Around Bezout inequalities for mixed volumes

Maud Szusterman

Université de Paris, Sorbonne Unversité and ICERM at Brown University.

October 2022

AGA Seminar - Zoom

Mixed volume : Minkowski's definition

Denote by $\mathcal{K}_{n}=\left\{K \subset \mathbb{R}^{n}: K\right.$ compact convex set $\}$.

Steiner polynomial

For any $K \in \mathcal{K}_{n}$, there exists non-negative $\left\{v_{k} ; 0 \leq k \leq n\right\}$ such that: $\forall \varepsilon>0$, $\operatorname{VoI}_{n}\left(K+\varepsilon B_{2}^{n}\right)=\sum_{k=0}^{n}\binom{n}{k} v_{k} \varepsilon^{k}$.

$\operatorname{Vol}_{n}(K+\varepsilon T)$ is also a polynomial in ε (even if $T \in \mathcal{K}_{n}$ is not a ball).

Denote by $\mathcal{K}_{n}=\left\{K \subset \mathbb{R}^{n}: K\right.$ compact convex set $\}$.
Let $K, L \in \mathcal{K}_{n}$, let $\lambda, \mu \geq 0$. Then $\operatorname{Vol}_{n}(\lambda K+\mu L)$ is a polynomial in (λ, μ) :

$$
\operatorname{Vol}_{n}(\lambda K+\mu L)=\sum_{k=0}^{n}\binom{n}{k} v_{k} \lambda^{k} \mu^{n-k}
$$

Denote by $\mathcal{K}_{n}=\left\{K \subset \mathbb{R}^{n}: K\right.$ compact convex set $\}$.
Let $K, L \in \mathcal{K}_{n}$, let $\lambda, \mu \geq 0$. Then $\operatorname{Vol}_{n}(\lambda K+\mu L)$ is a polynomial in (λ, μ) :

$$
\operatorname{Vol}_{n}(\lambda K+\mu L)=\sum_{k=0}^{n}\binom{n}{k} v_{k} \lambda^{k} \mu^{n-k},
$$

where $v_{k}=V_{n}(K[k], L[n-k])=V_{n}(K, \ldots, K, L, \ldots, L)$ are called mixed volumes.

- Let $K, L \in \mathcal{K}_{n}, \lambda, \mu \geq 0$. . Then $\operatorname{Vol}_{n}(\lambda K+\mu L)=\sum_{k=0}^{n}\binom{n}{k} v_{k} \lambda^{k} \mu^{n-k}$
- Let $K_{1}, \ldots, K_{m} \in \mathcal{K}_{n}$. Let $\lambda_{1}, \ldots, \lambda_{m} \geq 0$. Then :

$$
\operatorname{Vol}_{n}\left(\lambda_{1} K_{1}+\cdots+\lambda_{m} K_{m}\right)=\sum_{\substack{a=\left(a_{1}, \ldots, a_{m}\right) \\|a|=n}}\binom{n}{a} v_{a} \lambda_{1}{ }^{a_{1}} \ldots \lambda_{m}{ }^{a_{m}}
$$

where $v_{a}=V_{n}\left(K_{1}\left[a_{1}\right], \ldots, K_{m}\left[a_{m}\right]\right)$ are called mixed volumes.

- Let $K, L \in \mathcal{K}_{n}, \lambda, \mu \geq 0$. Then $\operatorname{Vol}_{n}(\lambda K+\mu L)=\sum_{k=0}^{n}\binom{n}{k} v_{k} \lambda^{k} \mu^{n-k}$
- Let $K_{1}, \ldots, K_{m} \in \mathcal{K}_{n}$, Let $\lambda_{1}, \ldots, \lambda_{m} \geq 0$.. Then :

$$
\operatorname{VoI}_{n}\left(\lambda_{1} K_{1}+\cdots+\lambda_{m} K_{m}\right)=\sum_{\substack{a=\left(a_{1}, \ldots, a_{m}\right) \\|a|=n}}\binom{n}{a} v_{a} \lambda^{a}
$$

where $v_{a}=V_{n}\left(K_{1}\left[a_{1}\right], \ldots, K_{m}\left[a_{m}\right]\right)$ are called mixed volumes.

- $V_{n}: \mathcal{K}_{n}^{n} \rightarrow[0,+\infty)$ is a multilinear, continuous functional.

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an affine transform. Then :

$$
V_{n}\left(T K_{1}, \ldots, T K_{n}\right)=|\operatorname{det}(T)| V_{n}\left(K_{1}, \ldots, K_{n}\right)
$$

Mixed volume : a few properties

- $V_{n}\left(K_{\sigma(1)}, \ldots, K_{\sigma(n)}\right)=V_{n}\left(K_{1}, \ldots, K_{n}\right) \quad$ (for any $\left.\sigma\right)$.
- $V_{n}\left(K_{\sigma(1)}, \ldots, K_{\sigma(n)}\right)=V_{n}\left(K_{1}, \ldots, K_{n}\right) \quad$ (for any $\left.\sigma\right)$.
- $V_{n}\left(\lambda A+B, K_{2}, \ldots, K_{n}\right)=\lambda V_{n}\left(A, K_{2}, \ldots\right)+V\left(B, K_{2}, \ldots\right) \quad$ (multilinearity).
- $V_{n}\left(K_{\sigma(1)}, \ldots, K_{\sigma(n)}\right)=V_{n}\left(K_{1}, \ldots, K_{n}\right) \quad$ (for any $\left.\sigma\right)$.
- $V_{n}\left(\lambda A+B, K_{2}, \ldots, K_{n}\right)=\lambda V_{n}\left(A, K_{2}, \ldots\right)+V\left(B, K_{2}, \ldots\right) \quad$ (multilinearity).

$$
V_{n}\left(L_{1}, \ldots, L_{k}, K_{k+1}, \ldots, K_{n}\right)=\frac{1}{k!} \sum_{\epsilon \in\{0,1\}^{k}}(-1)^{k-|\epsilon|} V_{n}\left(L_{\epsilon}[k], K_{k+1}, \ldots\right),
$$

where $L_{\epsilon}=\epsilon_{1} L_{1}+\ldots+\epsilon_{k} L_{k} \quad$ (polarization identity).

- $V_{n}\left(K_{\sigma(1)}, \ldots, K_{\sigma(n)}\right)=V_{n}\left(K_{1}, \ldots, K_{n}\right) \quad$ (for any $\left.\sigma\right)$.
- $V_{n}\left(\lambda A+B, K_{2}, \ldots, K_{n}\right)=\lambda V_{n}\left(A, K_{2}, \ldots\right)+V\left(B, K_{2}, \ldots\right) \quad$ (multilinearity).

$$
V_{n}\left(L_{1}, \ldots, L_{k}, K_{k+1}, \ldots, K_{n}\right)=\frac{1}{k!} \sum_{\epsilon \in\{0,1\}^{k}}(-1)^{k-|\epsilon|} V_{n}\left(L_{\epsilon}[k], K_{k+1}, \ldots\right),
$$

where $L_{\epsilon}=\epsilon_{1} L_{1}+\ldots+\epsilon_{k} L_{k} \quad$ (polarization identity).

- $V(K[n-1],[0, u])=\frac{1}{n} V_{o I_{n-1}}\left(\pi_{u} \perp(K)\right)$
where $|u|=1$.
- $V_{n}\left(K_{\sigma(1)}, \ldots, K_{\sigma(n)}\right)=V_{n}\left(K_{1}, \ldots, K_{n}\right) \quad$ (for any $\left.\sigma\right)$.
- $V_{n}\left(\lambda A+B, K_{2}, \ldots, K_{n}\right)=\lambda V_{n}\left(A, K_{2}, \ldots\right)+V\left(B, K_{2}, \ldots\right) \quad$ (multilinearity).

$$
V_{n}\left(L_{1}, \ldots, L_{k}, K_{k+1}, \ldots, K_{n}\right)=\frac{1}{k!} \sum_{\epsilon \in\{0,1\}^{k}}(-1)^{k-|\epsilon|} V_{n}\left(L_{\epsilon}[k], K_{k+1}, \ldots\right),
$$

where $L_{\epsilon}=\epsilon_{1} L_{1}+\ldots+\epsilon_{k} L_{k} \quad$ (polarization identity).

