A zoo of dualities

Kasia Wyczesany

joint work with S. Artstein-Avidan and S. Sadovsky

AGA seminar
November 1, 2022

Our favourite duality

The polarity transform, ${ }^{\circ}: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$, is given by

$$
K^{\circ}=\left\{y \in \mathbb{R}^{n}: \forall x \in K,\langle x, y\rangle \leq 1\right\}
$$

Our favourite duality

The polarity transform, ${ }^{\circ}: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$, is given by

$$
K^{\circ}=\left\{y \in \mathbb{R}^{n}: \forall x \in K,\langle x, y\rangle \leq 1\right\}
$$

- The image of this transform is \mathcal{K}_{0}^{n}, the class of closed convex sets which include the origin. On it, ${ }^{\circ}$ is a duality.

Our favourite duality

The polarity transform, ${ }^{\circ}: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$, is given by

$$
K^{\circ}=\left\{y \in \mathbb{R}^{n}: \forall x \in K,\langle x, y\rangle \leq 1\right\}
$$

- The image of this transform is \mathcal{K}_{0}^{n}, the class of closed convex sets which include the origin. On it, ${ }^{\circ}$ is a duality.
- As is well known, $K^{00}=\operatorname{conv}(K, \mathbf{0})$ is the smallest set in the class which includes K.

Our favourite duality

The polarity transform, ${ }^{\circ}: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$, is given by

$$
K^{\circ}=\left\{y \in \mathbb{R}^{n}: \forall x \in K,\langle x, y\rangle \leq 1\right\}
$$

- The image of this transform is \mathcal{K}_{0}^{n}, the class of closed convex sets which include the origin. On it, ${ }^{\circ}$ is a duality.
- As is well known, $K^{00}=\operatorname{conv}(K, \mathbf{0})$ is the smallest set in the class which includes K.
- The only invariant set is $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$.

Our favourite duality

The polarity transform, ${ }^{\circ}: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$, is given by

$$
K^{\circ}=\left\{y \in \mathbb{R}^{n}: \forall x \in K,\langle x, y\rangle \leq 1\right\}
$$

- The image of this transform is \mathcal{K}_{0}^{n}, the class of closed convex sets which include the origin. On it, ${ }^{\circ}$ is a duality.
- As is well known, $K^{\circ \circ}=\operatorname{conv}(K, \mathbf{0})$ is the smallest set in the class which includes K.
- The only invariant set is $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$.
- Böröczky and Schneider showed that polarity is essentially the only order reversing involution on \mathcal{K}_{0}^{n}.

Our favourite duality

The polarity transform, ${ }^{\circ}: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$, is given by

$$
K^{\circ}=\left\{y \in \mathbb{R}^{n}: \forall x \in K,\langle x, y\rangle \leq 1\right\}
$$

- The image of this transform is \mathcal{K}_{0}^{n}, the class of closed convex sets which include the origin. On it, ${ }^{\circ}$ is a duality.
- As is well known, $K^{\circ \circ}=\operatorname{conv}(K, \mathbf{0})$ is the smallest set in the class which includes K.
- The only invariant set is $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$.
- Böröczky and Schneider showed that polarity is essentially the only order reversing involution on \mathcal{K}_{0}^{n}.
- Blaschke-Santaló inequality: for centrally symmetric $K \in \mathcal{K}_{0}^{n}$ we have

$$
\operatorname{Vol}(K) \operatorname{Vol}\left(K^{\circ}\right) \leq \operatorname{Vol}\left(B_{2}^{n}\right)^{2}
$$

Definition

Let X be a set, and let $T: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$, where by $\mathcal{P}(X)$ we denote the power set of X. The map T is an order reversing quasi involution if for every $K, L \subseteq X$, the following hold

- $K \subseteq T T K$,
(quasi involution)
- if $L \subseteq K$ then $T K \subseteq T L$. (order reversion)

Let \mathcal{C} be the image of T, i.e. $\mathcal{C}=\{K \subset X: \exists L \subset X$ s.th. $K=T L\}$. We say that $\left.T\right|_{\mathcal{C}}$ is a duality (order reversing involution).

