Some Applications of Mixed Volumes in Data Science

Eliza O'Reilly

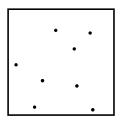
Caltech

Application #1: Prediction with Random Tessellation Forests

Joint work with Ngoc Mai Tran (UT Austin)

Randomized Decision Trees:

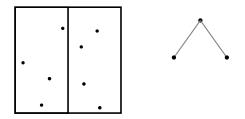
- Recursively split data along random feature of input
- ► Induce a hierarchical axis-aligned partition of input space



$$\hat{f}_n(x) = \frac{\sum_{i=1}^n y_i \mathbf{1}_{\{x_i \text{ in same cell as } x\}}}{\sum_{i=1}^n \mathbf{1}_{\{x_i \text{ in same cell as } x\}}}$$

Randomized Decision Trees:

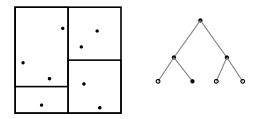
- Recursively split data along random feature of input
- ► Induce a hierarchical axis-aligned partition of input space



$$\hat{f}_n(x) = \frac{\sum_{i=1}^n y_i \mathbf{1}_{\{x_i \text{ in same cell as } x\}}}{\sum_{i=1}^n \mathbf{1}_{\{x_i \text{ in same cell as } x\}}}$$

Randomized Decision Trees:

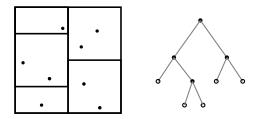
- Recursively split data along random feature of input
- ► Induce a hierarchical axis-aligned partition of input space



$$\hat{f}_n(x) = \frac{\sum_{i=1}^n y_i \mathbf{1}_{\{x_i \text{ in same cell as } x\}}}{\sum_{i=1}^n \mathbf{1}_{\{x_i \text{ in same cell as } x\}}}$$

Randomized Decision Trees:

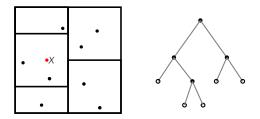
- Recursively split data along random feature of input
- ► Induce a hierarchical axis-aligned partition of input space



$$\hat{f}_n(x) = \frac{\sum_{i=1}^n y_i \mathbf{1}_{\{x_i \text{ in same cell as } x\}}}{\sum_{i=1}^n \mathbf{1}_{\{x_i \text{ in same cell as } x\}}}$$

Randomized Decision Trees:

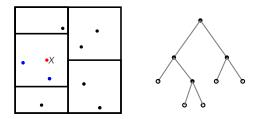
- Recursively split data along random feature of input
- ► Induce a hierarchical axis-aligned partition of input space



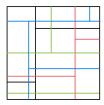
$$\hat{f}_n(x) = \frac{\sum_{i=1}^n y_i \mathbf{1}_{\{x_i \text{ in same cell as } x\}}}{\sum_{i=1}^n \mathbf{1}_{\{x_i \text{ in same cell as } x\}}}$$

Randomized Decision Trees:

- Recursively split data along random feature of input
- ► Induce a hierarchical axis-aligned partition of input space



$$\hat{f}_n(x) = \frac{\sum_{i=1}^n y_i \mathbf{1}_{\{x_i \text{ in same cell as } x\}}}{\sum_{i=1}^n \mathbf{1}_{\{x_i \text{ in same cell as } x\}}}$$



¹[Ho, 1995; 1998; Amit and Geman, 1997; Breiman, 2001]

²[Caruana and Niculescu-Mizil, 2006; Fernandez-Delgado et al., 2014]

³[Scornet et al., 2015; Wager and Athey, 2018; Chi et al., 2020; Klusowski and Tian, 2022]

⁴[Breiman, 2004; Genuer, 2012]

- Original RF algorithm¹: splits *dependent* on data
- State-of-the-art empirical performance for many tasks²

¹[Ho, 1995; 1998; Amit and Geman, 1997; Breiman, 2001]

²[Caruana and Niculescu-Mizil, 2006; Fernandez-Delgado et al., 2014]

³[Scornet et al., 2015; Wager and Athey, 2018; Chi et al., 2020; Klusowski and Tian, 2022]

⁴[Breiman, 2004; Genuer, 2012]

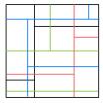
- Original RF algorithm¹: splits dependent on data
- ► State-of-the-art empirical performance for many tasks²
- Difficult to analyze; still a lack of theoretical understanding³

¹[Ho, 1995; 1998; Amit and Geman, 1997; Breiman, 2001]

²[Caruana and Niculescu-Mizil, 2006; Fernandez-Delgado et al., 2014]

³[Scornet et al., 2015; Wager and Athey, 2018; Chi et al., 2020; Klusowski and Tian, 2022]

⁴[Breiman, 2004; Genuer, 2012]



- Original RF algorithm¹: splits dependent on data
- State-of-the-art empirical performance for many tasks²
- Difficult to analyze; still a lack of theoretical understanding³
- ▶ Purely RF variants⁴: splits *independent* of data

¹[Ho, 1995; 1998; Amit and Geman, 1997; Breiman, 2001]

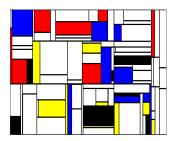
²[Caruana and Niculescu-Mizil, 2006; Fernandez-Delgado et al., 2014]

³[Scornet et al., 2015; Wager and Athey, 2018; Chi et al., 2020; Klusowski and Tian, 2022]

⁴[Breiman, 2004; Genuer, 2012]

Mondrian process

- Introduced by Roy and Teh in 2008
- Stochastic process that recursively builds an axis-aligned hierarchical partition in R^d



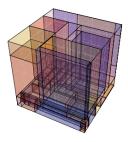
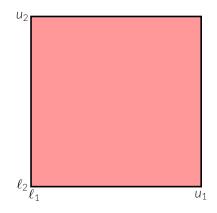


Figure: Piet Mondrian (1921).