- $V(K[n-1],[0, u])=\frac{1}{n} V_{n o I_{n-1}}\left(\pi_{u \perp}(K)\right) \quad$ where $|u|=1$.
- $V\left(K_{1}, \ldots, K_{n-1},[0, u]\right)=\frac{1}{n} V_{n-1}\left(\pi_{u^{\perp}}\left(K_{1}\right), \pi_{u^{\perp}}\left(K_{2}\right), \ldots \pi_{u^{\perp}}\left(K_{n-1}\right)\right)$.
- $V_{n}\left(K_{\sigma(1)}, \ldots, K_{\sigma(n)}\right)=V_{n}\left(K_{1}, \ldots, K_{n}\right) \quad$ (for any $\left.\sigma\right)$.
- $V_{n}\left(\lambda A+B, K_{2}, \ldots, K_{n}\right)=\lambda V_{n}\left(A, K_{2}, \ldots\right)+V\left(B, K_{2}, \ldots\right) \quad$ (multilinearity).

$$
V_{n}\left(L_{1}, \ldots, L_{k}, K_{k+1}, \ldots, K_{n}\right)=\frac{1}{k!} \sum_{\epsilon \in\{0,1\}^{k}}(-1)^{k-|\epsilon|} V_{n}\left(L_{\epsilon}[k], K_{k+1}, \ldots\right),
$$

where $L_{\epsilon}=\epsilon_{1} L_{1}+\ldots+\epsilon_{k} L_{k} \quad$ (polarization identity).

- $V(K[n-1],[0, u])=\frac{1}{n} V_{n o I_{n-1}}\left(\pi_{u \perp}(K)\right) \quad$ where $|u|=1$.
- $V\left(K_{1}, \ldots, K_{n-1},[0, u]\right)=\frac{1}{n} V_{n-1}\left(\pi_{u \perp}\left(K_{1}\right), \pi_{u^{\perp}}\left(K_{2}\right), \ldots \pi_{u^{\perp}}\left(K_{n-1}\right)\right)$.
- $V(K[n-1],[0, u],[0, v])=\frac{1}{n(n-1)} \operatorname{Vol}_{2}([0, u]+[0, v]) \operatorname{Vol}_{n-2}\left(\pi_{(u, v)^{\perp}}(K)\right)$.

Mixed volume : a few important properties

- Non-negativity: $V\left(K_{1}, \ldots, K_{n}\right) \geq 0 \quad$ (for any $\left.K_{1}, \ldots, K_{n} \in \mathcal{K}_{n}\right)$.
- Non-negativity: $V\left(K_{1}, \ldots, K_{n}\right) \geq 0 \quad$ (for any $\left.K_{1}, \ldots, K_{n} \in \mathcal{K}_{n}\right)$.
- Monotonicity : $V\left(L, K_{2}, \ldots, K_{n}\right) \leq V\left(K, K_{2}, . ., K_{n}\right) \quad$ whenever $L \subset K$.
- Non-negativity: $V\left(K_{1}, \ldots, K_{n}\right) \geq 0 \quad$ (for any $\left.K_{1}, \ldots, K_{n} \in \mathcal{K}_{n}\right)$.
- Monotonicity : $V\left(L, K_{2}, \ldots, K_{n}\right) \leq V\left(K, K_{2}, . ., K_{n}\right) \quad$ whenever $L \subset K$.
- Continuity : $\lim _{k} V_{n}\left(K_{1, k}, \ldots, K_{n, k}\right)=V_{n}\left(K_{1}, \ldots, K_{n}\right)$
(if for each $j=1,2, \ldots, n, K_{j, k} \rightarrow K_{j}$ as $k \rightarrow \infty$).
- Non-negativity: $V\left(K_{1}, \ldots, K_{n}\right) \geq 0 \quad$ (for any $\left.K_{1}, \ldots, K_{n} \in \mathcal{K}_{n}\right)$.
- Monotonicity : $V\left(L, K_{2}, \ldots, K_{n}\right) \leq V\left(K, K_{2}, . ., K_{n}\right) \quad$ whenever $L \subset K$.
- Continuity : $\lim _{k} V_{n}\left(K_{1, k}, \ldots, K_{n, k}\right)=V_{n}\left(K_{1}, \ldots, K_{n}\right)$
- $V\left(K[n-1], B_{2}^{n}\right)=\frac{1}{n} V o I_{n-1}(S(K))$ where $S(K)$ is the surface of K.
- Non-negativity: $V\left(K_{1}, \ldots, K_{n}\right) \geq 0 \quad$ (for any $\left.K_{1}, \ldots, K_{n} \in \mathcal{K}_{n}\right)$.
- Monotonicity : $V\left(L, K_{2}, \ldots, K_{n}\right) \leq V\left(K, K_{2}, . ., K_{n}\right) \quad$ whenever $L \subset K$.
- Continuity : $\lim _{k} V_{n}\left(K_{1, k}, \ldots, K_{n, k}\right)=V_{n}\left(K_{1}, \ldots, K_{n}\right)$
- $V\left(K[n-1], B_{2}^{n}\right)=\frac{1}{n} V o l_{n-1}(S(K))$ where $S(K)$ is the surface of K.
- $V\left(K, B_{2}^{n}[n-1]\right)=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{K}(u) d u$,
where $d u$ is the Lebesgue measure on the sphere,
- Non-negativity: $V\left(K_{1}, \ldots, K_{n}\right) \geq 0 \quad$ (for any $\left.K_{1}, \ldots, K_{n} \in \mathcal{K}_{n}\right)$.
- Monotonicity : $V\left(L, K_{2}, \ldots, K_{n}\right) \leq V\left(K, K_{2}, . ., K_{n}\right) \quad$ whenever $L \subset K$.
- Continuity : $\lim _{k} V_{n}\left(K_{1, k}, \ldots, K_{n, k}\right)=V_{n}\left(K_{1}, \ldots, K_{n}\right)$
- $V\left(K[n-1], B_{2}^{n}\right)=\frac{1}{n} V o l_{n-1}(S(K))$ where $S(K)$ is the surface of K.
- $V\left(K, B_{2}^{n}[n-1]\right)=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{K}(u) d u$,
where $d u$ is the Lebesgue measure on the sphere, and $h_{K}(u)=\max _{y \in K}\langle y, u\rangle$ is the support function of K.

Mixed volume and surface area

$$
\begin{aligned}
& \text { Assume } P \text { is a polytope : } P=\cap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right) . \\
& \text { where } H^{-}(u, b):=\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq b\right\}
\end{aligned}
$$

Mixed volume and surface area

Assume P is a polytope : $P=\cap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right)$.
Then for any convex body L :

$$
V(L, P[n-1])=\frac{1}{n} \sum_{i=1}^{N} h_{L}\left(u_{i}\right) \operatorname{Vol}_{n-1}\left(P^{u_{i}}\right)
$$

where $P^{u}=F(P, u)=\left\{y \in P:\langle y, u\rangle=h_{P}(u)\right\}$.

Assume P is a polytope : $P=\cap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right)$.
Then for any convex body L :

$$
V(L, P[n-1])=\frac{1}{n} \sum_{i=1}^{N} h_{L}\left(u_{i}\right) V o I_{n-1}\left(P^{u_{i}}\right)
$$

where $P^{u}=F(P, u)=\left\{y \in P:\langle y, u\rangle=h_{P}(u)\right\}$.