Elementary properties
Let $T: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ be an order reversing quasi involution. Then $T T X=X$ and $T \emptyset=X$ and for any collection of sets $K_{i} \subseteq X, i \in I$,

$$
T\left(\cup_{i \in I} K_{i}\right)=\cap_{i \in I} T\left(K_{i}\right)
$$

Elementary properties

Let $T: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ be an order reversing quasi involution. Then $T T X=X$ and $T \emptyset=X$ and for any collection of sets $K_{i} \subseteq X, i \in I$,

$$
T\left(\cup_{i \in I} K_{i}\right)=\cap_{i \in I} T\left(K_{i}\right)
$$

Proposition

Let $T: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ be an order reversing quasi involution, and let $K \subseteq X$. Then

$$
T T K=\cap\{L: L \supseteq K \quad \text { and } \quad L=T T L\} .
$$

This means that for any set $K \subseteq X$, the set $T T K$ is the "envelope" of K, namely the smallest set in the image of T which contains K.

When can we extend an order reversing quasi involution?

When can we extend an order reversing quasi involution?

Definition
Let X be some set, $\mathcal{C} \subseteq \mathcal{P}(X)$ and $T: \mathcal{C} \rightarrow \mathcal{C}$. We say that the map T respects inclusions if $L \subseteq \cup_{i \in I} K_{i}$ implies $T L \supseteq \cap_{i \in I} T K_{i}$ for any $L, K_{i} \in \mathcal{C}, i \in I$.

When can we extend an order reversing quasi involution?

Definition
Let X be some set, $\mathcal{C} \subseteq \mathcal{P}(X)$ and $T: \mathcal{C} \rightarrow \mathcal{C}$. We say that the map T respects inclusions if $L \subseteq \cup_{i \in I} K_{i}$ implies $T L \supseteq \cap_{i \in I} T K_{i}$ for any $L, K_{i} \in \mathcal{C}, i \in I$.

Theorem (Artstein-Avidan, Sadovsky, W.)
Let $\mathcal{C} \subseteq \mathcal{P}(X)$ be a family of sets and $T: \mathcal{C} \rightarrow \mathcal{C}$ be an order reversing quasi involution on \mathcal{C} which respects inclusions. Then T can be extended to an order reversing quasi involution $\hat{T}: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ with $\left.\hat{T}\right|_{\mathcal{C}}=T$.

Characterization of order reversing quasi involutions

Characterization of order reversing quasi involutions

Definition (Cost duality)
Let $c: X \times X \rightarrow(-\infty, \infty]$ satisfy $c(x, y)=c(y, x)$. For $K \subseteq X$ define the c-dual set of K as

$$
K^{c}=\{y \in X: \forall x \in K, c(x, y) \geq 0\} .
$$

Characterization of order reversing quasi involutions

Definition (Cost duality)
Let $c: X \times X \rightarrow(-\infty, \infty]$ satisfy $c(x, y)=c(y, x)$. For $K \subseteq X$ define the c-dual set of K as

$$
K^{c}=\{y \in X: \forall x \in K, c(x, y) \geq 0\} .
$$

Theorem (Artstein-Avidan, Sadovsky, W.)
Let $T: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ be an order reversing quasi involution. Then there exists a cost function c: $X \times X \rightarrow\{ \pm 1\}$ such that for all $K \subseteq X$ we have $T K=K^{c}$.

Proof

Invariant sets: $K=T K$

Fact

Let $T: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ be an order reversing quasi involution. If $K=T K$ then $K \subseteq X_{0}=\{x: c(x, x) \geq 0\}=\{x: x \in T(\{x\})\}$.

Invariant sets: $K=T K$

Fact

Let $T: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ be an order reversing quasi involution. If $K=T K$ then $K \subseteq X_{0}=\{x: c(x, x) \geq 0\}=\{x: x \in T(\{x\})\}$.

Lemma

Let $T: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ be an order reversing quasi involution and denote X_{0} as above.

- If $T X_{0}=X_{0}$ then X_{0} is the unique invariant set for the transform.
- If $T X_{0} \nsubseteq X_{0}$ then there is no invariant set for the transform.
- If $T X_{0} \subsetneq X_{0}$ then there are examples where no invariant set exists, examples where only one invariant set exists, and examples where more than one invariant set exists.

A zoo of Examples

Polarity once again

Consider the polarity transform $T: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ given by

$$
T K=K^{\circ}=\{y: \forall x \in K,\langle x, y\rangle \leq 1\}
$$

- The associated set is $S=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}:\langle x, y\rangle \leq 1\right\}$.
- To write it as a cost-transform, one may take $c(x, y)=-\langle x, y\rangle+1$ so that

$$
K^{c}=\{y: \forall x \in K,-\langle x, y\rangle+1 \geq 0\}=K^{\circ} .
$$

- $X_{0}=\{x:\langle x, x\rangle \leq 1\}$ and $T X_{0}=X_{0}$, hence it is the unique invariant set.