- 1. Fix lifetime parameter $\lambda > 0$
- 2. Draw

$$\boldsymbol{\Delta} \sim \textit{Exp}\left[\sum_{i=1}^{d}(u_i - \ell_i)\right]$$

- 3. IF $\Delta > \lambda$ stop, ELSE sample a split:
 - Dimension: j with probability proportional to $u_j \ell_j$
 - Location: uniform on $[\ell_j, u_j]$
- 4. Recurse independently on each subrectangle with lifetime $\lambda \Delta$

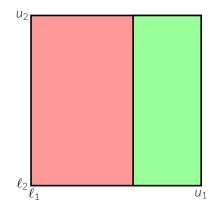


1. Fix lifetime parameter $\lambda > 0$

2. Draw

$$\Delta \sim Exp\left[\sum_{i=1}^{d} (u_i - \ell_i)\right]$$

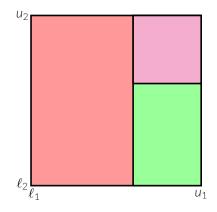
- 3. IF $\Delta > \lambda$ stop, ELSE sample a split:
 - Dimension: j with probability proportional to $u_j \ell_j$
 - Location: uniform on $[\ell_j, u_j]$
- 4. Recurse independently on each subrectangle with lifetime $\lambda \Delta$



- 1. Fix lifetime parameter $\lambda > 0$
- 2. Draw

$$\boldsymbol{\Delta} \sim \textit{Exp}\left[\sum_{i=1}^{d}(u_i - \ell_i)\right]$$

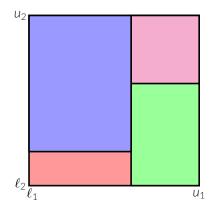
- 3. IF $\Delta > \lambda$ stop, ELSE sample a split:
 - Dimension: j with probability proportional to $u_j \ell_j$
 - Location: uniform on $[\ell_j, u_j]$
- 4. Recurse independently on each subrectangle with lifetime $\lambda \Delta$



- 1. Fix lifetime parameter $\lambda > 0$
- 2. Draw

$$\Delta \sim Exp\left[\sum_{i=1}^{d} (u_i - \ell_i)\right]$$

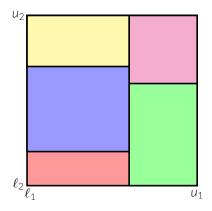
- 3. IF $\Delta > \lambda$ stop, ELSE sample a split:
 - ► Dimension: j with probability proportional to u_j ℓ_j
 - Location: uniform on $[\ell_j, u_j]$
- 4. Recurse independently on each subrectangle with lifetime $\lambda \Delta$



- 1. Fix lifetime parameter $\lambda > 0$
- 2. Draw

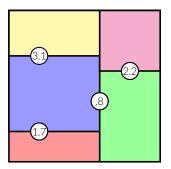
$$\Delta \sim Exp\left[\sum_{i=1}^{d} (u_i - \ell_i)\right]$$

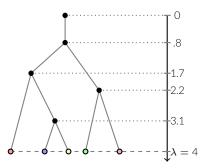
- 3. IF $\Delta > \lambda$ stop, ELSE sample a split:
 - Dimension: j with probability proportional to $u_j \ell_j$
 - Location: uniform on $[\ell_j, u_j]$
- 4. Recurse independently on each subrectangle with lifetime $\lambda \Delta$



Mondrian Random Forests

- ► Comparable empirical performance to RF for some tasks⁵
- ▶ Minimax rates under nonparametric assumptions in arbitrary dimension⁶

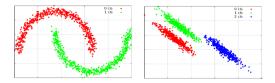




⁵[Lakshminarayanan, Roy, and Teh, 2014] ⁶[Mourtada, Gaïffas, Scornet, 2020]

Beyond axis-aligned partitions

► Non-axis-aligned splits can capture dependencies between features

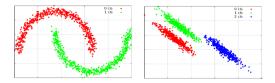


- Non-axis-aligned RF variants show improved empirical performance⁷
- ► Lack of theoretical analysis, computational efficiency

⁷[Breiman, 2001; Fan, Li, and Sisson, 2019; Tomita et al., 2020]

Beyond axis-aligned partitions

► Non-axis-aligned splits can capture dependencies between features



- Non-axis-aligned RF variants show improved empirical performance⁷
- ► Lack of theoretical analysis, computational efficiency

Question: Is there a generalization of the Mondrian process with non-axis-aligned cuts?