- Denote $S_{P}=\sum_{i=1}^{N} V o l_{n-1}\left(P^{u_{i}}\right) \delta_{u_{i}}, \quad S_{P} \in \mathcal{M}_{+}\left(\mathbb{S}^{n-1}\right)$, (where δ_{u} is the Dirac measure at u)

Assume P is a polytope : $P=\cap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right)$.
Then for any convex body L :

$$
V(L, P[n-1])=\frac{1}{n} \sum_{i=1}^{N} h_{L}\left(u_{i}\right) V o I_{n-1}\left(P^{u_{i}}\right)
$$

where $P^{u}=F(P, u)=\left\{y \in P:\langle y, u\rangle=h_{P}(u)\right\}$.

- Denote $S_{P}=\sum_{i=1}^{N} V o l_{n-1}\left(P^{u_{i}}\right) \delta_{u_{i}}, \quad S_{P} \in \mathcal{M}_{+}\left(\mathbb{S}^{n-1}\right)$, (where δ_{u} is the

Dirac measure at u)

- S_{P} is a discrete measure on the sphere.

Assume P is a polytope : $P=\cap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right)$.
Then for any convex body L :

$$
V(L, P[n-1])=\frac{1}{n} \sum_{i=1}^{N} h_{L}\left(u_{i}\right) V_{o I_{n-1}}\left(P^{u_{i}}\right)
$$

where $P^{u}=F(P, u)=\left\{y \in P:\langle y, u\rangle=h_{P}(u)\right\}$.

- Denote $S_{P}=\sum_{i=1}^{N} V o l_{n-1}\left(P^{u_{i}}\right) \delta_{u_{i}}, \quad S_{P} \in \mathcal{M}_{+}\left(\mathbb{S}^{n-1}\right)$, (where δ_{u} is the Dirac measure at u)
- S_{P} is a discrete measure on the sphere.
- The above formula rewrites:

Assume P is a polytope : $P=\cap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right)$.
Then for any convex body L :

$$
V(L, P[n-1])=\frac{1}{n} \sum_{i=1}^{N} h_{L}\left(u_{i}\right) V_{o I_{n-1}}\left(P^{u_{i}}\right)
$$

where $P^{u}=F(P, u)=\left\{y \in P:\langle y, u\rangle=h_{P}(u)\right\}$.

- Denote $S_{P}=\sum_{i=1}^{N} V o l_{n-1}\left(P^{u_{i}}\right) \delta_{u_{i}}, \quad S_{P} \in \mathcal{M}_{+}\left(\mathbb{S}^{n-1}\right)$, (where δ_{u} is the Dirac measure at u)
- S_{P} is a discrete measure on the sphere.
- The above formula rewrites:

$$
V(L, P[n-1])=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{L}(u) d S_{P}(u) .
$$

Mixed volume and (mixed) surface areas

For any convex body K, there exists a (finite, non-negative) measure S_{K} on \mathbb{S}^{n-1}, such that :

$$
(\text { for any } L), \quad V(L, K[n-1])=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{L}(u) d S_{K}(u)
$$

S_{K} is called the surface area measure of K.

Mixed volume and (mixed) surface areas

For any convex body K, there exists a (finite, non-negative) measure S_{K} on \mathbb{S}^{n-1}, such that :

$$
(\text { for any } L), \quad V(L, K[n-1])=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{L}(u) d S_{K}(u)
$$

S_{K} is called the surface area measure of K.
S_{K} is a discrete measure with finite support, if and only if K is a polytope.

Mixed volume and (mixed) surface areas

For any convex body K, there exists a (finite, non-negative) measure S_{K} on \mathbb{S}^{n-1}, such that :

$$
(\text { for any } L), \quad V(L, K[n-1])=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{L}(u) d S_{K}(u)
$$

S_{K} is called the surface area measure of K.

More generally, if K_{1}, \ldots, K_{n-1} are convex bodies, then there exists a measure σ on \mathbb{S}^{n-1}, such that:

$$
(\text { for any } L), \quad V\left(L, K_{1}, \ldots, K_{n-1}\right)=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{L}(u) d \sigma(u)
$$

The measure σ is called a mixed surface area measure, and is usually denoted :

$$
\sigma=S\left(K_{1}, \ldots, K_{n-1}, .\right)
$$

Let $Q(X, Y)=\sum_{\alpha} c_{\alpha} X^{\alpha_{1}} Y^{\alpha_{2}} \in \mathbb{R}[X, Y]$. Then the Newton polytope of Q is $P=\operatorname{Conv}\left\{\left(\alpha_{1}, \alpha_{2}\right): c_{\alpha} \neq 0\right\}$.

More generally, if $Q \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right], Q=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} X^{\alpha}$, then the Newton polytope of Q is $P=\operatorname{Conv}\left\{\alpha: c_{\alpha} \neq 0\right\} \subset \mathbb{R}_{+}^{n}$.

Let $f_{1}, \ldots, f_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomials. Denote by X_{1}, \ldots, X_{r} the associated algebraic varieties $\quad\left(X_{i}:=\left\{x \in \mathbb{R}^{n}: f_{i}(x)=0\right\}\right)$.

The Bezout inequality states that :

$$
\begin{equation*}
\operatorname{deg}\left(X_{1} \cap \ldots \cap X_{r}\right) \leq \prod \operatorname{deg}\left(X_{i}\right) \tag{B}
\end{equation*}
$$

Let $f_{1}, \ldots, f_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomials. Denote by X_{1}, \ldots, X_{r} the associated algebraic varieties.

The Bezout inequality states that :

$$
\begin{equation*}
\operatorname{deg}\left(X_{1} \cap \ldots \cap X_{r}\right) \leq \prod \operatorname{deg}\left(X_{i}\right) \tag{B}
\end{equation*}
$$

Denote by P_{1}, \ldots, P_{r} the Newton polytopes of f_{1}, \ldots, f_{r}

Let $f_{1}, \ldots, f_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomials. Denote by X_{1}, \ldots, X_{r} the associated algebraic varieties.

The Bezout inequality states that :

$$
\begin{equation*}
\operatorname{deg}\left(X_{1} \cap \ldots \cap X_{r}\right) \leq \prod \operatorname{deg}\left(X_{i}\right) \tag{B}
\end{equation*}
$$

Denote by P_{1}, \ldots, P_{r} the Newton polytopes of f_{1}, \ldots, f_{r}
We can reformulate $[B]$ within the language of mixed volumes:

$$
V\left(P_{1}, \ldots, P_{r}, \Delta[n-r]\right) V(\Delta)^{r-1} \leq \prod_{i=1}^{r} V\left(P_{i}, \Delta[n-1]\right)
$$

thanks to a theorem by Bernstein, Kushnirenko and Khovanskii.

Let $f_{1}, \ldots, f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomials.
Let $X=X_{2} \cap \ldots \cap X_{n}$ of dimension 1, and $Y=X_{1}$ (codim.1). Then Bezout inequality:

$$
\begin{equation*}
\operatorname{deg}(X \cap Y) \leq \operatorname{deg}(X) \operatorname{deg}(Y) \tag{B}
\end{equation*}
$$

translates to

$$
V_{n}\left(P_{1}, \ldots, P_{n}\right) V_{n}(\Delta) \leq V_{n}\left(P_{2}, \ldots, P_{n}, \Delta\right) V_{n}\left(P_{1}, \Delta[n-1]\right)
$$

(recover previous inequality $[B]$, by using $[B] r-1$ times)

$$
V_{n}\left(L_{1}, \ldots, L_{n}\right) V_{n}(\Delta) \leq V_{n}\left(L_{2}, \ldots, L_{n}, \Delta\right) V_{n}\left(L_{1}, \Delta[n-1]\right)
$$

Since the inequality is invariant under replacing L_{1} with $\lambda L_{1}+x$, we may assume $L_{1} \subset \Delta$, and $r\left(\Delta, L_{1}\right)=1$, which implies $h_{L_{1}}\left(u_{j}\right)=h_{\Delta}\left(u_{j}\right)$ for all outer normals $u_{j}, j \leq n+1$, of Δ.