Legendre transform

Consider the transform $T: \mathcal{P}\left(\mathbb{R}^{n+1}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n+1}\right)$ defined by

$$
T(\operatorname{epi} \varphi)=\operatorname{epi}(\mathcal{L} \varphi)
$$

where \mathcal{L} denotes the Legendre transform

$$
\mathcal{L} \varphi(y)=\sup _{x}(\langle x, y\rangle-\varphi(x))
$$

Legendre transform

Consider the transform $T: \mathcal{P}\left(\mathbb{R}^{n+1}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n+1}\right)$ defined by

$$
T(\operatorname{epi} \varphi)=\operatorname{epi}(\mathcal{L} \varphi)
$$

where \mathcal{L} denotes the Legendre transform

$$
\mathcal{L} \varphi(y)=\sup _{x}(\langle x, y\rangle-\varphi(x)) .
$$

- The associated set is

$$
S=\{((x, t),(y, s)):\langle x, y\rangle \leq s+t\}
$$

- The image class for this transform is the class of epi-graphs of functions in $\operatorname{Cvx}\left(\mathbb{R}^{n}\right)$ together with the constant $+\infty$ and the constant $-\infty$ functions.
- To write it as a cost transform, one may take

$$
c((x, t),(y, s))=t+s-\langle x, y\rangle .
$$

- The only invariant set is epi $\left(\|x\|_{2}^{2} / 2\right)$.

Complements of neighborhoods

Consider the transform $T: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ where (X, d) is a metric space, given by

$$
T A=\{y \in X: \forall x \in A, d(x, y) \geq \varepsilon\}
$$

which maps a set to the complement of its ε-neighborhood.

Complements of neighborhoods

Consider the transform $T: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ where ($X, d)$ is a metric space, given by

$$
T A=\{y \in X: \forall x \in A, d(x, y) \geq \varepsilon\}
$$

which maps a set to the complement of its ε-neighborhood.

- The associated set is

$$
S=\{(x, y): d(x, y) \geq \varepsilon\} .
$$

- The image class for this transform consists of complements of unions of ε-balls. For example, all convex sets are in the class.
- To write T as a cost transform, one may take $c(x, y)=d(x, y)-\varepsilon$.
- Clearly there are no invariant sets.

Producing new dualities

Producing new dualities

Definition

Given a topological space X and an order reversing quasi involution $T: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ with an associated set

$$
S_{T}=\{T K \times T T K: K \subseteq X\} \subset X \times X
$$

we define its dual order reversing quasi involution to be $T^{\prime}: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ with an associated set $S_{T^{\prime}}=\overline{X \times X \backslash S_{T}}$.

Ball intersections

Let (X, d) be some metric space. Let

$$
S=\{(x, y) \in X \times X: d(x, y) \leq \varepsilon\}
$$

The associated transform is given by

$$
T A=\cap_{x \in A} B(x, \varepsilon) .
$$

Ball intersections

Let (X, d) be some metric space. Let

$$
S=\{(x, y) \in X \times X: d(x, y) \leq \varepsilon\} .
$$

The associated transform is given by

$$
T A=\cap_{x \in A} B(x, \varepsilon) .
$$

- The image class consists of all sets obtained by intersections of balls of radius ε. In particular, these sets are closed and of diameter at most 2ε.
- The invariant sets are the so-called "diametrically complete" sets, and when $X=\mathbb{R}^{n}$ with the Euclidean distance d, these are precisely sets of equal width ε.

Dual polarity

Let

$$
S=\{(x, y):\langle x, y\rangle \geq 1\} \subseteq \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

The associated transform is given by

$$
T A=\{y: \forall x \in A,\langle x, y\rangle \geq 1\}
$$

Dual polarity

Let

$$
S=\{(x, y):\langle x, y\rangle \geq 1\} \subseteq \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

The associated transform is given by

$$
T A=\{y: \forall x \in A,\langle x, y\rangle \geq 1\} .
$$

The image class consists of intersections of affine half-spaces that do not include the origin. In particular, these are unbounded, closed and convex sets.

Lemma
The class $\mathcal{C}=\left\{T K: K \subseteq \mathbb{R}^{n}\right\}$ consists of \mathbb{R}^{n} together with all closed convex sets $K \subseteq \mathbb{R}^{n}$ that do not include the origin and satisfy for all $\lambda \geq 1$ that $\lambda K \subseteq K$.

The class \mathcal{C} decomposes into sub-classes:

For every $u \in S^{n-1}$ we define the sub-class \mathcal{C}_{u} to be those $K \in \mathcal{C}$ whose closest point to the origin lies on the ray $u \mathbb{R}^{+}$.