⁷[Breiman, 2001; Fan, Li, and Sisson, 2019; Tomita et al., 2020]

Stable Under Iteration Processes

- Yes! Mondrian is special case of the STIT process in stochastic geometry
- Introduced by Nagel and Weiss in 2003
- Indexed by a **directional distribution** ϕ on \mathbb{S}^{d-1}

⁸[Ge, Wang, Teh, Wang, and Elliott, 2019]

Stable Under Iteration Processes

- Yes! Mondrian is special case of the STIT process in stochastic geometry
- Introduced by Nagel and Weiss in 2003
- Indexed by a **directional distribution** ϕ on \mathbb{S}^{d-1}

- Improved empirical performance with uniform STIT over Mondrian⁸
- ► General cell shapes introduce computational and **theoretical** challenges

⁸[Ge, Wang, Teh, Wang, and Elliott, 2019]

▶ Assumption: $\{(x_i, y_i)\}_{i=1}^n$ i.i.d. samples of $(X, Y) \in W \times \mathbb{R}$ such that

 $Y = f(X) + \varepsilon,$

where $W \subset \mathbb{R}^d$ is a compact and convex window

• $\hat{f}_{\lambda,n,M}$: STIT forest estimator of size *M*; lifetime parameter λ

▶ Assumption: $\{(x_i, y_i)\}_{i=1}^n$ i.i.d. samples of $(X, Y) \in W \times \mathbb{R}$ such that

 $Y = f(X) + \varepsilon,$

where $W \subset \mathbb{R}^d$ is a compact and convex window

- $\hat{f}_{\lambda,n,M}$: STIT forest estimator of size *M*; lifetime parameter λ
- The quality of the estimator $\hat{f}_{\lambda,n,M}$ is measured by the **quadratic risk**

 $\mathbb{E}[(\hat{f}_{\lambda,n,M}(X)-f(X))^2]$

▶ Assumption: $\{(x_i, y_i)\}_{i=1}^n$ i.i.d. samples of $(X, Y) \in W \times \mathbb{R}$ such that

 $Y = f(X) + \varepsilon,$

where $W \subset \mathbb{R}^d$ is a compact and convex window

- $\hat{f}_{\lambda,n,M}$: STIT forest estimator of size *M*; lifetime parameter λ
- The quality of the estimator $\hat{f}_{\lambda,n,M}$ is measured by the **quadratic risk**

 $\mathbb{E}[(\hat{f}_{\lambda,n,M}(X)-f(X))^2]$

• The **minimax risk** for a function class \mathcal{F} is

$$\min_{\hat{f}_n} \max_{f \in \mathcal{F}} \mathbb{E}[(\hat{f}_n(X) - f(X))^2]$$

Theorem (Tran and O.)

(i) If f is Lipschitz, letting $\lambda_n \simeq n^{1/(d+2)}$ gives

$$\mathbb{E}[(\hat{f}_{\lambda_n,n,M}(X) - f(X))^2] \le O\left(n^{-2/(d+2)}\right)$$

Theorem (Tran and O.)

(i) If f is Lipschitz, letting $\lambda_n \simeq n^{1/(d+2)}$ gives

$$\mathbb{E}[(\hat{f}_{\lambda_n,n,M}(X) - f(X))^2] \le O\left(n^{-2/(d+2)}\right)$$

(ii) If f is C^2 and X has positive and Lipschitz density, letting $\lambda_n \simeq n^{1/(d+4)}$ and $M_n \gtrsim n^{2/(d+4)}$ gives

$$\mathbb{E}[(\hat{f}_{\lambda_n,n,\mathcal{M}_n}(X) - f(X))^2] \le O\left(n^{-4/(d+4)}\right)$$

Theorem (Tran and O.)

(i) If f is Lipschitz, letting $\lambda_n \simeq n^{1/(d+2)}$ gives

$$\mathbb{E}[(\hat{f}_{\lambda_n,n,M}(X) - f(X))^2] \le O\left(n^{-2/(d+2)}\right)$$

(ii) If f is C^2 and X has positive and Lipschitz density, letting $\lambda_n \simeq n^{1/(d+4)}$ and $M_n \gtrsim n^{2/(d+4)}$ gives

$$\mathbb{E}[(\hat{f}_{\lambda_n,n,\mathcal{M}_n}(X) - f(X))^2] \le O\left(n^{-4/(d+4)}\right)$$

▶ STIT random forests are **minimax optimal** for Lipschitz and C^2 functions

• Suppose for $g : \mathbb{R}^s \to \mathbb{R}$ and $a_i \in \mathbb{R}^d$, $i = 1, \ldots, s$,

$$f(x) = g(\langle a_1, x \rangle, \dots, \langle a_s, x \rangle), \quad x \in B_d(0, R).$$

⁹[Li,1991; Fukumizu et al., 2004; Dalalyan et al., 2008]

• Suppose for $g : \mathbb{R}^s \to \mathbb{R}$ and $a_i \in \mathbb{R}^d$, $i = 1, \ldots, s$,

$$f(x) = g(\langle a_1, x \rangle, \dots, \langle a_s, x \rangle), \quad x \in B_d(0, R).$$

► $S := \text{span}(a_1, \ldots, a_s) \subseteq \mathbb{R}^d$ is the s-dimensional relevant feature subspace

⁹[Li,1991; Fukumizu et al., 2004; Dalalyan et al., 2008]