- In this case :

$$
V\left(L_{1}, \Delta[n-1]\right)=\frac{1}{n} \sum_{j=1}^{n+1} h_{L_{1}}\left(u_{j}\right) V_{o I_{n-1}}\left(K^{u_{j}}\right)=V_{n}(\Delta)
$$

- therefore $[\mathrm{B}]$ follows from monotonicity of mixed volume.
- Let $K, L \in \mathcal{K}_{n}$. The inradius of K relative to L is $r(K, L):=\max \left\{\lambda>0: x+\lambda L \subset K, x \in \mathbb{R}^{n}\right\}$.
- A corollary of Diskant's inequality :

$$
r(K, L)^{-1} \leq n \frac{V_{1}(K, L)}{\operatorname{Vol}(K)}=n \frac{V(K[n-1], L)}{\operatorname{Vol}(K)}
$$

- Using this, J. Xiao has shown (2019) :

$$
V\left(L_{1}, \ldots, L_{n}\right) V(K) \leq n V\left(L_{2}, \ldots, L_{n}, K\right) V\left(L_{1}, K[n-1]\right)
$$

for any convex bodies L_{1}, \ldots, L_{n}, and for any K.

- Let $K, L \in \mathcal{K}_{n}$. The inradius of K relative to L is $r(K, L):=\max \left\{\lambda>0: x+\lambda L \subset K, x \in \mathbb{R}^{n}\right\}$.
- A corollary of Diskant's inequality :

$$
r(K, L)^{-1} \leq n \frac{V_{1}(K, L)}{\operatorname{Vol}(K)}=n \frac{V(K[n-1], L)}{\operatorname{Vol}(K)}
$$

- Using this, J. Xiao has shown (2019) :

$$
V\left(L_{1}, \ldots, L_{n}\right) V(K) \leq n V\left(L_{2}, \ldots, L_{n}, K\right) V\left(L_{1}, K[n-1]\right)
$$

for any convex bodies L_{1}, \ldots, L_{n}, and for any K.

- $C=[0,1]^{n}$ shows that n is sharp.
(to see that $b(C)=n$, take $L_{i}=\left[0, e_{i}\right]$ and use projection formula).
- Let $K, L \in \mathcal{K}_{n}$. The inradius of K relative to L is $r(K, L):=\max \left\{\lambda>0: x+\lambda L \subset K, x \in \mathbb{R}^{n}\right\}$.
- Replace L_{1} with $L^{\prime}:=r\left(K, L_{1}\right) L_{1}+x \subset K\left(L^{\prime}\right.$ maximally contained $)$.
- $r\left(K, L_{1}\right) V\left(L_{1}, \ldots, L_{n}\right)=V\left(L^{\prime}, L_{2}, \ldots, L_{n}\right) \leq V\left(K, L_{2}, \ldots, L_{n}\right)$ (monotonicity)
- therefore :

$$
\begin{aligned}
V\left(L_{1}, \ldots, L_{n}\right) \leq & r\left(K, L_{1}\right)^{-1} \quad V\left(K, L_{2}, \ldots, L_{n}\right) \\
& \leq \frac{n V\left(K[n-1], L_{1}\right)}{V_{n}(K)} V\left(K, L_{2}, \ldots, L_{n}\right) .
\end{aligned}
$$

We define :

$$
b_{2}(K)=\max _{L_{1}, L_{2}} \frac{V\left(L_{1}, L_{2}, K[n-2]\right) V(K)}{V\left(L_{1}, K[n-1]\right) V\left(L_{2}, K[n-1]\right)} \geq 1
$$

And similarly

$$
b(K)=\max _{L_{1}, \ldots, L_{n}} \frac{V\left(L_{1}, \ldots, L_{n}\right) V(K)}{V\left(L_{2}, \ldots, L_{n}, K\right) V\left(L_{1}, K[n-1]\right)} \geq 1
$$

We define :

$$
b_{2}(K)=\max _{L_{1}, L_{2}} \frac{V\left(L_{1}, L_{2}, K[n-2]\right) V(K)}{V\left(L_{1}, K[n-1]\right) V\left(L_{2}, K[n-1]\right)} \geq 1
$$

And similarly

$$
b(K)=\max _{L_{1}, \ldots, L_{n}} \frac{V\left(L_{1}, \ldots, L_{n}\right) V(K)}{V\left(L_{2}, \ldots, L_{n}, K\right) V\left(L_{1}, K[n-1]\right)} \geq 1
$$

So that :

- $b_{2}(\Delta)=b(\Delta)=1$ (by BKK theorem, or directly with MV)
- $\forall K, 1 \leq b_{2}(K) \leq b(K)$;
- by [Diskant, Xiao] : $\max _{K} b(K) \leq n$.
- $\forall K, b(T K)=b(K)$, for any (full-rank) affine T.
- We've just seen that for all $K, b(K) \leq n$,
- We've just seen that for all $K, b(K) \leq n$, with equality when $K=C=[0,1]^{n}$.
- We've just seen that for all $K, b(K) \leq n$, with equality when $K=C=[0,1]^{n}$.
- (open) Are there other convex bodies such that $b(K)=n$?
- We've just seen that for all $K, b(K) \leq n$, with equality when $K=C=[0,1]^{n}$.
- (open) Are there other convex bodies such that $b(K)=n$?

Fact: $b_{2}(C)=\frac{n}{n-1}$. Hence $b_{2}(C)<2$ (for $n \geq 3$).

- We've just seen that for all $K, b(K) \leq n$, with equality when $K=C=[0,1]^{n}$.
- (open) Are there other convex bodies such that $b(K)=n$?

Fact: $b_{2}(C)=\frac{n}{n-1}$. Hence $b_{2}(C)<2$ (for $n \geq 3$).

Open question

does $\max _{K} b_{2}(K)$ remain bounded when $n \rightarrow \infty$?

- We've just seen that for all $K, b(K) \leq n$, with equality when $K=C=[0,1]^{n}$.
- (open) Are there other convex bodies such that $b(K)=n$?

Fact: $b_{2}(C)=\frac{n}{n-1}$. Hence $b_{2}(C)<2$ (for $n \geq 3$).

Open question

does $\max _{K} b_{2}(K)$ remain bounded when $n \rightarrow \infty$?
$\max _{K} b_{2}(K) \geq 2$ can be seen with $K=O_{n}$ (the I_{1}-ball).

- We've just seen that for all $K, b(K) \leq n$, with equality when $K=C=[0,1]^{n}$.
- (open) Are there other convex bodies such that $b(K)=n$?

Fact: $b_{2}(C)=\frac{n}{n-1}$. Hence $b_{2}(C)<2$ (for $n \geq 3$).

Open question

does $\max _{K} b_{2}(K)$ remain bounded when $n \rightarrow \infty$?
$\max _{K} b_{2}(K) \geq 2$ can be seen with $K=O_{n}$ (the I_{1}-ball). Is there any better lower bound on $\max _{K} b_{2}(K)$?

Who are the minimizers ?

Question [Soprunov-Zvavitch 2015]

For which K, do we have $b_{2}(K)=1$?
\rightarrow recall $b_{2}(K)=\max _{L_{1}, L_{2}} \frac{V\left(L_{1}, L_{2}, K[n-2]\right) V(K)}{V\left(L_{1}, K[n-1]\right) V\left(L_{2}, K[n-1]\right)}$.