The class \mathcal{C} decomposes into sub-classes:

For every $u \in S^{n-1}$ we define the sub-class \mathcal{C}_{u} to be those $K \in \mathcal{C}$ whose closest point to the origin lies on the ray $u \mathbb{R}^{+}$.

Fact
For any $u \in S^{n-1}$ the sub-class \mathcal{C}_{u} is invariant under T.

The class \mathcal{C} decomposes into sub-classes:

For every $u \in S^{n-1}$ we define the sub-class \mathcal{C}_{u} to be those $K \in \mathcal{C}$ whose closest point to the origin lies on the ray $u \mathbb{R}^{+}$.

Fact
For any $u \in S^{n-1}$ the sub-class \mathcal{C}_{u} is invariant under T.

Further,

$$
\mathcal{C}_{u}=\cup_{a>0} \mathcal{C}_{u, a},
$$

where $K \in \mathcal{C}_{u, a}$ if its point closest to the origin is $a u$.

The class \mathcal{C} decomposes into sub-classes:

For every $u \in S^{n-1}$ we define the sub-class \mathcal{C}_{u} to be those $K \in \mathcal{C}$ whose closest point to the origin lies on the ray $u \mathbb{R}^{+}$.

Fact

For any $u \in S^{n-1}$ the sub-class \mathcal{C}_{u} is invariant under T.

Further,

$$
\mathcal{C}_{u}=\cup_{a>0} \mathcal{C}_{u, a},
$$

where $K \in \mathcal{C}_{u, a}$ if its point closest to the origin is $a u$.

Therefore, having fixed an orthonormal basis $\left\{e_{i}\right\}_{i=1}^{n}$ for \mathbb{R}^{n}, in order to study T it suffices to focus on one sub-class $\mathcal{C}_{e_{n}, 1}$.

More about the subclass $C_{e_{n}, 1}$

Lemma
For $K \in \mathcal{C}_{e_{n}, 1} \subset \mathcal{P}\left(\mathbb{R}^{n}\right)$ we have that

$$
-\tilde{J}(K)^{\circ}=\tilde{J}(T(K)) .
$$

Lemma
For $K \in \mathcal{C}_{e_{n}, 1} \subset \mathcal{P}\left(\mathbb{R}^{n}\right)$ we have that

$$
-\tilde{J}(K)^{\circ}=\tilde{J}(T(K))
$$

Let J be a transform on subsets of $\mathbb{R}^{n-1} \times \mathbb{R}^{+}$defined by $J K=F(K)$, where

$$
F(x, t)=(x / t, 1 / t) .
$$

This is a convexity preserving map that maps rays emanating from the origin to rays parallel to the ray $\{0\} \times \mathbb{R}^{+}$.

Lemma

For $K \in \mathcal{C}_{e_{n}, 1} \subset \mathcal{P}\left(\mathbb{R}^{n}\right)$ we have that

$$
-\tilde{J}(K)^{\circ}=\tilde{J}(T(K))
$$

Let J be a transform on subsets of $\mathbb{R}^{n-1} \times \mathbb{R}^{+}$defined by $J K=F(K)$, where

$$
F(x, t)=(x / t, 1 / t) .
$$

This is a convexity preserving map that maps rays emanating from the origin to rays parallel to the ray $\{0\} \times \mathbb{R}^{+}$.
Let $\tilde{J}(K)=J K \cup R_{e_{\frac{1}{n}}} J K$
The resulting body always includes the segment $\left[-e_{n}, e_{n}\right]$, is included in the slab $\left\{\left|\left\langle\cdot, e_{n}\right\rangle\right| \leq 1\right\}$, and is invariant under reflections about e_{n}^{\perp}.

Lemma
For $K \in \mathcal{C}_{e_{n}, 1} \subset \mathcal{P}\left(\mathbb{R}^{n}\right)$ we have that

$$
-\tilde{J}(K)^{\circ}=\tilde{J}(T(K)) .
$$

Theorem (Artstein-Avidan, Sadovsky, W.)
Let $K \subset \mathcal{C}$ be essentially symmetric. Let $T: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be given by $T K=\{x: \forall y \in K,\langle x, y\rangle \geq 1\}$. Then

$$
\gamma_{n}(K) \gamma_{n}(T K) \leq \gamma_{n}\left(K_{0}\right)^{2}
$$

where $K_{0}=\left\{(x, t) \in \mathbb{R}^{n-1} \times \mathbb{R}^{+}:|x|^{2}+1 \leq t^{2}\right\}$, and γ_{n} is the Gaussian measure on \mathbb{R}^{n}.