Suppose for $g : \mathbb{R}^s \to \mathbb{R}$ and $a_i \in \mathbb{R}^d$, $i = 1, \ldots, s$,

$$f(x) = g(\langle a_1, x \rangle, \dots, \langle a_s, x \rangle), \quad x \in B_d(0, R).$$

S := span(a₁,..., a_s) ⊆ ℝ^d is the s-dimensional relevant feature subspace
Let f̂_{λ n.M} be a STIT forest estimator with directional distribution

$$\phi_n = (1 - \varepsilon_n)\phi_{\mathsf{S}} + \varepsilon_n\phi_{\mathsf{S}^\perp},$$

for $\varepsilon_n \in (0, 1)$ where supp $(\phi_S) = S \cap \mathbb{S}^{d-1}$, supp $(\phi_S) = S^{\perp} \cap \mathbb{S}^{d-1}$

⁹[Li,1991; Fukumizu et al., 2004; Dalalyan et al., 2008]

• Suppose for $g : \mathbb{R}^s \to \mathbb{R}$ and $a_i \in \mathbb{R}^d$, $i = 1, \ldots, s$,

$$f(x) = g(\langle a_1, x \rangle, \dots, \langle a_s, x \rangle), \quad x \in B_d(0, R).$$

- ► $S := \text{span}(a_1, \ldots, a_s) \subseteq \mathbb{R}^d$ is the *s*-dimensional *relevant feature subspace*
- Let $\hat{f}_{\lambda,n,M}$ be a STIT forest estimator with directional distribution

$$\phi_n = (1 - \varepsilon_n)\phi_{\mathsf{S}} + \varepsilon_n\phi_{\mathsf{S}^\perp},$$

for $\varepsilon_n \in (0, 1)$ where supp $(\phi_S) = S \cap \mathbb{S}^{d-1}$, supp $(\phi_S) = S^{\perp} \cap \mathbb{S}^{d-1}$

Theorem

(i) If g is Lipschitz, letting $\lambda_n \simeq n^{1/(s+2)}$ and $\varepsilon_n \simeq n^{-1/(s+2)}$ gives

$$\mathbb{E}[(\hat{f}_{\lambda_n,n,M}(X) - f(X))^2] \le O\left(n^{-2/(s+2)}\right)$$

(ii) A similar extension holds if g is C^2 .

⁹[Li,1991; Fukumizu et al., 2004; Dalalyan et al., 2008]

Proof Idea: Bias-Variance Decomposition of the Risk

► We have the following **bias-variance decomposition**:

$$\mathbb{E}[(\hat{f}_{\lambda,n,1}(X) - f(X))^2] = \mathbb{E}[(f(X) - \overline{f}_{\lambda}(X))^2] + \mathbb{E}[(\overline{f}_{\lambda}(X) - \hat{f}_{\lambda,n}(X))^2],$$

where

$$\overline{f}_{\lambda}(x) = \mathbb{E}_{X}[f(X)|X \in Z_{x}], \quad x \in W,$$

is the orthogonal projection of $f \in L^2(W, \mu)$ onto the subspace of functions that are constant within the cell of the STIT tessellation

Proof Idea: Bias-Variance Decomposition of the Risk

► We have the following **bias-variance decomposition**:

$$\mathbb{E}[(\hat{f}_{\lambda,n,1}(X) - f(X))^2] = \mathbb{E}[(f(X) - \overline{f}_{\lambda}(X))^2] + \mathbb{E}[(\overline{f}_{\lambda}(X) - \hat{f}_{\lambda,n}(X))^2],$$

where

$$\overline{f}_{\lambda}(x) = \mathbb{E}_{X}[f(X)|X \in Z_{x}], \quad x \in W,$$

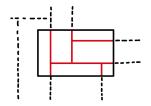
is the orthogonal projection of $f \in L^2(W, \mu)$ onto the subspace of functions that are constant within the cell of the STIT tessellation

- **Bias** is controlled by the *diameter* of the cell containing X
- ► Variance is controlled by the expected number of cells in W

Stationary STIT Tessellation on \mathbb{R}^d

- $\mathcal{Y}(\lambda, W)$: STIT in compact and convex $W \subset \mathbb{R}^d$ with lifetime λ
- **Consistency**: For $W_1 \subset W_2$,

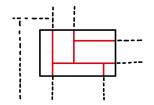
 $\mathcal{Y}(\lambda, W_1) \stackrel{d}{=} \mathcal{Y}(\lambda, W_2) \cap W_1$



Stationary STIT Tessellation on \mathbb{R}^d

- $\mathcal{Y}(\lambda, W)$: STIT in compact and convex $W \subset \mathbb{R}^d$ with lifetime λ
- **Consistency**: For $W_1 \subset W_2$,

 $\mathcal{Y}(\lambda, W_1) \stackrel{d}{=} \mathcal{Y}(\lambda, W_2) \cap W_1$



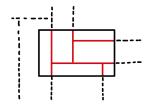
• There exists a **stationary** STIT tessellation $\mathcal{Y}(\lambda)$ on \mathbb{R}^d such that¹⁰

• $\mathcal{Y}(\lambda) \cap W \stackrel{d}{=} \mathcal{Y}(\lambda, W)$ for all compact W