Who are the minimizers ?

Question [Soprunov-Zvavitch 2015]

For which K, do we have $b_{2}(K)=1$?
\rightarrow recall $b_{2}(K)=\max _{L_{1}, L_{2}} \frac{V\left(L_{1}, L_{2}, K[n-2]\right) V(K)}{V\left(L_{1}, K[n-1]\right) V\left(L_{2}, K[n-1]\right)}$.

In words, $b_{2}(K)$ is the least constant $C>0$ such that:

$$
V\left(L_{1}, L_{2}, K[n-2]\right) V(K) \leq C \quad V\left(L_{1}, K[n-1]\right) V\left(L_{2}, K[n-1]\right)
$$

holds for any $L_{1}, L_{2} \in \mathcal{K}_{n}$.

Question [SZ '15]

For which K, do we have $b_{2}(K)=1$?
Question[Saroglou-Soprunov-Zvavitch 2018]
For which K do we have $b(K)=1$?

Question [SZ '15]

For which K, do we have $b_{2}(K)=1$?
Question[Saroglou-Soprunov-Zvavitch 2018]
For which K do we have $b(K)=1$?

Theorem[SSZ '18]
 If $b(K)=1$, then $K=\Delta$.

Question [SZ '15]

For which K, do we have $b_{2}(K)=1$?

Question[Saroglou-Soprunov-Zvavitch 2018]

For which K do we have $b(K)=1$?

Theorem[SSZ '18]

If $b(K)=1$, then $K=\Delta$.
N.B. : above Theorem doesn't close the question from SZ'15, since $b_{2}(K) \leq b(K)$.

Question [SZ '15]

For which K, do we have $b_{2}(K)=1$?

Question[Saroglou-Soprunov-Zvavitch 2018]

For which K do we have $b(K)=1$?

Theorem[SSZ '18]

If $b(K)=1$, then $K=\Delta$.
N.B. : above Theorem doesn't close the question from SZ'15, since $b_{2}(K) \leq b(K) \ldots$ and since for some $K \in \mathcal{K}_{n}: b_{2}(K)<b(K)$.

Definition

K is called decomposable if $\exists A, B \in \mathcal{K}_{n}, A \not \equiv K$, such that $K=A+B$.

Definition

K is called decomposable if $\exists A, B \in \mathcal{K}_{n}, A \not \equiv K$, such that $K=A+B$.

Question[SZ '15]

For which K, do we have $b_{2}(K)=1$?

Proposition[SZ '15]

If $b_{2}(K)=1$, then K cannot be decomposable.

Question[SZ '15]

For which K, do we have $b_{2}(K)=1$?

Proposition[SZ '15]

If $b_{2}(K)=1$, then K cannot be decomposable.

Sketch of proof.

Assume $K=A+B$, for some A, B.
Set $C_{0}=V(A, A, K[n-2]), C_{2}=V(B, B, K[n-2]), C_{1}=V(A, B, K[n-2])$.

Question[SZ '15]

For which K, do we have $b_{2}(K)=1$?

Proposition[SZ '15]

If $b_{2}(K)=1$, then K cannot be decomposable.

Sketch of proof.

Assume $K=A+B$, for some A, B.
Set $C_{0}=V(A, A, K[n-2]), C_{2}=V(B, B, K[n-2]), C_{1}=V(A, B, K[n-2])$.
If $b_{2}(K) \leq 1$ then we have :

$$
V(A, B, K[n-2]) V(K, K, K[n-2]) \leq V(A, K, K[n-2]) V(B, K, K[n-1]),
$$

Question[SZ '15]

For which K, do we have $b_{2}(K)=1$?

Proposition[SZ '15]

If $b_{2}(K)=1$, then K cannot be decomposable.

Sketch of proof.

Assume $K=A+B$, for some A, B.
Set $C_{0}=V(A, A, K[n-2]), C_{2}=V(B, B, K[n-2]), C_{1}=V(A, B, K[n-2])$.
If $b_{2}(K) \leq 1$ then we have :
$V(A, B, K[n-2]) V(A+B, A+B, K[n-2]) \leq V(A, A+B, K[n-2]) V(B, A+B, K[n-1])$,

Question[SZ '15]

For which K, do we have $b_{2}(K)=1$?

Proposition[SZ '15]

If $b_{2}(K)=1$, then K cannot be decomposable.

Sketch of proof.

Assume $K=A+B$, for some A, B.
Set $C_{0}=V(A, A, K[n-2]), C_{2}=V(B, B, K[n-2]), C_{1}=V(A, B, K[n-2])$.
If $b_{2}(K) \leq 1$ then we have :

$$
C_{1}\left(C_{0}+2 C_{1}+C_{2}\right) \leq\left(C_{0}+C_{1}\right)\left(C_{1}+C_{2}\right)
$$

Question[SZ '15]

For which K, do we have $b_{2}(K)=1$?

Proposition[SZ '15]

If $b_{2}(K)=1$, then K cannot be decomposable.

Sketch of proof.

Assume $K=A+B$, for some A, B.
Set $C_{0}=V(A, A, K[n-2]), C_{2}=V(B, B, K[n-2]), C_{1}=V(A, B, K[n-2])$.
If $b_{2}(K) \leq 1$ then we have :
and therefore

$$
C_{1}\left(C_{0}+2 C_{1}+C_{2}\right) \leq\left(C_{0}+C_{1}\right)\left(C_{1}+C_{2}\right)
$$

$$
C_{1}^{2} \leq C_{0} C_{2}
$$

Question[SZ '15]

For which K, do we have $b_{2}(K)=1$?

Proposition[SZ '15]

If $b_{2}(K)=1$, then K cannot be decomposable.

Sketch of proof.

Assume $K=A+B$, for some A, B.
Set $C_{0}=V(A, A, K[n-2]), C_{2}=V(B, B, K[n-2]), C_{1}=V(A, B, K[n-2])$.
If $b_{2}(K) \leq 1$ then we have :

$$
C_{1}\left(C_{0}+2 C_{1}+C_{2}\right) \leq\left(C_{0}+C_{1}\right)\left(C_{1}+C_{2}\right)
$$

and therefore

$$
C_{1}^{2} \leq C_{0} C_{2}
$$

Alexandrov-Fenchel $\Rightarrow C_{1}^{2} \geq C_{0} C_{2}$.

Question[SZ '15]

For which K, do we have $b_{2}(K)=1$?

Proposition[SZ '15]

If $b_{2}(K)=1$, then K cannot be decomposable.

Sketch of proof.

Assume $K=A+B$, for some A, B.
Set $C_{0}=V(A, A, K[n-2]), C_{2}=V(B, B, K[n-2]), C_{1}=V(A, B, K[n-2])$.
If $b_{2}(K) \leq 1$ then we have :

$$
C_{1}\left(C_{0}+2 C_{1}+C_{2}\right) \leq\left(C_{0}+C_{1}\right)\left(C_{1}+C_{2}\right)
$$

and therefore

$$
C_{1}^{2} \leq C_{0} C_{2} .
$$

Alexandrov-Fenchel $\Rightarrow C_{1}^{2} \geq C_{0} C_{2}$.
Equality implies A and B are homothetic.

Characterization among all n-polytopes

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Sketch of proof.

Assume $P=\bigcap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right)$, i.e. $\left(h_{i}\right)$ is the support vector of P.

Characterization among all n-polytopes

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Sketch of proof.

Assume $P=\bigcap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right)$, i.e. $\left(h_{i}\right)$ is the support vector of P.
Define $P_{i, t}=\left(\bigcap_{j \neq i} H^{-}\left(u_{j}, h_{j}\right)\right) \cap H^{-}\left(u_{i}, h_{i}+t\right)$, a perturbated version of P. (tangential hyperplane to $P^{u_{i}}$ moved by $t u_{i}$).

