb{R}^n$ be a centrally symmetric convex body which includes the segment $[-e_n, e_n]$, is included in the slab $\{|\langle \cdot, e_n \rangle| \leq 1\}$, and is invariant to reflections about e_n^{\perp} . Then

 $\nu(L)\nu(L^{\circ}) \le \nu(B_2^n)^2,$

where $d\nu(x,z) = (2\pi)^{-n} e^{-|x|^2/2z^2} e^{-1/2z^2} z^{-(n+1)} dx dz$ on $\mathbb{R}^{n-1} \times \mathbb{R}^+$.

Equivalently

Theorem

Let $L \subseteq \mathbb{R}^n$ be a centrally symmetric convex body which includes the segment $[-e_n, e_n]$, is included in the slab $\{|\langle \cdot, e_n \rangle| \leq 1\}$, and is invariant to reflections about e_n^{\perp} . Then

 $\nu(L)\nu(L^{\circ}) \le \nu(B_2^n)^2,$

where $d\nu(x,z) = (2\pi)^{-n} e^{-|x|^2/2z^2} e^{-1/2z^2} z^{-(n+1)} dx dz$ on $\mathbb{R}^{n-1} \times \mathbb{R}^+$.

Sketch of the proof

Sketch of the proof

Lemma (D. Cordero-Erausquin) For a centrally symmetric convex set $L \subseteq \mathbb{R}^n$ we have

 $\gamma_n(L)\gamma_n(L^\circ) \le \gamma_n(B_2^n)^2.$

Moreover, for any $\alpha > 0$ we have that $\gamma_n(\alpha L)\gamma_n(\alpha L^\circ) \leq \gamma_n(\alpha B_2^n)^2$.

Thank you!