Stationary STIT Tessellation on \mathbb{R}^d

- $\mathcal{Y}(\lambda, W)$: STIT in compact and convex $W \subset \mathbb{R}^d$ with lifetime λ
- **Consistency**: For $W_1 \subset W_2$,

 $\mathcal{Y}(\lambda, W_1) \stackrel{d}{=} \mathcal{Y}(\lambda, W_2) \cap W_1$

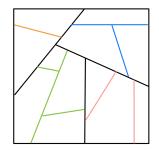


- There exists a **stationary** STIT tessellation $\mathcal{Y}(\lambda)$ on \mathbb{R}^d such that¹⁰
 - $\mathcal{Y}(\lambda) \cap W \stackrel{d}{=} \mathcal{Y}(\lambda, W)$ for all compact W
 - Stable Under Iteration: for all $\lambda > 0$,

 $\mathcal{Y}(\lambda) \stackrel{d}{=} n(\mathcal{Y}(\lambda) \boxplus \cdots \boxplus \mathcal{Y}(\lambda)),$

s.t. $\mathcal{Y} \boxplus \mathcal{Y} := \mathcal{Y} \cup \bigcup_{c \in \text{cells}(\mathcal{Y})} (\mathcal{Y}(c) \cap c)$ where $\{\mathcal{Y}(c) : c \in \mathcal{Y}\}$ are i.i.d. copies of \mathcal{Y}

• Scaling property: $\lambda \mathcal{Y}(\lambda) \stackrel{d}{=} \mathcal{Y}(1)$



Cells of stationary random tessellations

 Cells of *Y*(λ) form a stationary point process on space *K* of compact convex polytopes

Cells of stationary random tessellations

- Cells of *Y*(λ) form a stationary point process on space *K* of compact convex polytopes
- ▶ **Typical cell** is a *centered* random polytope *Z* such that for all $A \in \mathcal{B}(\mathcal{K})$,

$$\mathbb{E}\left[\sum_{C\in cells(\mathcal{Y})} \mathbf{1}\{C\in A\}\right] = \frac{1}{\mathbb{E}[vol_d(Z)]} \mathbb{E}\left[\int_{\mathbb{R}^d} \mathbf{1}\{Z+y\in A\}dy\right]$$

Proof Idea: Variance Bound

- ▶ Recall: Variance is controlled by the expected number of cells/leaves
- Let $W \subset \mathbb{R}^d$ be a compact and convex set
- Let $\mathcal{Y}(\lambda)$ be a STIT tessellation in \mathbb{R}^d with lifetime λ

Lemma

whe

Let Z be the typical cell of $\mathcal{Y}(1)$. Then,

$$\mathbb{E}\left[\sum_{C\in \operatorname{cells}(\mathcal{Y}(\lambda))} \mathbf{1}\{C \cap W \neq \emptyset\}\right] = \sum_{k=0}^{d} \binom{d}{k} \lambda^{k} \frac{\mathbb{E}[V(W[k], Z[d-k])]}{\mathbb{E}[\operatorname{vol}_{d}(Z)]},$$

where $\mathbb{E}[V(W[k], Z[d-k])] := \mathbb{E}[V(\underbrace{W, \dots, W}_{k}, \underbrace{Z, \dots, Z}_{d-k})].$

Proof Idea: Variance Bound

- ▶ Recall: Variance is controlled by the expected number of cells/leaves
- Let $W \subset \mathbb{R}^d$ be a compact and convex set
- Let $\mathcal{Y}(\lambda)$ be a STIT tessellation in \mathbb{R}^d with lifetime λ

Lemma

whe

Let Z be the typical cell of $\mathcal{Y}(1)$. Then,

$$\mathbb{E}\left[\sum_{C\in \operatorname{cells}(\mathcal{Y}(\lambda))} \mathbf{1}\{C \cap W \neq \emptyset\}\right] = \sum_{k=0}^{d} \binom{d}{k} \lambda^{k} \frac{\mathbb{E}[V(W[k], Z[d-k])]}{\mathbb{E}[\operatorname{vol}_{d}(Z)]},$$

where $\mathbb{E}[V(W[k], Z[d-k])] := \mathbb{E}[V(\underbrace{W, \dots, W}_{k}, \underbrace{Z, \dots, Z}_{d-k})].$

► Proof: apply Steiner's formula to $\mathbb{E}\left[\sum_{C \in \mathcal{P}(\lambda)} \mathbb{1}_{\{C \cap W \neq \emptyset\}}\right] = \frac{\mathbb{E}[\operatorname{vol}_d(W - Z_\lambda)]}{\mathbb{E}[\operatorname{vol}_d(Z_\lambda)]}$

Proof Idea: Risk Bound

- Let $\hat{f}_{\lambda,n,M}$ be the forest estimator of f corresponding to the STIT $\mathcal{Y}(\lambda)$
- Let Z_0 the zero cell (cell containing the origin), and Z the typical cell of $\mathcal{Y}(1)$