Characterization among all n-polytopes

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Sketch of proof.

Assume $P=\bigcap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right)$, i.e. $\left(h_{i}\right)$ is the support vector of P.
Define $P_{i, t}=\left(\bigcap_{j \neq i} H^{-}\left(u_{j}, h_{j}\right)\right) \cap H^{-}\left(u_{i}, h_{i}+t\right)$, a perturbated version of P.
Compute $V\left(L_{1}, P[n-1]\right) V\left(L_{2}, P[n-1]\right)-V(P) V\left(L_{1}, L_{2}, P[n-2]\right)$ for $L_{1}=P_{i, t}, L_{2}=P_{j, s}, s= \pm \delta$.

Characterization among all n-polytopes

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Sketch of proof.

Assume $P=\bigcap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right)$, i.e. $\left(h_{i}\right)$ is the support vector of P.
Define $P_{i, t}=\left(\bigcap_{j \neq i} H^{-}\left(u_{j}, h_{j}\right)\right) \cap H^{-}\left(u_{i}, h_{i}+t\right)$, a perturbated version of P.
Compute $V\left(L_{1}, P[n-1]\right) V\left(L_{2}, P[n-1]\right)-V(P) V\left(L_{1}, L_{2}, P[n-2]\right)$ for $L_{1}=P_{i, t}, L_{2}=P_{j, s}, s= \pm \delta$.
Find that $\sigma_{1}=S\left(L_{1}, P[n-2],.\right)=\lambda_{1} S_{P}=: \lambda_{1} \sigma_{0}$, where $\lambda_{1}:=\frac{V\left(L_{1}, P[n-1]\right)}{V(P)}$.

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Sketch of proof.

Assume $P=\bigcap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right)$, i.e. $\left(h_{i}\right)$ is the support vector of P.
Define $P_{i, t}=\left(\bigcap_{j \neq i} H^{-}\left(u_{j}, h_{j}\right)\right) \cap H^{-}\left(u_{i}, h_{i}+t\right)$, a perturbated version of P.
Compute $V\left(L_{1}, P[n-1]\right) V\left(L_{2}, P[n-1]\right)-V(P) V\left(L_{1}, L_{2}, P[n-2]\right)$ for $L_{1}=P_{i, t}, L_{2}=P_{j, s}, s= \pm \delta$.
Find that $\sigma_{1}=S\left(L_{1}, P[n-2],.\right)=\lambda_{1} S_{P}=: \lambda_{1} \sigma_{0}$, where $\lambda_{1}:=\frac{V\left(L_{1}, P[n-1]\right)}{V(P)}$. By induction, using Alexandrov-Fenchel inequalities, find that $\sigma_{k}:=S\left(L_{1}[k], P[n-1-k],.\right)=\lambda_{1}^{k} \sigma_{0}$.

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Sketch of proof.

Assume $P=\bigcap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right)$, i.e. $\left(h_{i}\right)$ is the support vector of P.
Define $P_{i, t}=\left(\bigcap_{j \neq i} H^{-}\left(u_{j}, h_{j}\right)\right) \cap H^{-}\left(u_{i}, h_{i}+t\right)$, a perturbated version of P.
Compute $V\left(L_{1}, P[n-1]\right) V\left(L_{2}, P[n-1]\right)-V(P) V\left(L_{1}, L_{2}, P[n-2]\right)$ for $L_{1}=P_{i, t}, L_{2}=P_{j, s}, s= \pm \delta$.
Find that $\sigma_{1}=S\left(L_{1}, P[n-2],.\right)=\lambda_{1} S_{P}=: \lambda_{1} \sigma_{0}$, where $\lambda_{1}:=\frac{V\left(L_{1}, P[n-1]\right)}{V(P)}$.
By induction, using Alexandrov-Fenchel inequalities,
find that $\sigma_{k}:=S\left(L_{1}[k], P[n-1-k],.\right)=\lambda_{1}^{k} \sigma_{0}$.
In particular, $\sigma_{n-1}=S_{L_{1}}$ is proportional to $\sigma_{0}=S_{P}$, and thus $L_{1}=P_{i, t}$ is homothetic to P.

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Sketch of proof.

Assume $P=\bigcap_{i=1}^{N} H^{-}\left(u_{i}, h_{i}\right)$, i.e. $\left(h_{i}\right)$ is the support vector of P.
Define $P_{i, t}=\left(\bigcap_{j \neq i} H^{-}\left(u_{j}, h_{j}\right)\right) \cap H^{-}\left(u_{i}, h_{i}+t\right)$, a perturbated version of P.
Compute $V\left(L_{1}, P[n-1]\right) V\left(L_{2}, P[n-1]\right)-V(P) V\left(L_{1}, L_{2}, P[n-2]\right)$ for $L_{1}=P_{i, t}, L_{2}=P_{j, s}, s= \pm \delta$.
Find that $\sigma_{1}=S\left(L_{1}, P[n-2],.\right)=\lambda_{1} S_{P}=: \lambda_{1} \sigma_{0}$, where $\lambda_{1}:=\frac{V\left(L_{1}, P[n-1]\right)}{V(P)}$.
By induction, using Alexandrov-Fenchel inequalities,
find that $\sigma_{k}:=S\left(L_{1}[k], P[n-1-k],.\right)=\lambda_{1}^{k} \sigma_{0}$.
In particular, $\sigma_{n-1}=S_{L_{1}}$ is proportional to $\sigma_{0}=S_{P}$, and thus $L_{1}=P_{i, t}$ is homothetic to P.
This cannot be the case for all facets $P^{u_{i}}$ of P, unless P is a simplex.

Characterization among all n-polytopes

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Why can't we do the same with convex bodies ?

Characterization among all n-polytopes

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Why can't we do the same with convex bodies ?

- Instead of a perturbated polytope $P_{i, t}$, one needs a perturbated body K_{t}.

Characterization among all n-polytopes

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Why can't we do the same with convex bodies ?

- Instead of a perturbated polytope $P_{i, t}$, one needs a perturbated body K_{t}.
- \rightarrow can do so with Wulff-shape construction.

Characterization among all n-polytopes

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Why can't we do the same with convex bodies ?

- Instead of a perturbated polytope $P_{i, t}$, one needs a perturbated body K_{t}.
- \rightarrow can do so with Wulff-shape construction.
- A key feature in the proof of above Theorem : $P+P_{i, t}$ has same outer normal vectors as P, if $|t|$ is small.

Characterization among all n-polytopes

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Why can't we do the same with convex bodies ?

- Instead of a perturbated polytope $P_{i, t}$, one needs a perturbated body K_{t}.
- \rightarrow can do so with Wulff-shape construction.
- A key feature in the proof of above Theorem : $P+P_{i, t}$ has same outer normal vectors as P, if $|t|$ is small.
- in other words: $S_{P+P_{i, t}} \ll S_{P}$, for t small.

Characterization among all n-polytopes

Theorem[SSZ '18]

Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Why can't we do the same with convex bodies ?

- Instead of a perturbated polytope $P_{i, t}$, one needs a perturbated body K_{t}.
- \rightarrow can do so with Wulff-shape construction.
- A key feature in the proof of above Theorem : $P+P_{i, t}$ has same outer normal vectors as P, if $|t|$ is small.
- in other words: $S_{P+P_{i, t}} \ll S_{P}$, for t small.
- In general it is not true that $S_{K+K_{t}} \ll S_{K}$.

A definition (by Saroglou, Soprunov and Zvavitch)

Definition

K is called decomposable if $\exists A, B \in \mathcal{K}_{n}, A \not \equiv K$, such that $K=A+B$.

Definition

K is called decomposable if $\exists A, B \in \mathcal{K}_{n}, A \not \equiv K$, such that $K=A+B$.