Theorem (Artstein-Avidan, Sadovsky, W.)
Let $K \subset \mathcal{C}$ be essentially symmetric. Let $T: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be given by $T K=\{x: \forall y \in K,\langle x, y\rangle \geq 1\}$. Then

$$
\gamma_{n}(K) \gamma_{n}(T K) \leq \gamma_{n}\left(K_{0}\right)^{2},
$$

where $K_{0}=\left\{(x, t) \in \mathbb{R}^{n-1} \times \mathbb{R}^{+}:|x|^{2}+1 \leq t^{2}\right\}$, and γ_{n} is the Gaussian measure on \mathbb{R}^{n}.

It is useful to note that the set K_{0} corresponds to the ball under the pull-back. More precisely, we have

$$
\tilde{J}\left(K_{0}\right)=B_{2}^{n} .
$$

Theorem (Artstein-Avidan, Sadovsky, W.)
Let $K \subset \mathcal{C}$ be essentially symmetric. Let $T: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be given by $T K=\{x: \forall y \in K,\langle x, y\rangle \geq 1\}$. Then

$$
\gamma_{n}(K) \gamma_{n}(T K) \leq \gamma_{n}\left(K_{0}\right)^{2},
$$

where $K_{0}=\left\{(x, t) \in \mathbb{R}^{n-1} \times \mathbb{R}^{+}:|x|^{2}+1 \leq t^{2}\right\}$, and γ_{n} is the Gaussian measure on \mathbb{R}^{n}.

It is useful to note that the set K_{0} corresponds to the ball under the pull-back. More precisely, we have

$$
\tilde{J}\left(K_{0}\right)=B_{2}^{n}
$$

Lemma. Let $K \in \mathcal{C}_{e_{n}, 1} \subset \mathcal{P}\left(\mathbb{R}^{n}\right)$. Then $\gamma_{n}(K)=\nu(J K)$, where

$$
d \nu(x, z)=(2 \pi)^{-n} e^{-|x|^{2} / 2 z^{2}} e^{-1 / 2 z^{2}} z^{-(n+1)} d x d z
$$

is defined on $\mathbb{R}^{n-1} \times \mathbb{R}^{+}$(and $d \nu(x, z)$ is 0 for $z \leq 0$).

Equivalently

Theorem
Let $L \subseteq \mathbb{R}^{n}$ be a centrally symmetric convex body which includes the segment $\left[-e_{n}, e_{n}\right]$, is included in the slab $\left\{\left|\left\langle\cdot, e_{n}\right\rangle\right| \leq 1\right\}$, and is invariant to reflections about e_{n}^{\perp}. Then

$$
\nu(L) \nu\left(L^{\circ}\right) \leq \nu\left(B_{2}^{n}\right)^{2}
$$

where $d \nu(x, z)=(2 \pi)^{-n} e^{-|x|^{2} / 2 z^{2}} e^{-1 / 2 z^{2}} z^{-(n+1)} d x d z$ on $\mathbb{R}^{n-1} \times \mathbb{R}^{+}$.

Equivalently

Theorem
Let $L \subseteq \mathbb{R}^{n}$ be a centrally symmetric convex body which includes the segment $\left[-e_{n}, e_{n}\right]$, is included in the slab $\left\{\left|\left\langle\cdot, e_{n}\right\rangle\right| \leq 1\right\}$, and is invariant to reflections about e_{n}^{\perp}. Then

$$
\nu(L) \nu\left(L^{\circ}\right) \leq \nu\left(B_{2}^{n}\right)^{2}
$$

where $d \nu(x, z)=(2 \pi)^{-n} e^{-|x|^{2} / 2 z^{2}} e^{-1 / 2 z^{2}} z^{-(n+1)} d x d z$ on $\mathbb{R}^{n-1} \times \mathbb{R}^{+}$.

Sketch of the proof

Sketch of the proof

Lemma (D. Cordero-Erausquin)

For a centrally symmetric convex set $L \subseteq \mathbb{R}^{n}$ we have

$$
\gamma_{n}(L) \gamma_{n}\left(L^{\circ}\right) \leq \gamma_{n}\left(B_{2}^{n}\right)^{2}
$$

Moreover, for any $\alpha>0$ we have that $\gamma_{n}(\alpha L) \gamma_{n}\left(\alpha L^{\circ}\right) \leq \gamma_{n}\left(\alpha B_{2}^{n}\right)^{2}$.