Assume $f: W \rightarrow \mathbb{R}$ is *L*-Lipschitz. Then,

$$\mathbb{E}[(\hat{f}_{\lambda,n,\mathcal{M}}(X) - f(X))^2] \leq \frac{L\mathbb{E}[\operatorname{diam}(Z_0)^2]}{\lambda^2} + \frac{(5\|f\|_{\infty}^2 + 2\sigma^2)}{n} \sum_{k=0}^d \binom{d}{k} \lambda^k \frac{\mathbb{E}[V(W[k], Z[d-k])]}{\mathbb{E}[\operatorname{vol}_d(Z)]}$$

• Letting $\lambda = \lambda_n \simeq n^{1/(d+2)}$ gives the minimax rate for Lipschitz functions

Proof Idea: Risk Bound for Multi-Index Model

Suppose for $g : \mathbb{R}^s \to \mathbb{R}$ and $a_i \in \mathbb{R}^d, i = 1, \dots, s$

$$f(\mathbf{x}) := g(\langle a_1, \mathbf{x} \rangle, \dots, \langle a_s, \mathbf{x} \rangle)$$

► $S := \text{span}(a_1, \ldots, a_s) \subseteq \mathbb{R}^d$ is the s-dimensional relevant feature subspace

• Let $\hat{f}_{\lambda,n}$ be a STIT forest estimator with directional distribution

$$\phi_n = (1 - \varepsilon_n)\phi_{\rm S} + \varepsilon_n\phi_{\rm S^{\perp}}$$

Proof Idea: Risk Bound for Multi-Index Model

Suppose for
$$g : \mathbb{R}^s \to \mathbb{R}$$
 and $a_i \in \mathbb{R}^d$, $i = 1, \dots, s$

$$f(\mathbf{x}) := g(\langle a_1, \mathbf{x} \rangle, \dots, \langle a_s, \mathbf{x} \rangle)$$

► $S := \text{span}(a_1, \ldots, a_s) \subseteq \mathbb{R}^d$ is the s-dimensional relevant feature subspace

• Let $\hat{f}_{\lambda,n}$ be a STIT forest estimator with directional distribution

$$\phi_n = (1 - \varepsilon_n)\phi_{\rm S} + \varepsilon_n\phi_{\rm S^{\perp}}$$

Assume $g : \mathbb{R}^s \to \mathbb{R}$ is *L*-Lipschitz. Then,

$$\mathbb{E}[(\hat{f}_{\lambda,n}(X) - f(X))^2] \le \frac{L^2 \|A\|_{op}}{\lambda^2 (1 - \varepsilon_n)^2} \mathbb{E}[\operatorname{diam}(Z_0 \cap S)^2] \\ + \frac{(5\|f\|_{\infty}^2 + 2\sigma^2)}{n} \left(\lambda^d \varepsilon_n^{d-s} {d \choose s} R^d \kappa_d \vee (\Pi_S[s], \Pi_{S^{\perp}}[d-s]) + o(\lambda^d \varepsilon_n^{d-s})\right).$$

▶ $\Pi_{S}, \Pi_{S^{\perp}}$ are convex bodies (zonoids) defined by ϕ_{S} and $\phi_{S^{\perp}}$

Summary and future work

- ► We have proved **minimax optimal** rates for a large class of random forest/partition estimators with general split directions
- Theory of stationary random tessellations is a powerful and flexible framework for understanding and developing random partition methods
- Performance depends on geometry of the cells (e.g. mixed volumes of typical cell)

Summary and future work

- ► We have proved **minimax optimal** rates for a large class of random forest/partition estimators with general split directions
- Theory of stationary random tessellations is a powerful and flexible framework for understanding and developing random partition methods
- Performance depends on geometry of the cells (e.g. mixed volumes of typical cell)

- ► How to learn directional distribution from data?
- Other applications: clustering, random feature models

Application #2: Optimal regularizers for a data source

Joint work with Oscar Leong (Caltech), Yong Sheng Soh (National

University of Singapore), and Venkat Chandrasekaran (Caltech)

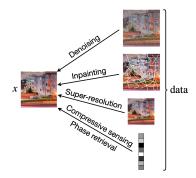
Inverse Problems and regularization

► Goal is to recover signal x from:

$$y = \mathcal{A}(x) + \varepsilon$$

where ${\cal A}$ is a known forward map and ε is observation noise

Problem may be ill-posed



Inverse Problems and regularization

• Goal is to recover signal x from:

$$y = \mathcal{A}(x) + \varepsilon$$

where ${\cal A}$ is a known forward map and ε is observation noise

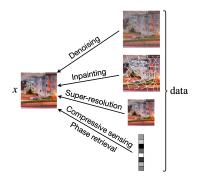
Problem may be ill-posed

Functional Analytic Regularization:

► Recover *x* with the following optimization problem:

 $\underset{x}{\operatorname{argmin}} \operatorname{loss}(\mathcal{A}(x), y) + \underset{x}{\operatorname{regularizer}(x)}$

Regularizer function promotes structure in the solution

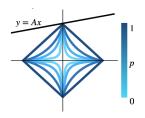


Variety of regularizers

Hand-crafted:

Sparsity is promoted by ℓ_1 norm (convex) and by ℓ_p norm for $p \in [0, 1)$ (non-convex)

```
\underset{x}{\operatorname{argmin}} \operatorname{loss}(\mathcal{A}(x), y) + \|x\|_{p}
```



Variety of regularizers

Hand-crafted:

Sparsity is promoted by ℓ_1 norm (convex) and by ℓ_p norm for $p \in [0, 1)$ (non-convex)