Definition

K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}, L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.

Examples:

- if $K=A+B$ is decomposable, then it is weakly decomposable.

Definition

K is called decomposable if $\exists A, B \in \mathcal{K}_{n}, A \not \equiv K$, such that $K=A+B$.

Definition

K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}, L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.

Examples:

- if $K=A+B$ is decomposable, then it is weakly decomposable. (take $L=A$, then $S_{K+L}=S_{2 A+B}$ has same support as S_{K}).

Definition

K is called decomposable if $\exists A, B \in \mathcal{K}_{n}, A \not \equiv K$, such that $K=A+B$.

Definition

K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}, L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.

Examples:

- if $K=A+B$ is decomposable, then it is weakly decomposable.
- if P is a polytope, and $P \neq \Delta$, then P is weakly decomposable.

Definition

K is called decomposable if $\exists A, B \in \mathcal{K}_{n}, A \not \equiv K$, such that $K=A+B$.

Definition

K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}, L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.

Examples:

- if $K=A+B$ is decomposable, then it is weakly decomposable.
- if P is a polytope, and $P \neq \Delta$, then P is weakly decomposable.
- if ∂K is somewhere locally smooth, then K is weakly decomposable. $(\rightarrow$ Wulff shape argument)

Open question : find a convex body K not weakly decomposable. $(K \neq \Delta)$.

Definition

K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}, L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.

Theorem [SSZ'18]

If $b_{2}(K)=1$, then K cannot be weakly decomposable.

Definition

K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}, L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.

Theorem [SSZ'18]

If $b_{2}(K)=1$, then K cannot be weakly decomposable.

- recover the $\left[b_{2}(P)=1 \Rightarrow P=\Delta\right]$ theorem, since any $P \neq \Delta$ is weakly decomposable.

Definition

K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}, L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.

Theorem [SSZ'18]

If $b_{2}(K)=1$, then K cannot be weakly decomposable.

- recover the $\left[b_{2}(P)=1 \Rightarrow P=\Delta\right]$ theorem, since any $P \neq \Delta$ is weakly decomposable.
- also recover the fact that decomposability is an excluding condition.

Definition

K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}, L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.

Theorem [SSZ'18]

If $b_{2}(K)=1$, then K cannot be weakly decomposable.

- recover the $\left[b_{2}(P)=1 \Rightarrow P=\Delta\right]$ theorem, since any $P \neq \Delta$ is weakly decomposable.
- also recover the fact that decomposability is an excluding condition.
- Proof requires the notion of Wulff-shape perturbation.

Definition

K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}, L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.

Theorem [SSZ'18]

If $b_{2}(K)=1$, then K cannot be weakly decomposable.

- recover the $\left[b_{2}(P)=1 \Rightarrow P=\Delta\right.$] theorem, since any $P \neq \Delta$ is weakly decomposable.
- also recover the fact that decomposability is an excluding condition.
- Proof requires the notion of Wulff-shape perturbation.

Open question : find a convex body K not weakly decomposable. $(K \neq \Delta)$.

Let $K \in \mathcal{K}_{n}$, and $u \in \mathbb{S}^{n-1}$. Recall that $K^{u}=\left\{y \in K:\langle y, u\rangle=h_{K}(u)\right\}$.

Let $K \in \mathcal{K}_{n}$, and $u \in \mathbb{S}^{n-1}$. Recall that $K^{u}=\left\{y \in K:\langle y, u\rangle=h_{K}(u)\right\}$. Recall $S_{K} \in \mathcal{M}_{+}\left(\mathbb{S}^{n-1}\right)$ denotes the surface area measure of K.

Proposition [SZ'15], Prop 4.2 in [SSZ'18]

Assume there exists $u \in \operatorname{supp}\left(S_{K}\right)$, such that K^{u} is 0 -dimensional. Then $b_{2}(K)>1$.

Let $K \in \mathcal{K}_{n}$, and $u \in \mathbb{S}^{n-1}$. Recall that $K^{u}=\left\{y \in K:\langle y, u\rangle=h_{K}(u)\right\}$. Recall $S_{K} \in \mathcal{M}_{+}\left(\mathbb{S}^{n-1}\right)$ denotes the surface area measure of K.

Proposition [SZ'15], Prop 4.2 in [SSZ'18]

Assume there exists $u \in \operatorname{supp}\left(S_{K}\right)$, such that K^{u} is 0 -dimensional. Then $b_{2}(K)>1$.

In other words: if $b_{2}(K)=1$, then K^{u} is at least 1-dimensional, for all $u \in \operatorname{supp}\left(S_{K}\right)$.

Let $K \in \mathcal{K}_{n}$, and $u \in \mathbb{S}^{n-1}$. Recall that $K^{u}=\left\{y \in K:\langle y, u\rangle=h_{K}(u)\right\}$. Recall $S_{K} \in \mathcal{M}_{+}\left(\mathbb{S}^{n-1}\right)$ denotes the surface area measure of K.

Proposition [SZ'15], Prop 4.2 in [SSZ'18]

Assume there exists $u \in \operatorname{supp}\left(S_{K}\right)$, such that K^{u} is 0 -dimensional. Then $b_{2}(K)>1$.

In other words: if $b_{2}(K)=1$, then K^{u} is at least 1-dimensional, for all $u \in \operatorname{supp}\left(S_{K}\right)$.

Theorem [SSZ'18]

Assume K is a convex body wih infinitely many facets. Then $b_{2}(K)>1$.

Let $K \in \mathcal{K}_{n}$, and $u \in \mathbb{S}^{n-1}$. Recall that $K^{u}=\left\{y \in K:\langle y, u\rangle=h_{K}(u)\right\}$. Denote $\Omega:=\operatorname{supp}\left(S_{K}\right) \subset \mathbb{S}^{n-1}$. Write $\Omega=\cup_{d=0}^{n-1} \Omega_{d}$, where $\Omega_{d}=\left\{u \in \Omega: K^{u}\right.$ is d-dimensional $\}$.

Let $K \in \mathcal{K}_{n}$, and $u \in \mathbb{S}^{n-1}$. Recall that $K^{u}=\left\{y \in K:\langle y, u\rangle=h_{K}(u)\right\}$. Denote $\Omega:=\operatorname{supp}\left(S_{K}\right) \subset \mathbb{S}^{n-1}$. Write $\Omega=\cup_{d=0}^{n-1} \Omega_{d}$, where $\Omega_{d}=\left\{u \in \Omega: K^{u}\right.$ is d-dimensional $\}$.

Theorem [S. 2022+]

Assume $S_{K}\left(\Omega_{n-2}\right)>0$. Then $b_{2}(K)>1$.

Let $K \in \mathcal{K}_{n}$, and $u \in \mathbb{S}^{n-1}$. Recall that $K^{u}=\left\{y \in K:\langle y, u\rangle=h_{K}(u)\right\}$. Denote $\Omega:=\operatorname{supp}\left(S_{K}\right) \subset \mathbb{S}^{n-1}$. Write $\Omega=\cup_{d=0}^{n-1} \Omega_{d}$, where $\Omega_{d}=\left\{u \in \Omega: K^{u}\right.$ is d-dimensional $\}$.

Theorem [S. 2022+]

Assume $S_{K}\left(\Omega_{n-2}\right)>0$. Then $b_{2}(K)>1$.

Corollary

in \mathbb{R}^{3}, the simplex is the only minimizer of $b_{2}(K)$.
Proof (of corollary). Let $K \in \mathcal{K}_{3}$, write $\operatorname{supp}\left(S_{K}\right)=: \Omega=: \Omega_{0} \cup \Omega_{1} \cup \Omega_{2}$. If $\Omega_{0} \neq \emptyset$, then $b_{2}(K)>1$, by [Prop. 4.2, SSZ'18]. Thus assume $\Omega=\Omega_{1} \cup \Omega_{2}$.