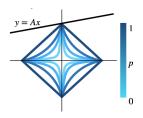
```
\underset{x}{\operatorname{argmin}} \operatorname{loss}(\mathcal{A}(x), y) + \|x\|_{p}
```

Data-driven:

Dictionary Learning (convex)

• Learn $A \in \mathbb{R}^{d \times p}$ such that $x \approx Az$, where z is sparse

$$\|A^T x\|_1 \iff \|x\|_{A(B_{\ell_1})}$$



Variety of regularizers

Hand-crafted:

Sparsity is promoted by ℓ_1 norm (convex) and by ℓ_p norm for $p \in [0, 1)$ (non-convex)

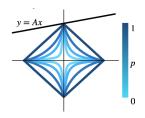
```
\underset{x}{\operatorname{argmin}} \operatorname{loss}(\mathcal{A}(x), y) + \|x\|_{p}
```

Data-driven:

Dictionary Learning (convex)

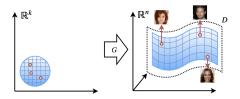
• Learn $A \in \mathbb{R}^{d \times p}$ such that $x \approx Az$, where z is sparse

 $\|\mathsf{A}^{\mathsf{T}} x\|_1 \iff \|x\|_{\mathsf{A}(\mathsf{B}_{\ell_1})}$



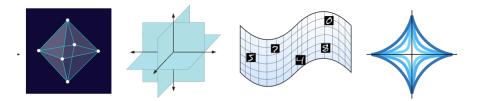
Generative models (non-convex)

 Neural network based regularization



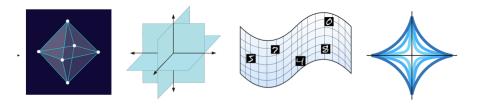
Main question considered in this work

Which regularizer should one choose?



Main question considered in this work

Which regularizer should one choose?



- ▶ What is the optimal regularizer to impose for a given data source?
- Convex versus nonconvex?

Set-up and assumptions

- Let *P* be a probability distribution on \mathbb{R}^d modeling a data source
- Define optimal regularizer f from a family \mathcal{F} as a solution to:

 $\operatorname*{argmin}_{f\in\mathcal{F}}\mathbb{E}_{P}[f(x)]$

- Conditions on $f \in \mathcal{F}$:
 - Positively homogenous: $f(\alpha x) = \alpha f(x), \alpha \ge 0$
 - ▶ f ≥ 0 and continuous

Set-up and assumptions

- Let *P* be a probability distribution on \mathbb{R}^d modeling a data source
- Define optimal regularizer f from a family \mathcal{F} as a solution to:

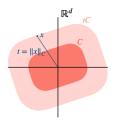
 $\operatorname*{argmin}_{f \in \mathcal{F}} \mathbb{E}_{P}[f(x)]$

- Conditions on $f \in \mathcal{F}$:
 - Positively homogenous: $f(\alpha x) = \alpha f(x), \alpha \ge 0$
 - ▶ f ≥ 0 and continuous

$f \in \mathcal{F} \iff f = \| \cdot \|_{\mathcal{K}}$ is the Minkowski functional of a **star body** \mathcal{K}

Minkowski functional of a compact set $C \subset \mathbb{R}^d$:

 $||x||_{C} := \inf\{t > 0 : x \in tC\}$



Star bodies and radial functions

• The **radial function** of a compact set $K \subset \mathbb{R}^d$ is defined by

$$\rho_{K}(x) := \sup\{t > 0 : tx \in K\} = \|x\|_{K}^{-1}$$

A compact set $K \subset \mathbb{R}^d$ is a **star body** if ρ_K is continuous and it is *starshaped* (with respect to the origin)

$$x\in K\Rightarrow [0,x]\subseteq K$$

Star bodies are uniquely determined by their radial functions

Theorem (Leong, Soh, Chandrasekaran, O., 2022+)

Let P be a distribution on \mathbb{R}^d with density p and assume $\mathbb{E}_P[\|x\|_{\ell_2}] < \infty$.

Theorem (Leong, Soh, Chandrasekaran, O., 2022+)

Let P be a distribution on \mathbb{R}^d with density p and assume $\mathbb{E}_P[||x||_{\ell_2}] < \infty$. Suppose the following function is continuous:

$$\rho_P(u) := \left(\int_0^\infty r^d p(ru) \mathrm{d}r\right)^{1/(d+1)}, \qquad u \in \mathbb{S}^{d-1}.$$
 (1)

Theorem (Leong, Soh, Chandrasekaran, O., 2022+)

Let P be a distribution on \mathbb{R}^d with density p and assume $\mathbb{E}_P[||x||_{\ell_2}] < \infty$. Suppose the following function is continuous:

$$\rho_{\mathsf{P}}(u) := \left(\int_0^\infty r^d p(ru) \mathrm{d}r\right)^{1/(d+1)}, \qquad u \in \mathbb{S}^{d-1}.$$
 (1)

Then \exists a unique star body L_P with radial function ρ_P , and

$$K_* := \operatorname{vol}_d(L_P)^{-1/d}L_P$$

is the unique solution to

 $\underset{K \in \mathcal{S}^d: \mathrm{vol}_d(K) = 1}{\operatorname{argmin}} \mathbb{E}_{P}[\|X\|_{K}]$

Theorem (Leong, Soh, Chandrasekaran, O., 2022+)

Let P be a distribution on \mathbb{R}^d with density p and assume $\mathbb{E}_P[||x||_{\ell_2}] < \infty$. Suppose the following function is continuous:

$$\rho_P(u) := \left(\int_0^\infty r^d p(ru) \mathrm{d}r\right)^{1/(d+1)}, \qquad u \in \mathbb{S}^{d-1}.$$
 (1)

Then \exists a unique star body L_P with radial function ρ_P , and

$$K_* := \operatorname{vol}_d(L_P)^{-1/d}L_P$$

is the unique solution to

 $\underset{K \in \mathcal{S}^d: \mathrm{vol}_d(K) = 1}{\operatorname{argmin}} \mathbb{E}_{P}[\|X\|_{K}]$

► If *L_P* is convex, then the optimal regularizer is convex!

Examples

(i) Densities induced by star bodies:

$$p(\mathbf{x}) = \psi(\|\mathbf{x}\|_{L}) \Rightarrow L_{P} = c_{\psi}L$$

Examples

(i) Densities induced by star bodies:

$$p(x) = \psi(\|x\|_L) \Rightarrow L_P = c_{\psi}L$$

(ii) Gaussian Mixtures:

$$P = \frac{1}{2}\mathcal{N}(0, \boldsymbol{\Sigma}_1) + \frac{1}{2}\mathcal{N}(0, \boldsymbol{\Sigma}_2)$$

where $\Sigma_1 := [1,0;0,\varepsilon] \in \mathbb{R}^{2 \times 2}$ and $\Sigma_2 := [\varepsilon,0;0,1] \in \mathbb{R}^{2 \times 2}$

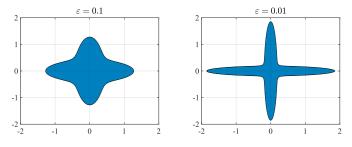


Figure: Plots of L_P for $\varepsilon = 0.1$ (left) and $\varepsilon = 0.01$ (right).

Proof

Goal: Characterize unique solution to

 $\underset{K \in \mathcal{S}^d: \mathrm{vol}_d(K) = 1}{\operatorname{argmin}} \mathbb{E}_{P}[\|X\|_K]$

By change to polar coordinates,

$$\begin{split} \mathbb{E}_{P}[\|x\|_{K}] &= \int_{\mathbb{R}^{d}} \|x\|_{K} \rho(x) \mathrm{d}x = \int_{\mathbb{S}^{d-1}} \|u\|_{K} \int_{0}^{\infty} r^{d} \rho(ru) \mathrm{d}r \mathrm{d}u \\ &= \int_{\mathbb{S}^{d-1}} \rho_{K}(u)^{-1} \rho_{P}(u)^{d+1} \mathrm{d}u := d\tilde{V}_{-1}(K, L_{P}) \end{split}$$

Proof

Goal: Characterize unique solution to

 $\underset{K \in \mathcal{S}^d: \mathrm{vol}_d(K) = 1}{\operatorname{argmin}} \mathbb{E}_P[\|X\|_K]$

By change to polar coordinates,

$$\begin{split} \mathbb{E}_{P}[\|x\|_{K}] &= \int_{\mathbb{R}^{d}} \|x\|_{K} p(x) \mathrm{d}x = \int_{\mathbb{S}^{d-1}} \|u\|_{K} \int_{0}^{\infty} r^{d} p(ru) \mathrm{d}r \mathrm{d}u \\ &= \int_{\mathbb{S}^{d-1}} \rho_{K}(u)^{-1} \rho_{P}(u)^{d+1} \mathrm{d}u := d\tilde{V}_{-1}(K, L_{P}) \end{split}$$

Theorem (Dual Mixed Volume Inequality (Lutwak, 1975))

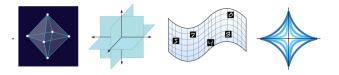
For star bodies K and L,

$$\tilde{V}_{-1}(K,L)^d \geq \operatorname{vol}_d(K)^{-1} \operatorname{vol}_d(L)^{d+1},$$

and equality hold if and only if L and K are dilates, i.e. $L = \lambda K$ for some $\lambda > 0$

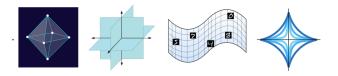
Summary and future work

- Dual Brunn-Minkowski theory provides tools for characterizing optimal functional for imposing structure on a dataset for inverse problems
- Other results: convergence of empirical minimizers and generalization error bounds



Summary and future work

- Dual Brunn-Minkowski theory provides tools for characterizing optimal functional for imposing structure on a dataset for inverse problems
- Other results: convergence of empirical minimizers and generalization error bounds



- ► How do optimal regularizers perform in downstream tasks?
- How to efficiently compute the optimal regularizer?

Papers

"Minimax Rates for High-Dimensional Random Tessellation Forests" Joint with Ngoc Mai Tran. https://arxiv.org/abs/2109.10541

"Optimal Convex and Nonconvex Regularizers for a Data Source" Joint with Oscar Leong, Yong Sheng Soh, and Venkat Chandrasekaran. In preparation.

Thank you!