Let $K \in \mathcal{K}_{n}$, and $u \in \mathbb{S}^{n-1}$. Recall that $K^{u}=\left\{y \in K:\langle y, u\rangle=h_{K}(u)\right\}$.
Denote $\Omega:=\operatorname{supp}\left(S_{K}\right) \subset \mathbb{S}^{n-1}$. Write $\Omega=\cup_{d=0}^{n-1} \Omega_{d}$, where
$\Omega_{d}=\left\{u \in \Omega: K^{u}\right.$ is d-dimensional $\}$.

Theorem [S. 2022+]

Assume $S_{K}\left(\Omega_{n-2}\right)>0$. Then $b_{2}(K)>1$.

Corollary

in \mathbb{R}^{3}, the simplex is the only minimizer of $b_{2}(K)$.
Proof (of corollary). Let $K \in \mathcal{K}_{3}$, write $\operatorname{supp}\left(S_{K}\right)=: \Omega=: \Omega_{0} \cup \Omega_{1} \cup \Omega_{2}$. If $\Omega_{0} \neq \emptyset$, then $b_{2}(K)>1$, by [Prop. 4.2, SSZ'18]. Thus assume $\Omega=\Omega_{1} \cup \Omega_{2}$. If $S_{K}\left(\Omega_{1}\right)>0$, then $b_{2}(K)>1$, by [Thm, S. '22+]. Thus assume $S_{K}\left(\Omega_{1}\right)=0$. This implies $\Omega_{1}=\emptyset$ (by definition of the support).

Let $K \in \mathcal{K}_{n}$, and $u \in \mathbb{S}^{n-1}$. Recall that $K^{u}=\left\{y \in K:\langle y, u\rangle=h_{K}(u)\right\}$.
Denote $\Omega:=\operatorname{supp}\left(S_{K}\right) \subset \mathbb{S}^{n-1}$. Write $\Omega=\cup_{d=0}^{n-1} \Omega_{d}$, where
$\Omega_{d}=\left\{u \in \Omega: K^{u}\right.$ is d-dimensional $\}$.

Theorem [S. 2022+]

Assume $S_{K}\left(\Omega_{n-2}\right)>0$. Then $b_{2}(K)>1$.

Corollary

in \mathbb{R}^{3}, the simplex is the only minimizer of $b_{2}(K)$.
Proof (of corollary). Let $K \in \mathcal{K}_{3}$, write $\operatorname{supp}\left(S_{K}\right)=: \Omega=: \Omega_{0} \cup \Omega_{1} \cup \Omega_{2}$. If $\Omega_{0} \neq \emptyset$, then $b_{2}(K)>1$, by [Prop. 4.2, SSZ'18]. Thus assume $\Omega=\Omega_{1} \cup \Omega_{2}$. If $S_{K}\left(\Omega_{1}\right)>0$, then $b_{2}(K)>1$, by [Thm, S. '22+]. Thus assume $S_{K}\left(\Omega_{1}\right)=0$. This implies $\Omega_{1}=\emptyset$ (by definition of the support). Hence we may assume $\Omega=\Omega_{2}$, i.e. that K is a polytope. Conclude using $\left[b_{2}(P)=1 \Rightarrow P=\Delta\right]$ (Theorem in SSZ'18).

```
Let \(K \in \mathcal{K}_{n}\), and \(u \in \mathbb{S}^{n-1}\). Recall that \(K^{u}=\left\{y \in K:\langle y, u\rangle=h_{K}(u)\right\}\).
Denote \(\Omega:=\operatorname{supp}\left(S_{K}\right) \subset \mathbb{S}^{n-1}\). Write \(\Omega=\cup_{d=0}^{n-1} \Omega_{d}\), where
\(\Omega_{d}=\left\{u \in \Omega: K^{u}\right.\) is \(d\)-dimensional \(\}\).
```

Theorem [S. 2022+]
Assume $S_{K}\left(\Omega_{n-2}\right)>0$. Then $b_{2}(K)>1$.

Corollary

in \mathbb{R}^{3}, the simplex is the only minimizer of $b_{2}(K)$.

Note : this corollary was already known. It is proved in [SSZ'18].

An isoperimetric condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{VoI}_{k-1}(\partial L)}{\operatorname{VoI}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

An isoperimetric condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{Vol}_{k-1}(\partial L)}{\operatorname{Vol}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Theorem [S. 2022]

Assume $b_{2}(K)=1$. Then, for any facet F of $K: \operatorname{Iso}(F) \leq \operatorname{Iso}(K)$.

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{VoI}_{k-1}(\partial L)}{\operatorname{VoI}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Theorem [S. 2022]

Assume $b_{2}(K)=1$. Then, for any facet F of $K: \operatorname{Iso}(F) \leq \operatorname{Iso}(K)$.
(that is to say: for all $F \in \mathcal{F}_{n-1}(K): \frac{|\partial F|}{|F|} \leq \frac{n-1}{n} \frac{|\partial K|}{|K|}$.)
\rightarrow recovers the "at most finitely many facets" restriction.
Indeed, if K has infinitely many facets, then many satisfy $I s o(F)>I s o(K) \ldots$

An isoperimetric condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{VoI}_{k-1}(\partial L)}{\operatorname{VoI}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Theorem [S. 2022]

Assume $b_{2}(K)=1$. Then, for any facet F of $K: \operatorname{Iso}(F) \leq \operatorname{Iso}(K)$.
(that is to say: for all $F \in \mathcal{F}_{n-1}(K): \frac{|\partial F|}{|F|} \leq \frac{n-1}{n} \frac{|\partial K|}{|K|}$.)
\rightarrow recovers the "at most finitely many facets" restriction.
Indeed, if K has infinitely many facets, then many satisfy $I s o(F)>I s o(K) \ldots$
By the isoperimetric inequality :

$$
\operatorname{Iso}(L)=\frac{1}{d} \frac{|\partial L|}{|L|}=\frac{1}{d} \frac{|\partial L|}{|L|^{\frac{d-1}{d}}} \frac{1}{|L|^{1 / d}} \geq \frac{1}{d} \frac{\left|\partial B_{2}^{d}\right|}{\left|B_{2}^{d}\right|^{\frac{d-1}{d}}} \frac{1}{|L|^{1 / d}}=\frac{\left|B_{2}^{d}\right|^{1 / d}}{|L|^{1 / d}} .
$$

thus if $\left(F_{k}\right)$ is a sequence of facets with $\operatorname{VoI}_{n-1}\left(F_{k}\right) \rightarrow 0$, then $\operatorname{Iso}\left(F_{k}\right) \rightarrow+\infty$.

An isoperimetric condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional convex body. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{Vol}_{k-1}(\partial L)}{\operatorname{Vol}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Theorem [S. 2022+]

If $b_{2}(K)=1$, then, for any affine transform T :
For any facet F of $K: \operatorname{Iso}(T F) \leq \operatorname{Iso}(T K)$.

An isoperimetric condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional convex body. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{Vol}_{k-1}(\partial L)}{\operatorname{Vol}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Theorem [S. 2022+]

If $b_{2}(K)=1$, then, for any affine transform T : For any facet F of $K: I s o(T F) \leq I s o(T K)$.

- Example : the unit cube. It satisfies $\operatorname{Iso}\left(C_{n}\right)=2$, and so does any of its facets. Thus the criteria only allows to conclude $b_{2}\left(C_{n}\right)>1$, after using an affine transform T.

Question : let $P \neq \Delta$. Does there necessarily exist T an affine transform, such that $\max _{F} \operatorname{lso}(T F)>\operatorname{lso}(T P)$?

Thank you !!

